GENETIC VARIATION of the FOREST ELEPHANT Loxodonta Africana Cyclotis ACROSS CENTRAL AFRICA

Total Page:16

File Type:pdf, Size:1020Kb

GENETIC VARIATION of the FOREST ELEPHANT Loxodonta Africana Cyclotis ACROSS CENTRAL AFRICA GENETIC VARIATION OF THE FOREST ELEPHANT Loxodonta africana cyclotis ACROSS CENTRAL AFRICA MIREILLE BA WE JOHNSON A thesis submitted to Cardiff University for the higher degree of Doctor of Philosophy June 2008 Cardiff School of Biosciences Cardiff University UMI Number: U585163 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U585163 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 I dedicate this thesis to my lovely children, Line and Franck-Olivier, my sisters: Louise, Irene, Isabelle and my late sister Yvonne; to my brothers: Freddy, Richard, William, Christian, Hughes and Gilles; to my mother Georgeline and my father John for their love, support and encouragement; finally to all my nieces and nephews. Akewa m 'polo! DECLARATION This work has not previously been accepted in substance for any degree and is not concurrently submitted in candidature for any degree. c. Signedc^^^pfr^frft ................... (Candidate) Date .. \X >.. .'.Ai\. STATEMENT 1 This thesis is being submitted in partial fulfilment of the requirements for the degree of PhD. Signed T.. \ . \ . .. V T ^ T . 7T77. (Candidate) Date ... \ . X..'.. \ ......Q 5) STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other spurces are acknowledged by explicit references. Sqm e d r . (Candidate) Date ...A.2^ ..0 .5 . STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter- library loan, and for the title and summary to be made available to outside organisations^^— \ \ ! V . Signed ... .T. .7. v A. .\. X. •7^>- • (Candidate) Date \ AL .0.. I STATEMENT 4: PREVIOUSLY APPROVED BARON ACCESS I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loans after expiry of a bar on access previously approved by the Graduate Developmen^Committee. ^ Signed , .. ... (Candidate) Date .. L..:. .D. A.. 0. ACKNOWLEDGMENTS I am most grateful to Professor Michael W. Bruford, Dr. Jean E. Wickings and Dr. Benoit Goossens whose guidance, comments, commitment and encouragement made this work a success. Special thanks to my friend Stephen Clifford who helped me in many ways to successfully complete this project. I am grateful to Nicole Muloko and Nicola Anthony who gave me intensive training in molecular biology techniques. Special gratitude also goes to Joanna Cable and Joanna Setchell who kindly accepted to correct my grammar. To all my current and former lab mates and friends: Muya, Gaby, Rhys, Farina, Pati, Milena, Renata, Coralie, Geoff, Tim, Jeff, Viola, Andy, Ben, David, Dan, Kath, Angela, Fairus, Yoshan, Erica, Simon, Trini, Carlos, Elis and Sofia. My interactions and discussions with you all was always a joy, which nourished my motivation. Special thanks also to UGENET-CIRMF: Marie, Michel, Christiane, Simon, Paul, Celine, and all people at CIRMF especially my friends Odile and Maria for dways giving me their support. Finally, to my best friends Edith and Laure. This project was supported by grants from US Fish and Wildlife Service, French cooperation/FORINFO, Darwin Initiative scholarship, British Ecological Society, Tusk Trust and Centre International de Recherches Medicales in Franceville. IV SUMMARY The first comprehensive genetic study of central African forest elephants (CAEs) is presented here based on mitochondrial DNA (mtDNA) and nuclear microsatellite loci. MtDNA analysis revealed low genetic divergence between most groups. Haplotype distribution was not correlated with geographical localities, indicating high levels of gene flow. Two divergent haplogroups, illustrated by a bimodal distribution of pairwise differences in the control region, implies that secondary contact and ongoing introgression has occurred between populations expanding from at least two putative glacial refugia. Similarly, microsatellite analysis revealed low genetic differentiation among sites, suggesting high levels of gene flow as well as regional admixture with two genetically-based clusters inferred from Bayesian analyses. It is important to note through, that although both mtDNA and microsatellites identified two groups or genetic clusters, assignment of hdividuals to these clusters was not consistent across genomes possibly a result of differential admixture in nuclear and mitochondrial DNA No correlation was found between genetic and geographical distances for both genomes. Previous phylogenetic analyses, using either on genetic or