The Future of Remote Sensing from Space: Civilian Satellite Systems and Applications

Total Page:16

File Type:pdf, Size:1020Kb

The Future of Remote Sensing from Space: Civilian Satellite Systems and Applications The Future of Remote Sensing From Space: Civilian Satellite Systems and Applications July 1993 OTA-ISC-558 NTIS order #PB93-231322 GPO stock #052-003-01333-9 Recommended Citation: U.S. Congress, Office of Technology Assessment, The Future of Remote Sensing From Space: Civilian Satellite Systems and Applications, OTA-ISC-558 (Washington, DC: U.S. Government Printing Office, July 1993). Foreword ver the past decade, the United States and other countries have increasingly turned to satellite remote sensing to gather data about the state of Earth’s atmosphere, land, and oceans. Satellite systems provide the vantage point and coverage necessary to study our planet as an integrated, interactive physical and obiological system. In particular, the data they provide, combined with data from surface and aircraft-based instruments, should help scientists monitor, understand, and ultimately predict the long term effects of global change. This report, the first of three in a broad OTA assessment of Earth observation systems, examines issues related to the development and operation of publicly funded U.S. and foreign civilian remote sensing systems. It also explores the military and intelligence use of data gathered by civilian satellites. In addition, the report examines the outlook for privately funded and operated remote sensing systems. Despite the established utility of remote sensing technology in a wide variety of applications, the state of the U.S. economy and the burden of an increasing Federal deficit will force NASA, NOAA, and DoD to seek ways to reduce the costs of remote sensing systems. This report observes that maximizing the return on the U.S. investment in satellite remote sensing will require the Federal Government to develop a flexible, long-term interagency plan that would guarantee the routine collection of high-quality measurements of the atmosphere, oceans, and land over decades. Such a plan would assign the part each agency plays in gathering data on global change, including scientifically critical observations from aircraft- and ground-based platforms, as well as from space-based platforms. It would also develop appropriate mechanisms for archiving, integrating, and distributing data form many different sources for research and other purposes. Finally, it would assign to the private sector increasing responsibility for collecting and archiving remotely sensed data. In undertaking this effort, OTA sought the contributions of a wide spectrum of knowledgeable individuals and organizations. Some provided information; others reviewed drafts. OTA gratefully acknowledges their contributions of time and intellectual effort. OTA also appreciates the help and cooperation of officials with NASA, NOAA, DOE, and DoD. As with all OTA reports, the content of this report is the sole responsibility of the Office of Technology Assessment and does not necessarily represent the views of our advisors or reviewers. Roger C. Herdman, Director iii Advisory Panel Rodney Nichols David Goodenough Alan Miller Chair Chief Research Scientist Director Chief Executive Officer Pacific Forestry Center The Center for Global Change New York Academy of Sciences Canada University of Maryland James G. Anderson Donald Latham Raymond E. Miller Professor Corporate Director Professor Department of Chemistry and Earth Loral Corp. Department of Computer Science and Planetary Sciences University of Maryland Harvard University Cecil E. Leith Physicist Kenneth Pedersen D. James Baker1 Lawrence Livermore National Research Professor of International Director Laboratory Affairs Joint Oceanographic Institutions, Inc. School of Foreign Service John H. McElroy Georgetown University William Brown Dean of Engineering President The University of Texas at David T. Sandwell ERIM Corp. Arlington Geological Resources Division Scripps Institute of Oceanography Ronald Brunner Molly Macauley Professor Fellow Dorm Walklet Center for Public Policy Research Resources for the Future President University of Colorado TerraNOVA International Earl Merritt Joanne Gabrynowicz Vice President, Research Albert Wheelon Associate Professor Earthsat Corp. Consultant Department of