ESS 439: Layered Mafic Intrusions (LMI)

Total Page:16

File Type:pdf, Size:1020Kb

ESS 439: Layered Mafic Intrusions (LMI) ESS 439: Layered Mafic Intrusions (LMI) What are they and why are they important? •Represent basaltic magma that has crystallized at depth in large magma chambers •Show the effects of slow cooling and strong fractionation •Natural laboratories to study differentiation in all its aspects: complementary to volcanics in the sense that they preserve the crystalline products of fractionation. •Repositories of the some of the largest ore bodies on earth Cu, Ni, PGE, Cr, V… Some well-studied LMIs (not an exhaustive list) Name Age Location Area (km 2 ) Bushveld Precambrian S. Africa 66,000 Dufek Jurassic Antarctica 50,000 Duluth Precambrian Minnesota, USA 4,700 Stillwater Precambrian Montana, USA 4,400 Muskox Precambrian NW Terr. Canada 3,500 Great Dike Precambrian Zimbabwe 3,300 Kiglapait Precambrian Labrador 560 Skaergård Eocene East Greenland 100 Development of cumulate textures typical of layered mafic intrusions. a. Crystals accumulate by crystal settling or b. Orthocumulate: intercumulus liquid simply form in place near the margins of the crystallizes to form additional plagioclase magma chamber (known as in situ rims plus other phases in the interstitial crystallization). In this case plagioclase volume (colored). There is little or no crystals (white) accumulate in loose mutual exchange between the intercumulus liquid contact, and an intercumulus liquid (red) fills and the main chamber.. the interstices. After Wager and Brown (1967), Layered Igneous Rocks. © Freeman. San Francisco Example of orthocumulate texture. In this case, the cumulus mineral is orthopyroxene and it is surrounded by later-forming intercumulus plagioclase (showing albite twinning). Stillwater complex, Montana. Field width 5 mm. Development of cumulate textures (cont.) Adcumulates: open-system exchange Heteradcumulates: The texture illustrated between the intercumulus liquid and the above is common in the larger layered main chamber (plus compaction of the intrusions. In the example illustrated, pyroxene cumulate pile) allows components that nucleates from the intercumulus liquid and would otherwise create additional grows to form giant poikilitic crystals (grapefruit intercumulus minerals to escape, and size) enclosing numerous cumulus plagioclase plagioclase fills most of the available crystals. During growth of the oikocrysts, space. Some liquid is trapped and forms communication between the intercumulus the small intercumulus pyroxenes, etc. liquid and main magma is maintained. Example of adcumulus texture. Anorthosite from Bushveld Complex, SA Layering Layer: any sheet-like cumulate unit distinguished by its compositional and/or texture Uniform layering. Layer is mineralogically and texturally homogeneous. Modal layering (aka. mineral graded layering): Smooth and gradual variations in the modal abundances of the cumulus minerals which are commonly plagioclase and pyroxene (norites and gabbronorites) or plagioclase and olivine (troctolites) Size graded layering: Smooth and gradual variations in the grain sizes of cumulus minerals. This type of layering is not common, except in the Duke Island Intrusion, AK. Phase layering: the appearance or disappearance of cumulus minerals in the crystallization sequence, e.g., appearance of plagioclase at contact between Ultramafic Series and Banded Series in the St6illwater Complex Cryptic Layering (not obvious to the eye): Systematic variation in the chemical composition of cumulus minerals (pyroxenes, olivines, plagioclase feldspars) with stratigraphic height in a layered sequence Rhythmic layering: Layering pattern is repeated. Macrorhythmic layering: individual layers are several meters thick. Microrhythmic layering, layers are a few cm thick Intermittent layering: Irregular patterns: A common type consists of rhythmically graded layers interlayered with uniform layers. Uniform Layering Uniform chromite layers alternating with plagioclase-rich layers, Bushveld Complex, S. Africa. Graded Layering Modal layering: This common type is defined Size graded layering: This type defined by by smooth and gradual variations in the modal smooth size variations in cumulus minerals (not abundances, commonly