morphological characters, were based on a very limited number of forest elephant samples. A large-scale re­ assessment of mitochondrial DNA diversity in CAEs compared to published data on both forest and savannah forms revealed a complex phylogeographic history for African elephants, and an evolutionary trajectory more complex than prevailing two-taxon models have assumed. Mitochondrial control region and Cytochrome b sequences were analysed for CAEs and compared to other African elephant data. CAE populations fell into at least two lineages with West African elephants (both forest and savannah) sharing their mitochondrial history almost exclusively with Central African forest elephants. Extant African elephant populations therefore seem to have originated from multiple refugia lineages that have subsequently undergone introgression. Thus, the complex phylogeographic history of African elephants does not support a simple two-taxon model and management strategies incorporating the two-taxa model could be misinformed until further data give clarifies the origins of elephant populations throughout Africa. TABLE OF CONTENTS DECLARATION...................................................................................................................... iii ACKNOWLEDGEMENTS................................................................................................... iv SUMMARY................................................................................................................................ v CONTENTS............................................................................................................................... vi LIST OF TABLES................................................................................................................... x LIST OF FIGURES................................................................................................................. xii CHAPTER! GENERAL INTRODUCTION.................................................................. ! 1.1 EVOLUTION OF PROBOSCIDEA.................................................................... 1 1.2 THE TAXONOMY OF MODERN ELEPHANT: LOXODONTA............... 5 1.3 MORPHOLOGICAL DIFFERENCES.............................................................. 7 1.3.1 African elephant versus Asian elephant ................................................ 7 1.3.2 African forest elephants versus African savannah elephants ............ 8 1.3.3 West African elephants......................................................................... 9 1.3.4 The distribution of Loxodonta ................................................................ 10 1.4 THE CENTRAL AFRICAN FOREST ELEPHANT: L. AFRICANA CYCLOTIS (MATSCHIE, 1900)........................................................................ 12 1.4.1 Distribution ................................................................................................ 13 1.4.2 Ecology-Habitat / Diet ............................................................................. 14 1.4.3 Reproduction .............................................................................................. 15 1.4.4 Social structure .......................................................................................... 16 1.4.5 Movements ................................................................................................. 18 1.4.6 Poaching and habitat loss ........................................................................ 19 1.5 JUSTIFICATION OF THE STUDY................................................................... 20 1.6 GENETICS.............................................................................................................. 22 1.6.1 Choice of molecular marker .................................................................... 22 Polymerase Chain Reaction using non-invasive samples ................... 22 Mitochondrial DNA (mtDNA) .................................................................. 23 Nuclear integrations of mitochondrial DNA (Numts) .......................... 24 Microsatellite DNA ................................................................................... 25 1.7 AN OVERVIEW ON AFRICAN ELEPHANT GENETIC STUDIES 25 1.8 HYPOTHESES AND AIMS ................................................................................ 28 1.9 REFERENCES....................................................................................................... 31 CHAPTER 2 MATERIALS AND METHODS...............................................................