Space Studies University of North Dakota Alexander F.H. Goetz Director Center for the Study of Earth from Space University of Colorado I Until May 1993, NOTE: OTA appreciates and is grateful for the valuable assistance and thoughtful critiques provided by the advisory panel members. The Panel does not, however, necessarily approve, disapprove, or endorse this report. OTA assumes full responsibility for the report and the accuracy of its contents. iv Preject Staff Peter Blair Ray A. Williamson CONTRACTORS Assistant Director, OTA Energy, Project Director Materials, and International Paul Bowersox Security Division Arthur Charo Leonard David Alan Shaw Brian McCue Ronald M. Konkel International Security and Commerce Program Manager Stephen Wooley ADMINISTRATIVE STAFF Jacqueline R. Boykin Office Administrator Louise Staley Administrative Secretary Madeline Gross Contractor workshop Participants THE FUTURE OF REMOTE SENSING FROM SPACE WORKSHOP, APRIL 21,1992 Ray A. Williamson Diane Evans John C. Petheram Chair Manager for Earth Sciences Manager, Space Systems programs Office of Technology Programs GE Astro-Space Division Assessment Jet Propulsion Laboratory Stanley R. Schneider Bruce Barkstrom James Hansen Landsat Program Manager ERBE Experiment Scientist Director NASA Headquarters NASA—Langley Research NASA-Goddard Institute for Center Space Studies Carl Schueler Manager Francis P. Bretherton John S. Langford Advanced Development Programs Director President Hughes Santa Barbara Research Space Science and Engineering Aurora Flight Sciences Corp. Center Center University of Wisconsin Keith Lyon John Vitko, Jr. SeaStar Program Manager Manager Global Climate Change Donald Cobb Orbital Sciences Corp. Sandia National Laboratories Division Group Leader Space Science and Technology Earl Merritt Matthew R. Willard Los Alamos National Laboratory Vice President, Research Consultant Earthsat Corp. Lee Demitry Program Manager Ari Patrinos Advanced Research Project Director, Environmental Agency Sciences Division U.S. Department of Energy Jeffrey Dozier Professor Center for Remote Sensing and Advanced Optics University of California at Santa Barbara vi POTENTIAL MILITARY USES OF CIVILIAN SATELLITES WORKSHOP, JULY 8,1992 Ray A. Williamson William Kennedy John G. Thunen Chair Hughes STX Manager, Special Projects Office of Technology Hughes-Santa Barbara Research Assessment Michael Krepon Center President James R. Blackwell Henry L. Stirnson Center Peter Zimmerman Director Senior Fellow International Security Division Donald Latham Center for Strategic and Meridian Corp. Corporate Director International Studies Loral Corp. Kenneth Daugherty Chief Scientist Defense Mapping Agency John Hudson Systems Officer Defense Intelligence Agency vii Acknowledgments This report has benefited from the advice of many individuals. In addition to members of the Advisory Panel and the workshop, OTA especially would like to thank the following individuals for their assistance and support. The views expressed in this paper, however, are the sole responsibility of the Office of Technology Assessment. Stephen W. Altes John Dutton W. John Hussey Aurora Flight Sciences Corp. Pennsylvania State University National Oceanic and Atmospheric Administration Donald Artis H. Frank Eden U.S. Army Topographic Martin Marietta Astro Space Bhupendra Jasani Engineering Center King’s College Richard Eiserman Arthur Boot h U.S. General Accounting Office Ma]. Frank Kelly, USAF National Oceanic and Atmospheric Department of Defense Administration Charles Elachi Jet Propulsion Laboratory Mary Dee Kerwin Andrew Boye National Aeronautics and Space Sandia National Laboratories Bernard P. Elero Administration Martin Marietta Astro Space Dino Brugioni Jack Koeppen Fredericksburg, VA Douglas B. Gerull National Oceanic and Atmospheric WorldView Imaging Corp. Administration Dixon Butler National Aeronautics and Space Louis Gomberg Russell Koffler Administration Hughes Space and Communications Fort Washington, MD Group Barbara Cherry John S. Langford National Aeronautics and Space Ken Hadeen Aurora Flight Sciences Corp. Administration NOAA National Climatic Data Center Donald Light Thomas Cremins U.S. Geological Survey National Aeronautics and Space Michael Hall Administration National Oceanic and Atmospheric Keith Lyon Administration orbital Sciences Corp. William Crocker U.S. General Accounting