plagioclase and common except in the Duke Island Intrusion) pyroxene or plagioclase and olivine From McBirney and Noyes (1979) J. Petrol., 20, 487-554 Other layering types Inch-scale layering in norite in the Stillwater Modally graded layers in the Skaergaard Complex, Montana. This type of layering is intrusion, East Greenland. Commonly referred to not formed by crystal settling processes. as rhythmic layering. Graded layers are Note the doublet units (hammer for scale). separated by uniform layers (hammer for scale). Cross-bedding in size-graded and modally-graded cumulate layers in the Duke Island Intrusion, Alaska. The main cumulus minerals are olivine and orthopyroxene Cross-bedding in modally-graded gabbroic cumulate layers. Skaergård Intrusion, E. Greenland. Muskox Intrusion, NWT, Canada (funnel shape with a well-defined feeder dike) The Bushveld Complex, South Africa (2.1 Ga) The biggest LMI: 300-400 km x 9 km The Red Granite intruded 50-100 Ma afterwards The Bushveld is the source of most of the world’s Pt, Pd, Cr & V Simplified geologic map and cross section of the Bushveld Complex. After Willemse (1964), Wager and Brown (1968), and Irvine et al. (1983). The Skaergård Intrusion in E. Greenland This intensively studied body of mafic igneous rock 34 95 is a classic example of extreme closed- system fractional crystallization, e.g., 68 olivine ranges from Fo70 at bottom of 67 LZ to Fo at the top 0 18 of UZ 53 27 We will continue discussion of the 4 102 75 Skaergaard Intrusion in the next class 83 89 Numbers refer to thin sections studied in lab Map from Stewart and DePaolo (1990) Contrib. After Stewart and DePaolo Mineral. Petrol., 104, 125 (1990) Contrib. Min. Pet., 104, 125 Skaergaard Intrusion, East Greenland Pegmatite patch in layered gabbro Skaergaard Intrusion, East Greenland Wager peak Triple group Bearskin Glacier The Stillwater Complex, Montana (2.7 Ga) East Boulder Pd-Pt mine Stillwater Pd-Pt mine Mountain View area View of Beartooth plateau looking South from Chrome Mountain Macrorhythmic layers in Banded series, Stillwater Complex Irregular layering in gabbronorite (GN III), Banded series, Stillwater Complex, MT. In addition to uniform layers, the darker units are rich in pyroxene and the lighter units are rich in plagioclase. This Pyroxene wispy type of layering is most snowball likely due to high temperature deformation of pre-existing more regular layers. UW Field camp at Stillwater Complex, 2004 Stratigraphy of Stillwater Complex •Basal Series: a 50-150 m thick complex unit consisting of a sill/dike complex, norites, gabbros, and o-pyroxenite. The series also contains xenoliths of country rock (pyroxene cordierite hornfels) and is the site of massive sulfides (Cu-Ni ores) •Ultramafic Series: The base of this series is marked by first appearance of cumulus olivine (phase layering). The UM series consists of two zones: :Lower Peridotite Zone: >20 cycles (each ranging from 20-150 m thick) of macrorhythmic layering with a distinctive sequence of lithologies. The lowermost unit is an olivine plus chromite cumulate with intercumulus opx, plag and minor cpx, overlain by harzburgite (olivine + opx cumulate with intercumulus cpx and plag) in turn overlain by orthopyroxenite (opx cumulate with intercumulus cpx and plag) :Upper Orthopyroxenite Zone: single, thick (up to 1070 m), fairly uniform sequence of orthopyroxenite (cumulus opx with intercumulus cpx and plag) and rare thin layers of olivine-rich harzburgite. •Banded series: Complex group of cumulates all of which contain cumulus plagioclase (norites, gabbros, gabbronorites, anorthosites, troctolites). The main Pt-Pd reef occurs ~ 400 m above the contact between the Ultramafic series and the Banded series Modal stratigraphy of Stillwater complex after McCallum et al. (1980) and Raedeke and McCallum (1984) Schematic representation of processes associated with the formation of layered mafic complexes Venting of fractionated Assimilation of magma to surface volcano country rock Country rock Heat loss Density plume “Fountain” Convection Density currents Compaction and crystallization of Layered sequence accumulated along floor intercumulus melt Chilled margin Country rock with Multiple influxes of primary magma thermal aureole from deeper source (recharge).