Recommended publications
  • Open Thesis Final V2.Pdf
    The Pennsylvania State University The Graduate School Department of the Geosciences TAXONOMIC AND ECOLOGIC IMPLICATIONS OF MAMMOTH MOLAR MORPHOLOGY AS MEASURED VIA COMPUTED TOMOGRAPHY A Thesis in Geosciences by Gregory J Smith 2015 Gregory J Smith Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2015 ii The thesis of Gregory J Smith was reviewed and approved* by the following: Russell W. Graham EMS Museum Director and Professor of the Geosciences Thesis Advisor Mark Patzkowsky Professor of the Geosciences Eric Post Director of the Polar Center and Professor of Biology Timothy Ryan Associate Professor of Anthropology and Information Sciences and Technology Michael Arthur Professor of the Geosciences Interim Associate Head for Graduate Programs and Research *Signatures are on file in the Graduate School iii ABSTRACT Two Late Pleistocene species of Mammuthus, M. columbi and M. primigenius, prove difficult to identify on the basis of their third molar (M3) morphology alone due to the effects of dental wear. A newly-erupted, relatively unworn M3 exhibits drastically different characters than that tooth would after a lifetime of wear. On a highly-worn molar, the lophs that comprise the occlusal surface are more broadly spaced and the enamel ridges thicken in comparison to these respective characters on an unworn molar. Since Mammuthus taxonomy depends on the lamellar frequency (# of lophs/decimeter of occlusal surface) and enamel thickness of the third molar, given the effects of wear it becomes apparent that these taxonomic characters are variable throughout the tooth’s life. Therefore, employing static taxonomic identifications that are based on dynamic attributes is a fundamentally flawed practice.
    [Show full text]
  • 1.1 První Chobotnatci 5 1.2 Plesielephantiformes 5 1.3 Elephantiformes 6 1.3.1 Mammutida 6 1.3.2 Elephantida 7 1.3.3 Elephantoidea 7 2
    MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV GEOLOGICKÝCH VĚD Jakub Březina Rešerše k bakalářské práci Využití mikrostruktur klů neogenních chobotnatců na příkladu rodu Zygolophodon Vedoucí práce: doc. Mgr. Martin Ivanov, Dr. Brno 2012 OBSAH 1. Současný pohled na evoluci chobotnatců 3 1.1 První chobotnatci 5 1.2 Plesielephantiformes 5 1.3 Elephantiformes 6 1.3.1 Mammutida 6 1.3.2 Elephantida 7 1.3.3 Elephantoidea 7 2. Kly chobotnatců a jejich mikrostruktura 9 2.1 Přírůstky v klech chobotnatců 11 2.1.1 Využití přírůstků v klech chobotnatců 11 2.2 Schregerův vzor 12 2.2.1 Stavba Schregerova vzoru 12 2.2.2 Využití Schregerova vzoru 12 2.3 Dentinové kanálky 15 3 Sedimenty s nálezy savců v okolí Mikulova 16 3.1 Baden 17 3.2 Pannon a Pont 18 1. Současný pohled na evoluci chobotnatců Současná systematika chobotnatců není kompletně odvozena od jejich fylogeneze, rekonstruované pomocí kladistických metod. Diskutované skupiny tak mnohdy nepředstavují monofyletické skupiny. Přestože jsou taxonomické kategorie matoucí (např. Laurin 2005), jsem do jisté míry nucen je používat. Některým skupinám úrovně stále přiřazeny nebyly a zde této skutečnosti není přisuzován žádný význam. V této rešerši jsem se zaměřil hlavně na poznatky, které následovaly po vydání knihy; The Proboscidea: Evolution and Paleoecology of Elephants and Their Relatives, od Shoshaniho a Tassyho (1996). Chobotnatci jsou součástí skupiny Tethytheria společně s anthracobunidy, sirénami a desmostylidy (Shoshani 1998; Shoshani & Tassy 1996; 2005; Gheerbrant & Tassy 2009). Základní klasifikace sestává ze dvou skupin. Ze skupiny Plesielephantiformes, do které patří čeledě Numidotheriidae, Barytheriidae a Deinotheridae a ze skupiny Elephantiformes, do které patří čeledě Palaeomastodontidae, Phiomiidae, Mammutida, Gomphotheriidae, tetralofodontní gomfotéria, Stegodontidae a Elephantidae (Shoshani & Marchant 2001; Shoshani & Tassy 2005; Gheerbrant & Tassy 2009).