Office Stephen Harper John MacDonald EOSAT Corp. MacDonald Dettwiler Brian D. Dailey Lockheed Missiles & Space Co., Fred Henderson Inc. Geosat Committee Inc. VIII Jeffrey Marquese Ted G. Nanz Shelby Tilford Institute for Defense Analyses SPOT Image Corp. National Aeronautics and Space Administration Thomas Meyer Clark Nelson Los Alamos National Laboratory SPOT Image Corp. Milton C. Trichel ERIM Aram Mika Scott Pace Hughes Santa Barbara Research The Rand Corp. Paul F. Uhlir Center National Academy of Sciences Carl Reber David Moore NASA Goddard Space Flight Pat Viets Congressional Budget Office Center National Oceanic and Atmospheric Administration Stanley Morain Sally Ride Technology Application Center California Space Institute Wulf Von Kries University of New Mexico University of California, MST Aerospace GMbH San Diego Richard Mroczynski Allen H. Watkins EOSAT Corp. Thomas Sever U.S. Geological Survey John C. Stennis Space Center Firouz Michael Naderi Daniel Woods Jet Propulsion Laboratory
Recommended publications
  • AATSR Frequently Asked Questions (FAQ)
    AATSR Frequently Asked Questions (FAQ) Author : IDEAS+ AATSR QC Team (Telespazio VEGA UK) IDEAS+-VEG-OQC-REP-2117 Issue 3 14 December 2016 AATSR Frequently Asked Questions (FAQ) Issue 3 AMENDMENT RECORD SHEET The Amendment Record Sheet below records the history and issue status of this document. ISSUE DATE REASON 1 20 Dec 2005 Initial Issue (as AEP_REP_001) 2 02 Oct 2013 Updated with new questions and information (issued as IDEAS- VEG-OQC-REP-0955) 3 14 Dec 2016 General updates, major edits to Q37., new questions: Q17., Q25., Q26., Q28., Q32., Q38., Q39., Q48. Now issued as IDEAS+-VEG-OQC-REP-2117 TABLE OF CONTENTS 1. INTRODUCTION ........................................................................................................................ 5 1.1 The Third AATSR Reprocessing Dataset (IPF 6.05) ............................................................ 5 1.2 References ............................................................................................................................ 6 2. GENERAL QUESTIONS ........................................................................................................... 7 Q1. What does AATSR stand for? ........................................................................................ 7 Q2. What is AATSR and what does it do? ............................................................................ 7 Q3. What is Envisat? ............................................................................................................. 7 Q4. What orbit does Envisat use? ........................................................................................
    [Show full text]
  • Solar System Exploration
    Theme: Solar System Exploration Cassini, a robotic spacecraft launched in 1997 by NASA, is close enough now to resolve many rings and moons of its destination planet: Saturn. The spacecraft has now closed to within a single Earth-Sun separation from the ringed giant. In November 2003, Cassini snapped the contrast-enhanced color composite pictured above. Many features of Saturn's rings and cloud-tops now show considerable detail. When arriving at Saturn in July 2004, the Cassini orbiter will begin to circle and study the Saturnian system. Several months later, a probe named Huygens will separate and attempt to land on the surface of Titan. Solar System Exploration MAJOR EVENTS IN FY 2005 Deep Impact will launch in December 2004. The spacecraft will release a small (820 lbs.) Impactor directly into the path of comet Tempel 1 in July 2005. The resulting collision is expected to produce a small impact crater on the surface of the comet's nucleus, enabling scientists to investigate the composition of the comet's interior. Onboard the Cassini orbiter is a 703-pound scientific probe called Huygens that will be released in December 2004, beginning a 22-day coast phase toward Titan, Saturn's largest moon; Huygens will reach Titan's surface in January 2005. ESA 2-1 Theme: Solar System Exploration OVERVIEW The exploration of the solar system is a major component of the President's vision of NASA's future. Our cosmic "neighborhood" will first be scouted by robotic trailblazers pursuing answers to key questions about the diverse environments of the planets, comets, asteroids, and other bodies in our solar system.