Recommended publications
  • Beneficiation of Stillwater Complex Rock for the Production of Lunar Simulants
    National Aeronautics and NASA/TM—2014–217502 Space Administration IS20 George C. Marshall Space Flight Center Huntsville, Alabama 35812 Beneficiation of Stillwater Complex Rock for the Production of Lunar Simulants D.L. Rickman Marshall Space Flight Center, Huntsville, Alabama C. Young Metallurgical and Materials Engineering, Montana Tech, Butte, Montana D. Stoeser USGS, Denver, Colorado J. Edmunson Jacobs ESSSA Group, Huntsville, Alabama March 2014 The NASA STI Program…in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical conferences, NASA Scientific and Technical Information (STI) symposia, seminars, or other meetings sponsored Program Office plays a key part in helping NASA or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the lead center for projects, and mission, often concerned with NASA’s scientific and technical information. The subjects having substantial public interest. NASA STI Program Office provides access to the NASA STI Database, the largest collection of • TECHNICAL TRANSLATION. aeronautical and space science STI in the world. English-language translations of foreign The Program Office is also NASA’s institutional scientific and technical material pertinent to mechanism for disseminating the results of its NASA’s mission. research and development activities. These results are published by NASA in the NASA STI Report Specialized services that complement the STI Series, which includes the following report types: Program Office’s diverse offerings include creating custom thesauri, building customized databases, • TECHNICAL PUBLICATION.
    [Show full text]
  • Noritic Anorthosite Bodies in the Sierra Nevada Batholith
    MINERALOGICAL SOCIETY OF AMERICA, SPECIAL PAPER 1, 1963 INTERNATIONALMINERALOGICAL ASSOCIATION,PAPERS, THIRD GENERAL MEETING NORITIC ANORTHOSITE BODIES IN THE SIERRA NEVADA BATHOLITH ALDEN A. LOOMISl Department of Geology, Stanford University, Stanford, California ABSTRACT A group of small noritic plutons were intruded prior to the immediately surrounding granitic rocks in a part of the composite Sierra Nevada batholith near Lake Tahoe. Iron was more strongly concentrated in the late fluids of individual bodies than during the intrusive sequence as a whole. Pyroxenes are more ferrous in rocks late in the sequence, although most of the iron is in late magnetite which replaces pyroxenes. Both Willow Lake type and normal cumulative layering are present. Cumulative layering is rare; Willi ow Lake layering is common and was formed early in individual bodies. Willow Lake layers require a compositional uniqueness providing high ionic mobility to explain observed relations. The Sierran norites differ from those in large stratiform plutons in that (1) the average bulk composition is neritic anorthosite in which typical rocks contain over 20% AbO" and (2) differentiation of both orthopyroxene and plagioclase produced a smooth progressive sequence of mineral compositions. A plot of modal An vs. En for all the rocks in the sequence from early Willow Lake-type layers to late no rite dikes defines a smooth non-linear trend from Anss-En76 to An,,-En54. TLe ratio An/ Ab decreased faster than En/Of until the assemblage Anso-En65 was reached and En/Of began to decrease more rapidly. Similar plots for large stratiform bodies show too much scatter to define single curves.