    [Show full text]
  • Newsletter March 2021
    Dzanga Sangha Protected Areas © David Santiago Newsletter March 2021 Wildlife During the month of March, the UICN publicly announced two decisions concerning forest elephants. The first one was declaring the forest elephant (Loxodonta Cyclotis) an altogether different species, as until recently it was merely considered a subspecies. The second decision was declaring this species critically endangered. Dzanga Sangha remains for the moment one of the few places in all of Africa where the number of individuals has remained relatively stable in recent years, and it is also the place where they are most easily observed. The links attached below talk more about this subject. https://www.theguardian.com/environment/2021/mar/25/shades-of-grey-how-to-tell-african-elephant-species-apart- aoe https://www.theguardian.com/commentisfree/2021/mar/25/africas-forest-elephant-has-been-largely-overlooked-now- we-need-to-fight-for-it-aoe https://www.nationalgeographic.com/animals/article/both-african-elephant-species-are-now-endangered-one-critically https://citizen.co.za/news/south-africa/environment/2466472/african-elephant-status-change-a-wake-up-call-for- humans/ https://theconversation.com/new-decisions-by-global-conservation-group-bolster-efforts-to-save-africas-elephants- 158157 In the other hand, Terence Fuh, Head of Primate Habituation, Research and Monitoring for the DSPA has been listed among the top 100 Young African Conservation Leaders, out of the 565 nominations received from 425 youth organizations and networks which underwent a rigorous judging and verification process. https://top100youth.africa/ Over the last three years we have had a total of 4 gorillas babies born into the three habituated groups in DSPA.
    [Show full text]
  • Distinguishing Extant Elephants Ivory from Mammoth Ivory Using a Short
    www.nature.com/scientificreports OPEN Distinguishing extant elephants ivory from mammoth ivory using a short sequence of cytochrome b gene Jacob Njaramba Ngatia1, Tian Ming Lan2,3,4, Yue Ma1,5, Thi Dao Dinh1, Zhen Wang1,5, Thomas D. Dahmer6 & Yan Chun Xu1,5,7* Trade in ivory from extant elephant species namely Asian elephant (Elephas maximus), African savanna elephant (Loxodonta africana) and African forest elephant (Loxodonta cyclotis) is regulated internationally, while the trade in ivory from extinct species of Elephantidae, including woolly mammoth, is unregulated. This distinction creates opportunity for laundering and trading elephant ivory as mammoth ivory. The existing morphological and molecular genetics methods do not reliably distinguish the source of ivory items that lack clear identifcation characteristics or for which the quality of extracted DNA cannot support amplifcation of large gene fragments. We present a PCR-sequencing method based on 116 bp target sequence of the cytochrome b gene to specifcally amplify elephantid DNA while simultaneously excluding non-elephantid species and ivory substitutes, and while avoiding contamination by human DNA. The partial Cytochrome b gene sequence enabled accurate association of ivory samples with their species of origin for all three extant elephants and from mammoth. The detection limit of the PCR system was as low as 10 copy numbers of target DNA. The amplifcation and sequencing success reached 96.7% for woolly mammoth ivory and 100% for African savanna elephant and African forest elephant ivory. This is the frst validated method for distinguishing elephant from mammoth ivory and it provides forensic support for investigation of ivory laundering cases.
    [Show full text]
  • African Elephant Genetics: Enigmas and Anomalies†
    Journal of Genetics (2019) 98:83 © Indian Academy of Sciences https://doi.org/10.1007/s12041-019-1125-y PERSPECTIVES African elephant genetics: enigmas and anomalies† ALFRED L. ROCA1,2∗ 1Department of Animal Sciences, and 2Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA *E-mail: [email protected]. Received 5 November 2018; revised 28 March 2019; accepted 27 May 2019 Keywords. elephants; mito-nuclear; subspecies; effective population size; glacial refugia. During the last two decades, our understanding of the Introduction genetics of African elephant populations has greatly increas- ed. Strong evidence, both morphological and genetic, sup- Morphological analyses of skull dimensions of African ele- ports recognition of two African elephant species: the phants from widespread locations in Africa have revealed savanna elephant (Loxodonta africana) and the forest ele- complete separation morphologically between forest and phant (L. cyclotis). Among elephantids, phylogeographic savanna elephants, with a few intermediaries primarily patterns for mitochondrial DNA are highly incongruent with in habitat transition zones (Groves and Grubb 2000a, b; those detected using nuclear DNA markers, and this incon- Grubb et al. 2000). Various nuclear genetic studies have gruence is almost certainly due to strongly male-biased gene also reported that forest and savanna elephants are genet- flow in elephants. As our understanding of elephant popula- ically distinct and deeply divergent (Roca et al. 2001; tion genetics has grown, a number of observations may be Comstock et al. 2002; Rohland et al. 2010; Palkopoulou considered enigmatic or anomalous. Here, several of these et al. 2018), with a limited degree of ongoing hybridization are discussed.
