The Original Lithologies and Their Metamorphism

Total Page:16

File Type:pdf, Size:1020Kb

The Original Lithologies and Their Metamorphism BASIC PLUTONIC INTRUSIONS OF THE RISÖR­ SÖNDELED AREA, SOUTH NORWAY: THE ORIGINAL LITHOLOGIES AND THEIR METAMORPHISM IAN C. STARMER Department of Geology, University of Nottingham, England Present address: Dept. of Geo/ogy, Queen Mary College, London, E. l STARMER, I. C.: Basic plutonic intrusions of the Risör-Sändeled area South Norway: The original Jithologies and their metamorphism Norsk Geologisk Tidsskri/1, Vol. 49, pp. 403-431. Oslo 1969. The emplacement of Pre-Cambrian basic intrusions is shown to have been a polyphase process and to have occurred Jargely between two major periods of metamorphism. The original igneous lithologies are discussed and a regional differentiation series is demonstrated, with changes in rock-type accompanied by some cryptic variation in the component minerals. Metamorphism after consolidation converted the intrusives to coronites and eaused partial amphibolitisation. Corona growths are described and attributed to essentially isochemical recrystal­ lisations in the solid-state, promoted by the diffusion of ions in inter­ granular fluids. The amphibolitisation of the bodies is briefly outlined, and it is concluded that the formation of amphibolite involved the intro­ duction of considerable amounts of extraneous water. The criterion for demoostrating the onset of amphibolitisation is thought to be the intemal replacement of pyroxene by homblende, contrasting with the replacement of plagioclase by various amphiboles during corona growth. Both amphibolites and coronites have been scapolitised, and this may have been an extended process which certainly continued after amphi­ bolitisation. Regional implications are considered and it is suggested that a !arge mass of differentiating magma may have underlain the whole region in Pre-Cambrian times. INTRODUCTION The 'hyperites' of the Kragerö region, to the north, were intensively studied by Brögger (1934) and were re-investigated from a genetical viewpoint by Reynolds & Predrickson (1962). More recently, Frodesen has carried out a detailed geochemical study of a coronite body immediately to the north of the preseht area (Frodesen 1968 a, b). In the Risör-Söndeled district the genesis of the hyperites can be divided into a number of phases and processes. After differentiation and intrusion some of the rocks underwent late-magmatic or deuteric alteration. Clouding and marginal alteration of plagioclase then occurred in conjunction with corona growths around ferromagnesian minerals and intense metamorphism converted the rocks to amphibolite. Chlorine metasornatism locally eaused the scapolitisation of both coronite and amphibolite. The period of intrusion can be placed in a geologkal time-sequence and the original igneous lithologies are seen to follow a differentiation trend in- 404 IAN C. STARMER Fig. J. The generallocation LOCATION OF of the hyperite bodies. HYPERITIC volving a troctolite-troctolitic norite series, a troctolite-olivine gabbro series, and a number of late-stage, olivine-free gabbros. The differentiation is on a regional scale and only small parts of the series are shown by individual masses at the present level of exposure. In the north of the area, around Söndeled, amphibolite bands are often concordantly interlayered with metasediments and the whole complex has been affected by a series of interneting fold phases. Some bands show affini­ ties with the large, discordant coronite bodies, but others represent intrusives, lavas or tuffs in the sedimentary. sequence (Starmer 1967). The present work is concemed only with the larger, discordant masses which exhibit good corona growths and igneous differentiation trends. FIELD RELATIONS The general distribution of the hyperites is shown on Fig. l and a more detailed indication of their field relations and rock-type is given on Figs. 2-4. The exposed surfaces of some bodies consist largely of amphibolite or metagabbro but this is often a thin veneer with relatively unaltered coronite projecting through sporadically. For this