    [Show full text]
  • Geochemistry of the Mafic and Felsic Norite: Implications for the Crystallization History of the Sudbury Igneous Complex, Sudbury Ontario
    Geochemistry of the Mafic and Felsic Norite: Implications for the Crystallization History of the Sudbury Igneous Complex, Sudbury Ontario G. R. Dessureau Mineral Exploration Research Centre, Department of Earth Sciences, Laurentian University, Sudbury, ON, P3E 6B5 e-mail: [email protected] Introduction Whistle Embayment Geology The 1.85 Ga Sudbury Igneous Complex The Whistle Embayment occurs along the (SIC) is a 60 x 30 km layered igneous body NE margin of the basin under the Main Mass of the occupying the floor of a crater in northern Ontario. SIC and extends into the footwall as an Offset dyke The SIC comprises, from base to top: a (Whistle/Parkin Offset). Pattison (1979) and discontinuous unit of sulfide-rich, inclusion-bearing Lightfoot et al. (1997) provide detailed descriptions norite (Contact Sublayer), mafic norite, felsic of the embayment environment at Whistle. The norite, gabbro transition zones, and granophyre embayment contains up to ~300m of inclusion-rich, (Main Mass). Concentric and radial Quartz Diorite sulfide-bearing Sublayer in a well-zoned funnel Offset Dykes extend into the footwall rocks. extending away from the base of the SIC. Poikilitic, The distributions of the Sublayer and hypersthene-rich Mafic Norite occurs in and along associated Ni-Cu-PGE ores are controlled by the the flanks of the embayment as discontinuous morphology of the footwall: the Sublayer and lenses between the Sublayer and the Felsic Norite. contact ores are thickest within km-sized radial The Felsic Norite in the Whistle area ranges from depressions in the footwall referred to as ~450m thick adjacent to the embayment to >600m embayments (e.g., Whistle Embayment) and thick directly over the embayment.
    [Show full text]
  • Large Igneous Provinces: a Driver of Global Environmental and Biotic Changes, Geophysical Monograph 255, First Edition
    2 Radiometric Constraints on the Timing, Tempo, and Effects of Large Igneous Province Emplacement Jennifer Kasbohm1, Blair Schoene1, and Seth Burgess2 ABSTRACT There is an apparent temporal correlation between large igneous province (LIP) emplacement and global envi- ronmental crises, including mass extinctions. Advances in the precision and accuracy of geochronology in the past decade have significantly improved estimates of the timing and duration of LIP emplacement, mass extinc- tion events, and global climate perturbations, and in general have supported a temporal link between them. In this chapter, we review available geochronology of LIPs and of global extinction or climate events. We begin with an overview of the methodological advances permitting improved precision and accuracy in LIP geochro- nology. We then review the characteristics and geochronology of 12 LIP/event couplets from the past 700 Ma of Earth history, comparing the relative timing of magmatism and global change, and assessing the chronologic support for LIPs playing a causal role in Earth’s climatic and biotic crises. We find that (1) improved geochronol- ogy in the last decade has shown that nearly all well-dated LIPs erupted in < 1 Ma, irrespective of tectonic set- ting; (2) for well-dated LIPs with correspondingly well-dated mass extinctions, the LIPs began several hundred ka prior to a relatively short duration extinction event; and (3) for LIPs with a convincing temporal connection to mass extinctions, there seems to be no single characteristic that makes a LIP deadly. Despite much progress, higher precision geochronology of both eruptive and intrusive LIP events and better chronologies from extinc- tion and climate proxy records will be required to further understand how these catastrophic volcanic events have changed the course of our planet’s surface evolution.
    [Show full text]
  • The Original Lithologies and Their Metamorphism
    BASIC PLUTONIC INTRUSIONS OF THE RISÖR­ SÖNDELED AREA, SOUTH NORWAY: THE ORIGINAL LITHOLOGIES AND THEIR METAMORPHISM IAN C. STARMER Department of Geology, University of Nottingham, England Present address: Dept. of Geo/ogy, Queen Mary College, London, E. l STARMER, I. C.: Basic plutonic intrusions of the Risör-Sändeled area South Norway: The original Jithologies and their metamorphism Norsk Geologisk Tidsskri/1, Vol. 49, pp. 403-431. Oslo 1969. The emplacement of Pre-Cambrian basic intrusions is shown to have been a polyphase process and to have occurred Jargely between two major periods of metamorphism. The original igneous lithologies are discussed and a regional differentiation series is demonstrated, with changes in rock-type accompanied by some cryptic variation in the component minerals. Metamorphism after consolidation converted the intrusives to coronites and eaused partial amphibolitisation. Corona growths are described and attributed to essentially isochemical recrystal­ lisations in the solid-state, promoted by the diffusion of ions in inter­ granular fluids. The amphibolitisation of the bodies is briefly outlined, and it is concluded that the formation of amphibolite involved the intro­ duction of considerable amounts of extraneous water. The criterion for demoostrating the onset of amphibolitisation is thought to be the intemal replacement of pyroxene by homblende, contrasting with the replacement of plagioclase by various amphiboles during corona growth. Both amphibolites and coronites have been scapolitised, and this may have been an extended process which certainly continued after amphi­ bolitisation. Regional implications are considered and it is suggested that a !arge mass of differentiating magma may have underlain the whole region in Pre-Cambrian times.