    [Show full text]
  • Filling a Gap in the Proboscidean Fossil Record: a New Genus from The
    Filling a gap in the proboscidean fossil record: a new genus from the Lutetian of Senegal Rodolphe Tabuce, Raphaël Sarr, Sylvain Adnet, Renaud Lebrun, Fabrice Lihoreau, Jeremy Martin, Bernard Sambou, Mustapha Thiam, Lionel Hautier To cite this version: Rodolphe Tabuce, Raphaël Sarr, Sylvain Adnet, Renaud Lebrun, Fabrice Lihoreau, et al.. Filling a gap in the proboscidean fossil record: a new genus from the Lutetian of Senegal. Journal of Paleontology, Paleontological Society, 2019, pp.1-9. 10.1017/jpa.2019.98. hal-02408861 HAL Id: hal-02408861 https://hal.archives-ouvertes.fr/hal-02408861 Submitted on 8 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Filling a gap in the proboscidean fossil record: a new genus from 2 the Lutetian of Senegal 3 4 Rodolphe Tabuce1, Raphaël Sarr2, Sylvain Adnet1, Renaud Lebrun1, Fabrice Lihoreau1, Jeremy 5 E. Martin2, Bernard Sambou3, Mustapha Thiam3, and Lionel Hautier1 6 7 1Institut des Sciences de l’Evolution, UMR5554, CNRS, IRD, EPHE, Université de 8 Montpellier, Montpellier, France <[email protected]> 9 <[email protected]> <[email protected]> 10 <[email protected]> <[email protected] > 11 2Univ.
    [Show full text]
  • The Distribution of Proboscidea (Elephants) Professor Dr
    The Distribution of Proboscidea (Elephants) Professor Dr. Erich Thenius [In: Kosmos #5, May, pp. 235-242, 1964, Stuttgart] When I speak here about animals with a trunk, I do not mean the tapirs or pigs, but I refer only to the elephants and their ancestors, like the Mastodons and Dinotheria which we call the Proboscidea (after the Greek: proboscis = trunk). Their main characteristic is their remarkable trunk which has been fashioned to become a “gripping” organ. That organ was not present in the geologically oldest ancestors whose skeletons stem from the deposits of the Eocene (old Tertiary) in Africa. Even though we have no “soft tissues” of those animals, their skeletal features suffice to tell the scientist just what their bodily characteristics would have been. Thus also, we are not really going to discuss much about their distribution in historic times, but rather, we will concentrate on the development of these characteristic mammals, from their inception to their distribution in the past. A history of the Proboscidea is necessarily a history of their distribution in time and space. Information of these animals is available from numerous fossil findings in nearly all continents. But, before we even consider the fossil history, let us take a quick look of the current distribution of elephants which is shown in Figure 1. Nowadays, there are only two species of elephants: the Indian and African elephants. They not only differ geographically but also morphologically. That is to say, they are different in their bodily form and in their anatomy in several characteristics as every attentive zoo visitor who sees them side-by-side easily observes: The small-eared Indian elephant (Elephas maximus) has a markedly bowed upper skull; the African cousin (Loxodonta africana) has longer legs and markedly larger ears.