    [Show full text]
  • Cloud Cci ATSR-2 and AATSR Dataset Version 3: a 17-Year Climatology of Global Cloud and Radiation Properties Caroline A
    Discussions https://doi.org/10.5194/essd-2019-217 Earth System Preprint. Discussion started: 11 December 2019 Science c Author(s) 2019. CC BY 4.0 License. Open Access Open Data Cloud_cci ATSR-2 and AATSR dataset version 3: a 17-year climatology of global cloud and radiation properties Caroline A. Poulsen1, Gregory R. McGarragh2, Gareth E. Thomas3,6, Martin Stengel4, Matthew W. Christensen5, Adam C. Povey7, Simon R. Proud5,6, Elisa Carboni3,6, Rainer Hollmann4, and Roy G. Grainger7 1Monash University, Melbourne, Australia 2Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK Now at Cooperative Institute for Research in the Atmosphere, Colorado State University 3Science Technology Facility Council, Rutherford Appleton Laboratory, Harwell, Oxfordshire, UK 4Deutscher Wetterdienst, Frankfurter Str. 135, 63067, Offenbach, Germany 5Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK 6National Centre for Earth Observation, Reading RG6 6BB, UK 7National Centre for Earth Observation, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, U.K. Correspondence: Caroline Poulsen ([email protected]) Abstract. We present version 3 (V3) of the Cloud_cci ATSR-2/AATSR dataset. The dataset was created for the European Space Agency (ESA) Cloud_cci (Climate Change Initiative) program. The cloud properties were retrieved from the second Along- Track Scanning Radiometer (ATSR-2) on board the second European Remote Sensing Satellite (ERS-2) spanning 1995-2003 and the Advanced ATSR (AATSR) on board Envisat, which spanned 2002-2012. The data comprises a comprehensive set 5 of cloud properties: cloud top height, temperature, pressure, spectral albedo, cloud effective emissivity, effective radius and optical thickness alongside derived liquid and ice water path.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Oih Government of India Department of Space Rajya
    OIH GOVERNMENT OF INDIA DEPARTMENT OF SPACE RAJYA SABHA UNSTARRED QUESTION NO. 874 TO BE ANSWERED ON THURSDAY, APRIL 30, 2015 SATELLITE LAUNCHED BY ISRO 874. SHRI RAMDAS ATHAWALE: Will the PRIME MINISTER be pleased to state: (a) the details of the satellites successfully launched so far by ISRO along with those satellites ISRO failed to launch; (b) whether there is any proposal to launch more satellites in near future, if so, the details thereof; and (c) whether Government proposes to enter the global market for images and statistics? ANSWER MINISTER OF STATE IN THE MINISTRY OF PERSONNEL, PG & PENSIONS AND IN THE PRIME MINISTER’S OFFICE (DR. JITENDRA SINGH): (a) As on April 2015, Indian Space Research Organisation (ISRO) has launched 74 satellites. Out of these, 7 satellites failed to reach the orbit due to launch failure and 3 satellites failed in orbit. In addition, ISRO has successfully launched 40 foreign satellites from 19 countries and 4 micro & nano satellites built by students of Indian Universities using Polar Satellite Launch Vehicle (PSLV). The details are enclosed in Annexure-1 (b) Yes, Sir. 6 more satellites are planned to be launched during 2015-16. These are two Communication satellites GSAT-6 & GSAT-15; three Navigation satellites IRNSS-1E, IRNSS-1F & IRNSS-1G; and one Space science satellite ASTROSAT. In addition, it is also planned to launch 13 more satellites from four countries using Polar Satellite Launch Vehicle. The details are enclosed in Annexure-2. …2/- -2- (c) Antrix Corporation Ltd., the commercial arm of Department of Space is already marketing remote sensing data (images) from Indian Remote Sensing satellites in the global market through establishment of International Ground Stations and reseller network.
    [Show full text]
  • 25 Years of Indian Remote Sensing Satellite (IRS)
    2525 YearsYears ofof IndianIndian RemoteRemote SensingSensing SatelliteSatellite (IRS)(IRS) SeriesSeries Vinay K Dadhwal Director National Remote Sensing Centre (NRSC), ISRO Hyderabad, INDIA 50 th Session of Scientific & Technical Subcommittee of COPUOS, 11-22 Feb., 2013, Vienna The Beginning • 1962 : Indian National Committee on Space Research (INCOSPAR), at PRL, Ahmedabad • 1963 : First Sounding Rocket launch from Thumba (Nov 21, 1963) • 1967 : Experimental Satellite Communication Earth Station (ESCES) established at Ahmedabad • 1969 : Indian Space Research Organisation (ISRO) established (15 August) PrePre IRSIRS --1A1A SatellitesSatellites • ARYABHATTA, first Indian satellite launched in April 1975 • Ten satellites before IRS-1A (7 for EO; 2 Met) • 5 Procured & 5 SLV / ASLV launch SAMIR : 3 band MW Radiometer SROSS : Stretched Rohini Series Satellite IndianIndian RemoteRemote SensingSensing SatelliteSatellite (IRS)(IRS) –– 1A1A • First Operational EO Application satellite, built in India, launch USSR • Carried 4-band multispectral camera (3 nos), 72m & 36m resolution Satellite Launch: March 17, 1988 Baikanur Cosmodrome Kazakhstan SinceSince IRSIRS --1A1A • Established of operational EO activities for – EO data acquisition, processing & archival – Applications & institutionalization – Public services in resource & disaster management – PSLV Launch Program to support EO missions – International partnership, cooperation & global data sets EarlyEarly IRSIRS MultispectralMultispectral SensorsSensors • 1st Generation : IRS-1A, IRS-1B •