    [Show full text]
  • Petrology of the Noritic and Gabbronoritic Rocks Below the J-M Reef in the Mountain View Area, Stillwater Complex, Montana
    Petrology of the Noritic and Gabbronoritic Rocks below the J-M Reef in the Mountain View Area, Stillwater Complex, Montana U.S. GEOLOGICAL SURVEY BULLETIN 1674-C Chapter C Petrology of the Noritic and Gabbronoritic Rocks below the J-M Reef in the Mountain View Area, Stillwater Complex, Montana By NORMAN J PAGE and BARRY C. MORING U.S. GEOLOGICAL SURVEY BULLETIN 1674 CONTRIBUTIONS ON ORE DEPOSITS IN THE EARLY MAGMATIC ENVIRONMENT DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1990 For sale by the Books and Open-File Reports Section, U.S. Geological Survey Federal Center, Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Page, Norman, J Petrology of the noritic and gabbronoritic rocks below the J-M Reef in the Mountain View area, Stillwater Complex, Montana / by Norman J Page and Barry C. Moring. p. cm. (U.S. Geological Survey bulletin ; 1674-C) (Contributions on ore deposits in the early magmatic environment Includes bibliographical references. Supt. of Docs, no.: I 19.3: 1674-C 1. Petrology Beartooth Mountains Region (Mont, and Wyo.) 2. Geolo­ gy Beartooth Mountains Region (Mont, and Wyo.) I. Moring, Barry C. II. Title. III. Title: Stillwater Complex, Montana. IV. Series. V. Series: Contri­ butions on ore deposits in the early magmatic environment ; ch.
    [Show full text]
  • The Bushveld Igneous Complex
    The Bushveld Igneous Complex THE GEOLOGY OF SOUTH AFRICA’S PLATINUM RESOURCES By C. A. Cousins, MSC. Johannesburg Consolidated Investment Company Limited A vast composite body of plutonic and volcanic rock in the central part of the Transvaal, the Bushveld igneous complex includes the platinum reef worked by Rustenburg Platinum Mines Limited and constituting the world’s greatest reserve of the platinum metals. This article describes the geological and economic aspects of this unusually interesting formation. In South Africa platinum occurs chiefly in square miles. Two of these areas lie at the the Merensky Reef, which itself forms part of eastern and western ends of the Bushveld and the Bushveld igneous complex, an irregular form wide curved belts, trending parallel to oval area of some 15,000 square miles occupy- the sedimentary rocks which they overlie, and ing a roughly central position in the province dipping inwards towards the centre of the of the Transvaal. A geological map of the Bushveld at similar angles. The western belt area, which provides the largest known has a flat sheet-like extension reaching the example of this interesting type of formation, western boundary of the Transvaal. The is shown on the facing page. third area extends northwards and cuts out- The complex rests upon a floor of sedi- side the sedimentary basin. Its exact relation- mentary rocks of the Transvaal System. This ship to the other outcrops within the basin floor is structurally in the form of an immense has not as yet been solved. oval basin, three hundred miles long and a As the eastern and western belts contain hundred miles broad.