    [Show full text]
  • Educator Guide Presented by the Field Museum
    at the San Diego Natural History Museum July 4-November 11, 2013 Educator Guide Presented by The Field Museum INSIDE: Exhibition Introduction • Planning Your Visit Gallery Overviews and Guiding Questions • Focused Field Trip Activities Correlations to California State Content Standards • Additional Resources Mammoths and Mastodons: Titans of the Ice Age at the San Diego Natural History Museum is supported by: City of San Diego Commission for Arts and Culture County of San Diego Board of Supervisors, Community Enhancement Program Walter J. and Betty C. Zable Foundation Qualcomm Foundation The Kenneth T. and Eileen L. Norris Foundation VWR Charitable Foundation Education Sponsor: The Field Museum gratefully acknowledges the collaboration and assistance of the Shemanovskii Regional Museum and Exhibition Complex and the International Mammoth Committee. Walking Map The Field Museum • Mammoths and Mastodons Educator Guide • fieldmuseum.org/mammoths Page 2 www.sdnhm.org/mammoths-mastodons Exhibition Introduction Mammoths and Mastodons: Titans of the Ice Age July 4–November 11, 2013 Millions of years ago, colossal mammals roamed Europe, Asia, and North America. From the gigantic mammoth to the massive mastodon, these creatures have captured the world’s fascination. Meet “Lyuba,” the best-preserved baby mammoth in the world, and discover all that we’ve learned from her. Journey back to the Ice Age through monumental video installations, roam among saber-toothed cats and giant bears, and wonder over some of the oldest human artifacts in existence. Hands-on exciting interactive displays reveal the difference between a mammoth and a mastodon, This sketch shows a Columbian mammoth, an offer what may have caused their extinction, and show African elephant, and an American mastodon how today’s scientists excavate, analyze, and learn more (from back to front).
    [Show full text]
  • Paleobiogeography of Trilophodont Gomphotheres (Mammalia: Proboscidea)
    Revista Mexicana deTrilophodont Ciencias Geológicas, gomphotheres. v. 28, Anúm. reconstruction 2, 2011, p. applying235-244 DIVA (Dispersion-Vicariance Analysis) 235 Paleobiogeography of trilophodont gomphotheres (Mammalia: Proboscidea). A reconstruction applying DIVA (Dispersion-Vicariance Analysis) María Teresa Alberdi1,*, José Luis Prado2, Edgardo Ortiz-Jaureguizar3, Paula Posadas3, and Mariano Donato1 1 Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, España. 2 INCUAPA, Departamento de Arqueología, Universidad Nacional del Centro, Del Valle 5737, B7400JWI Olavarría, Argentina. 3 LASBE, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque S/Nº, B1900FWA La Plata, Argentina. * [email protected] ABSTRACT The objective of our paper was to analyze the distributional patterns of trilophodont gomphotheres, applying an event-based biogeographic method. We have attempted to interpret the biogeographical history of trilophodont gomphotheres in the context of the geological evolution of the continents they inhabited during the Cenozoic. To reconstruct this biogeographic history we used DIVA 1.1. This application resulted in an exact solution requiring three vicariant events, and 15 dispersal events, most of them (i.e., 14) occurring at terminal taxa. The single dispersal event at an internal node affected the common ancestor to Sinomastodon plus the clade Cuvieronius – Stegomastodon. A vicariant event took place which resulted in two isolated groups: (1) Amebelodontinae (Africa – Europe – Asia) and (2) Gomphotheriinae (North America). The Amebelodontinae clade was split by a second vicariant event into Archaeobelodon (Africa and Europe), and the ancestors of the remaining genera of the clade (Asia). In contrast, the Gomphotheriinae clade evolved mainly in North America.