    [Show full text]
  • FAME-C: Cloud Property Retrieval Using Synergistic AATSR and MERIS Observations
    Atmos. Meas. Tech., 7, 3873–3890, 2014 www.atmos-meas-tech.net/7/3873/2014/ doi:10.5194/amt-7-3873-2014 © Author(s) 2014. CC Attribution 3.0 License. FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations C. K. Carbajal Henken, R. Lindstrot, R. Preusker, and J. Fischer Institute for Space Sciences, Freie Universität Berlin (FUB), Berlin, Germany Correspondence to: C. K. Carbajal Henken ([email protected]) Received: 29 April 2014 – Published in Atmos. Meas. Tech. Discuss.: 19 May 2014 Revised: 17 September 2014 – Accepted: 11 October 2014 – Published: 25 November 2014 Abstract. A newly developed daytime cloud property re- trievals. Biases are generally smallest for marine stratocu- trieval algorithm, FAME-C (Freie Universität Berlin AATSR mulus clouds: −0.28, 0.41 µm and −0.18 g m−2 for cloud MERIS Cloud), is presented. Synergistic observations from optical thickness, effective radius and cloud water path, re- the Advanced Along-Track Scanning Radiometer (AATSR) spectively. This is also true for the root-mean-square devia- and the Medium Resolution Imaging Spectrometer (MERIS), tion. Furthermore, both cloud top height products are com- both mounted on the polar-orbiting Environmental Satellite pared to cloud top heights derived from ground-based cloud (Envisat), are used for cloud screening. For cloudy pixels radars located at several Atmospheric Radiation Measure- two main steps are carried out in a sequential form. First, ment (ARM) sites. FAME-C mostly shows an underestima- a cloud optical and microphysical property retrieval is per- tion of cloud top heights when compared to radar observa- formed using an AATSR near-infrared and visible channel.
    [Show full text]
  • The Space-Based Global Observing System in 2010 (GOS-2010)
    WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available.
    [Show full text]
  • Glimpses of Indian Space Programme
    Presentation at the M. V. DHEKANE, International Symposium Associate Director (R&D) in Tokyo, on Vikram Sarabhai Space Centre, Stable use of Outer Space Indian Space Research Organisation 1 during March 3-4, 2016 Trivandrum, India “There are some who question the relevance of space activities in a developing nation. To us, there is no ambiguity of purpose. We are convinced that if we are to play a meaningful role in the comity of nations we should be second to none in the applications of advanced technologies to the real problems of man and Society.” Dr. Vikram A Sarabhai 2 The First Indian Rockets…. Rohini-75 (RH-75) The First rocket made by India and launched from Thumba 20-Nov-1967 Nike-Apache The First sounding rocket launched from Thumba 21-Nov-1963 3 Sounding Rockets 4 ISRO Launch vehicles SLV-3 to GSLV MkIII • GTO Mission • Cryogenics • Maraging Steel, Large Booster • Strap-on Technology • Liquid Propulsion • Closed loop Guidance • Gimbal Control, Flex Nozzle • Onboard RTD • Multiple Satellites injection • Bulbous Heat Shield • Vertical Integration • Solid propulsion • Inertial Systems • Open loop guidance • Orbital Mission GSLV Mk III • Heavy Cryogenics GSLV • Large solid & liquid (2000) Boosters 10000 4500 SLV-3 ASLV PSLV (1994) (1980) (1988) 3000 LEO PAYLOADS (KG) GSLV Mk III Launch Vehicle SLV ASLV PSLV GSLV (Under development) Lift-off weight 17 40 295 450 635 (Tonnes) Payload (kg) 40 (LEO) 150 (LEO) 1600 (SSO) 2000 (GTO) 4000 (GTO) 5 Indian Space programme VISION: Harness space technology for national development, while pursuing
    [Show full text]
  • Local Area Network and Data Network for the Advanced Earth Observing Satellite, ADEOS System Kohei Arai