    [Show full text]
  • Connecting the Deep Earth and the Atmosphere
    In Mantle Convection and Surface Expression (Cottaar, S. et al., eds.) AGU Monograph 2020 (in press) Connecting the Deep Earth and the Atmosphere Trond H. Torsvik1,2, Henrik H. Svensen1, Bernhard Steinberger3,1, Dana L. Royer4, Dougal A. Jerram1,5,6, Morgan T. Jones1 & Mathew Domeier1 1Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0315 Oslo, Norway; 2School of Geosciences, University of Witwatersrand, Johannesburg 2050, South Africa; 3Helmholtz Centre Potsdam, GFZ, Telegrafenberg, 14473 Potsdam, Germany; 4Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut 06459, USA; 5DougalEARTH Ltd.1, Solihull, UK; 6Visiting Fellow, Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia. Abstract Most hotspots, kimberlites, and large igneous provinces (LIPs) are sourced by plumes that rise from the margins of two large low shear-wave velocity provinces in the lowermost mantle. These thermochemical provinces have likely been quasi-stable for hundreds of millions, perhaps billions of years, and plume heads rise through the mantle in about 30 Myr or less. LIPs provide a direct link between the deep Earth and the atmosphere but environmental consequences depend on both their volumes and the composition of the crustal rocks they are emplaced through. LIP activity can alter the plate tectonic setting by creating and modifying plate boundaries and hence changing the paleogeography and its long-term forcing on climate. Extensive blankets of LIP-lava on the Earth’s surface can also enhance silicate weathering and potentially lead to CO2 drawdown (cooling), but we find no clear relationship between LIPs and post-emplacement variation in atmospheric CO2 proxies on very long (>10 Myrs) time- scales.
    [Show full text]
  • Attributes of Skaergaard-Type PGE Reefs
    Attributes of Skaergaard-Type PGE Reefs James D. Miller, Jr.1 and Jens C. Ø. Andersen2 1Minnesota Geological Survey, c/o NRRI, University of Minnesota-Duluth, 5013 Miller Trunk Hwy., Duluth, MN, 55811 , USA 2Camborne School of Mines, University of Exeter, Redruth, Cornwall, TR15 3SE UK e-mail: [email protected], [email protected] Stratiform, platinum group element (PGE) peridotite, pyroxenite, and dunite are usually deposits have long been known to occur in quantitatively minor. When well-differentiated, ultramafic-mafic intrusive complexes such as such intrusions display a simplified cumulus Bushveld and Stillwater (Naldrett, 1989b). stratigraphy following the scheme: Ol or Pl only-> Commonly known as PGE reefs, such deposits are Ol + Pl -> Pl + Cpx + FeOx ± Ol -> Pl + Cpx + typically found near the transition from ultramafic FeOx + Ol + Ap. They have a strong cryptic to mafic cumulates where they occur as 1-3 meter layering towards iron-enrichment indicative of thick intervals enriched in PGEs (1-20 ppm) and Fenner-type differentiation. They differ from trace to moderate amounts of sulfide (0.5-5 wt %). classic PGE reef-bearing intrusions by lacking a However, relatively recent discoveries have significant ultramafic component (early olivine- demonstrated that potentially economic stratiform only crystallization is minor to absent in most PGE mineralization may also occur in tholeiitic tholeiitic intrusions) and by being poor in mafic layered intrusions. Au- and PGE-bearing orthopyroxene (inverted pigeonite is rarely a layers
    [Show full text]
  • The East Greenland Rifted Volcanic Margin
    GEOLOGICAL SURVEY OF DENMARK AND GREENLAND BULLETIN 24 • 2011 The East Greenland rifted volcanic margin C. Kent Brooks GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF CLIMATE, ENERGY AND BUILDING 1 Geological Survey of Denmark and Greenland Bulletin 24 Keywords East Greenland, North Atlantic, rifted volcanic margin, large igneous province, LIP, Palaeogene, basalt, syenite, nephelinite, carbona- tite, uplift. Cover Sundown over the nunataks in the Main Basalts (Skrænterne Fm) to the south of Scoresby Sund. Camped on the glacier, the 1965 Ox- ford University East Greenland Expedition travelled and collected from this area on foot, manhauling equipment on the sledge to the left. The expedition results were published in Fawcett et al. (1973). Frontispiece: facing page Mountains of horizontally layered basalt flows rising to about 2000 m on the south side of Scoresby Sund. Typical trap topography as found throughout most of the Kangerlussuaq–Scoresby Sund inland area. Chief editor of this series: Adam A. Garde Editorial board of this series: John A. Korstgård, Department of Geoscience, Aarhus University; Minik Rosing, Geological Museum, University of Copenhagen; Finn Surlyk, Department of Geography and Geology, University of Copenhagen Scientific editor of this volume: Adam A. Garde Editorial secretaries: Jane Holst and Esben W. Glendal Referees: Dennis K. Bird (USA) and Christian Tegner (DK) Illustrations: Eva Melskens with contributions from Adam A. Garde Digital photographic work: Benny Schark Graphic production: Kristian A. Rasmussen Printers: Rosendahls · Schultz Grafisk A/S, Albertslund, Denmark Manuscript received: 1 March 2011 Final version approved: 20 September 2011 Printed: 22 December 2011 ISSN 1604-8156 ISBN 978-87-7871-322-3 Citation of the name of this series It is recommended that the name of this series is cited in full, viz.