    [Show full text]
  • Thailand About Wildaid
    THAILAND ABOUT WILDAID ildAid’s mission is to end the illegal wildlife trade in our lifetimes by reducing demand Wthrough public awareness campaigns and providing comprehensive marine protection. The illegal wildlife trade is estimated to be worth over $10 billion (USD) per year and has drastically reduced many wildlife populations around the world. Just like the drug trade, law and enforcement efforts have not been able to resolve the problem. Every year, hundreds of millions of dollars are spent protecting animals in the wild, yet virtually nothing is spent on stemming the demand for wildlife parts and products. WildAid is the only organization with a mission focused on reducing the demand for these products, with the strong and simple message: When the buying stops, the killing can too. Via public service announcements and short-form documentary pieces, WildAid partners with Save the Elephants and African Wildlife Foundation to educate consumers and to reduce the demand for ivory products worldwide. Through our highly leveraged pro-bono media distribution EVERY YEAR, UP TO outlets, our message reaches hundreds of millions of people each year in China alone. www.wildaid.org CONTACT INFORMATION WILDAID 333 Pine Street #300 San Francisco, CA 94104 33,000 ELEPHANTS Tel: 415.834.3174 Christina Vallianos ARE KILLED FOR THEIR IVORY [email protected] PARTNERS Special thanks Save the Elephants to the following supporters & partners African Wildlife Foundation who have made this work possible: PHOTOGRAPHERS Poulomee Basu Kristian Schmidt Vichan Poti Chris Schmid COVER PHOTO Chris Schmid IVORY DEMAND IN THAILAND | wildaid.org/elephants PAGE // 2 PAGE // 3 Baby elephant staying next to its mother in Etosha National Park, Namibia (Chris Schmid) EXECUTIVE SUMMARY rowing affluence in Asia has and control ivory trading and aware that Thailand’s ivory Gproduced a new class of ivory possession by passing the new trade is contributing to the consumers who have reignited Elephant Ivory Act in 2015 and poaching crisis in Africa.
    [Show full text]
  • Foraging Ecology and Conservation Biology of African Elephants: Ecological and Evolutionary Perspectives on Elephant-Woody Plant Interactions in African Landscapes
    Foraging ecology and conservation biology of African elephants: Ecological and evolutionary perspectives on elephant-woody plant interactions in African landscapes Item Type Thesis Authors Dudley, Joseph Paine Download date 27/09/2021 15:01:40 Link to Item http://hdl.handle.net/11122/9523 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back o f the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zed) Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 Reproduced with permission of the copyright owner.
    [Show full text]
  • Enamel Prism Patterns in Proboscidean Molar Teeth F
    Elephant Volume 2 | Issue 2 Article 11 9-6-1986 Enamel Prism Patterns in Proboscidean Molar Teeth F. Daniel Cring Department of Anthropology, University of Florida Follow this and additional works at: https://digitalcommons.wayne.edu/elephant Recommended Citation Cring, F. D. (1986). Enamel Prism Patterns in Proboscidean Molar Teeth. Elephant, 2(2), 72-79. Doi: 10.22237/elephant/ 1521732011 This Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Elephant by an authorized editor of DigitalCommons@WayneState. Enamel Prism Patterns in Proboscidean Molar Teeth Cover Page Footnote This study was made possible by a research grant from Sigma Xi, the Scientific Research Society, and by the help of two friends, J. Shoshani and C. T. Madden. This article is available in Elephant: https://digitalcommons.wayne.edu/elephant/vol2/iss2/11 72 ELEPHANT Vol. 2, No. 2 ENAMEL PRISM PATTERNS IN PROBOSCIDEAN MOLAR TEETH by F. Daniel Cring Department of Anthropology, University of Florida Gainesville, Florida 32611 USA ABSTRACT: Molar fragments of five proboscidean taxa, representing three families, were examined under the scanning electron microscope for their enamel prism patterns. (Three of the five examined are extinct.) Results show that enamel prisms of Deinotherium are the least dense, whereas the prisms of the Elephantidae genera (Loxodonta, Elephas and Mammuthus) are the most dense, with the enamel prisms of Gomphotherium being intermediate in their density. No significant variations were found among Elephantidae genera. These observations correlate with those of earlier workers (e.g., Osborn, 1942) in that many of the morphological changes used to separate elephants (sensu stricto) from other proboscideans are the result of an evolutionary trend in diet, from the predominately browsing animals (having brachyodont thick-enamel molar teeth) to the predominately grazing animals (having hypsodont thin-enamel molar teeth).
    [Show full text]