    Local area network and data network for the Advanced Earth Observing Satellite, ADEOS system Kohei Arai '* * Earth Observation Center, National Space Development Agency of Japan Abstract NASDA is planning the next generation of earth observation satellite, following MOS-1, MOS-1b, JER3-1, so called Advanced Earth Observing Satellite, ADEOS. ADEOS will carry Ocean Color and Temperature Scanner, OCTS, Advanced Visible and Near Infrared Radiometer, AVNIR and Anouncement Opportunity sensors, AO sensors and will require a quicl< data distribution. Not only direct broadcasting, but also data distribution through a network are usefull for the dissemination of such data. Therefore a data network of which users can access a quicklook image data base in a quasi real time basis is now considered. In order for the preoperational data handling, a local area network is taken into account for an ADEOS ground facility. The processed data are sent to the film recorder through the LAN together with histograms for the generation of look up table for the gamma correction. Key items of the processed data are also transmitted to the information retrieval subsystem for the registration. The aquired quick look data are transmitted to not only the film recorder but also quick look image data base and the information retreival subsystem in a real time basis. The aforementioned ideas and concept for the development of the ADEOS ground facility will be described in the proposed paper. Presented at the ISPRS held in Kyoto, Japan, in July 1988. 1 1 1 .. INTRODUCTION data starting with HOS-1 through ) the Polar respond or demands for earth observation from space, earth observation system consists of not only satellite but also ground facilities including data net\.>lorks for transmission of mission data, should matured and improved.
    [Show full text]
  • Aqua: an Earth-Observing Satellite Mission to Examine Water and Other Climate Variables Claire L
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 2, FEBRUARY 2003 173 Aqua: An Earth-Observing Satellite Mission to Examine Water and Other Climate Variables Claire L. Parkinson Abstract—Aqua is a major satellite mission of the Earth Observing System (EOS), an international program centered at the U.S. National Aeronautics and Space Administration (NASA). The Aqua satellite carries six distinct earth-observing instruments to measure numerous aspects of earth’s atmosphere, land, oceans, biosphere, and cryosphere, with a concentration on water in the earth system. Launched on May 4, 2002, the satellite is in a sun-synchronous orbit at an altitude of 705 km, with a track that takes it north across the equator at 1:30 P.M. and south across the equator at 1:30 A.M. All of its earth-observing instruments are operating, and all have the ability to obtain global measurements within two days. The Aqua data will be archived and available to the research community through four Distributed Active Archive Centers (DAACs). Index Terms—Aqua, Earth Observing System (EOS), remote sensing, satellites, water cycle. I. INTRODUCTION AUNCHED IN THE early morning hours of May 4, 2002, L Aqua is a major satellite mission of the Earth Observing System (EOS), an international program for satellite observa- tions of earth, centered at the National Aeronautics and Space Administration (NASA) [1], [2]. Aqua is the second of the large satellite observatories of the EOS program, essentially a sister satellite to Terra [3], the first of the large EOS observatories, launched in December 1999. Following the phraseology of Y.
    [Show full text]
  • What Is the Future of Earth's Climate?
    What is the Future of Earth’s Climate? Introduction The question of whether the Earth is warming is one of the most intriguing questions that scientists are dealing with today. Climate has a significant influence on all of Earth’s ecosystems today. What will future climates be like? Scientists have begun to examine ice cores dating back over 100 years to study the changes in the concentrations of carbon dioxide gas from carbon emissions to see if a true correlation exists between human impact and increasing temperatures on Earth. CO2 from Carbon Emissions This has led many scientists to ask the question: What will future climates be like? Today, you will interact, ask questions, and analyze data from the NASA Goddard Institute for Space Studies to generate some predictions about global climate change in the future. Review the data of global climate change on the slide below. Complete the questions on the following slide. This link works! Graphics Courtesy: NASA Goodard Space Institute-- https://data.giss.nasa.gov/gistemp/animations/5year_2y.mp4 Looking at the data... 1. Between what years was the greatest change in overall climate observed? 2. Using what you know, what happened in this time period that may have attributed to these changes in global climate? 3. How might human activities contribute to these changes? What more information would you need to determine how humans may have impacted global climate change? Is there a connection between fossil fuel consumption and global climate change? Temperature Change 1880-2020 CO2 Levels (ppm) from 2006-2018 Examine the graphs above.
    [Show full text]