    [Show full text]
  • Geomorphology of the Bushveld Complex
    Cademo Lab. Xeo16xico de Laxe Coruña. 1997. Vol. 22, pp. 209-227 Geomorphology of the Bushveld Complex Geomorfología del Complejo de Bushveld LAGEAT,Y. This paper deals wich che differenc relacion becween scruccure and lichology in che geomorphology of che Bushveld Complexo The final resules demonscrace chac, even so differenc scale ofsize, widerfor che epirogenic-cecconic movements and smaller for che lichology, che cwo faccors need co be considered for a beccer underscanding ofche landscape evolucion ofche area. Key words: ulerabasic and basic rocks, Bushveld Complex, scruccural geomorphology, lichological differences. LAGEAT, Y. (Universicé Blaise Pascaland UPRES-A 6042 (CNRS). Clermont-Ferrand (France) 210 Lageat, Y. CAD. LAB. XEOL. LAXE 22 (997) INTRODUCTION subdued topography. So, being concerned with the relationships between scenery and In spiteofthestrong emphasisonclimatic structure, the study wil1 consider two topics in French geomorphology since the different but complementary topics: fifties, research dealing with structural differential erosion and regional evolution landforms developed in crystalline shields ofa shield area (Y. LAGEAT, 1989). pioneered by the late Professor P. Birot has been upheld. In numerous regional monographs, widely distributed between GEOLOGICAL POTENTIAL theArcticCircleand theTropicofCapricorn, special attention has been devoted to the A presentation of the geology of the relationships between landforms and Bushveld Complex is essential to any geological structure, with the purpose to understanding of its surface morphology. distinguish between the direct control of Ranging in composition from ultrabasic ro recent faulting and the response of acid, it outcrops largely within a region contrasting rock units todifferential erosiono covered bya characteristicvegetation termed This ambiguity may be easily overcome in «Bushveld».
    [Show full text]
  • 62237 Troctolitic Anorthosite 62.4 Grams
    62237 Troctolitic Anorthosite 62.4 grams Figure 1: Photo of 62237. NASA S72-41797 (B&W), NASA S72-38959 (color). Cube is 1 cm. Introduction 62237 and 62236 are chalky white rocks that were Warren and Wasson (1977) concluded that 62237 is collected together along with 62235 and incidental soil, “chemically pristine”, because it was lacking in from the rim of Buster Crater, station 2, Apollo 16 meteoritic siderophiles. (figure 2), where they were found half buried in the regolith (Sutton 1981). The mineral chemistry of these 62237 has been crushed to form a cataclastic texture, rocks is similar and indicates that they belong to the but, in places, the original coarse-grained igneous suite of lunar plutonic rocks termed ferroan anorthosite texture can be discerned by relic clasts (figure 3). (James 1980). Mineralogy Olivine: Olivine (Fo ) crystals up to 3 mm in size Petrography 59-61 Dymek et al. (1975) concluded that 62237 was a slowly are reported in 62237 by Dymek et al. (1975). Warren cooled plutonic lunar rock (figure 1). The mineralogy and Wasson (1977) and Bersch et al. (1991) also of 62237 is that of a ferroan anorthosite with fairly provided analyses of olivine in 62237. Dymek et al. abundant (~20%) mafic minerals (figure 5). noted that olivine in 62237 was extremely depleted in Ca. Lunar Sample Compendium C Meyer 2011 Figure 2: Location of 62237. Pyroxene: Dymek et al. (1975) and Bersch et al. (1991) determined the composition of pyroxene in 62237 (figure 4). Plagioclase: Plagioclase in 62237 is An95-99 and contains only small amount of minor elements (Dymek et al.
    [Show full text]