reason the maps (Figs. 2-4) show onlythe general distribution of coronite and amphibolitised derivatives since small patches of the former occur in amphibolite and vice versa. This type of alteration is the result of differential permeation of water during meta­ morphism. Considered in three-dimensions, most bodies have a dominantly coronite core which passes outwards into an amphibolitised margin. The masses are often stock-like or lensoid in shape and form distinct topographic features. The larger bodies are markedly discordant to the earlier-formed lithological banding and regional foliation, but smaller masses mayshow some concordance at the present level of exposure. BASIC PLUTONIC INTRUSIONS 405 IN THE AREA EAST OF S0NDELED 05km. Legend Re } �·"' Faults _..r'Vert. �l Fo!iation _- Minor Folds -<"5_ 7 85• � EJ �2 -<'5_ 6 75• nke and Amphibolite - 55-85" lp � -< Metagabbro lliiiiil3 ........ <55" ICS 1967 0 Pegmatite �4 Fig. 2. The area East of Söndeled. The coronites are: -C) clinopyroxene-rich gabbro,­ l) noritic troctolite,- 2) troctolitic gabbro,- 3) olivine gabbro,- 4) gabbro. In the north of the area, around Söndeled, (Fig. 2), the basic rocks intruded a complex of quartzites, amphibolites, and biotite-rich schists and gneisses, which had previously undergone Upper Amphibolite facies metamorphism and accompanying folding. Along the Risör peninsula (Fig. 3) they invaded a zone of migmatites consisting of the above lithologies intimately mixed with 'granitic' gneisses (sensu lato). In both of the above areas, the solidified intrusions were subjected to a later metamorphism of Upper Amphibolite grade which eaused extensive amphibolitisation. Deformations bent the sur­ rounding rocks around these resistant masses, which often controlied the wavelengths of major structures (e.g. at Avreid, Fig. 4). Marginal shearing also occurred towards the end of this period of metamorphism and deforma­ tion. In the South of the area, around Laget (Fig. 4), basic rocks intruded Granulite facies lithologies which had retrogressed (under Upper Amphibolite conditions) and had undergone regional granitisation (Starmer 1967). The largest body consists of troctolitic and olivine gabbro coronite with a small mass of somewhat sheared olivine-free gabbro on its western flank. Am­ phibolitised margins are extremely thin and are in no way comparable with those of bodies to the north, but some amphibolite has formed adjacent to pegmatites and in a series of north-south striking shears and fissures. Around 5 406 IAN C. STARMER �·' Faults � Minor Folds _..,.. Vertical ..-<" 75·85" ....r 65·75" _.<' 55·65" .--r <55" t lkm . RIS0R PENINSULA AND �3 Fig. 3. The Risör peninsula and Barmen. The coronites are:- l) troctolite, clinopyroxene and bronzite troctolite,- 2) noritic troctolite, troctolitic norite,- 3) troctolitic gabbro,- 4) olivine gabbro,- 5) gabbro. this main body, 'granitic' augen gneisses have been transformed to an adinole of plagioclase-quartz gneiss containing abundant rutile, sphene and occasional diopside. Exposures of noritic troctolite coronite to the southeast (Fig. 4) are heavily amphibolitised and seem to represent discordant, dike-like bodies within the augen gneiss. The coronites retain their original igneous texture; the amphibolites may be massive, gneissic or even schistose (when rich in biotite), but the term 'metagabbro' is reserved for rocks with a remnant coarse igneous-textured fabric of granoblastic andesine aggregates pseudomorphing original labradorite laths (reaching 5 cm length) and horobiende aggregates replacing the origi­ nal ferromagnesian minerals. Retrogression of both amphibolite and metagab­ bro has occasionally produced biotite-rich schists. Many coronites have a megascopic purple coloration imparted by the plagioclase laths but others may be black or brownish grey in colour. Several lithologies are related to the 'hyperites'. Anthophyllitejgedrite­ rich rocks which have formed by magnesia metasomatism, show a selective concentration around the intrusives, and when they occur at some distance from the exposed margins ma y be related to sub-surface extensions. BASIC PLUTONIC INTRUSIONS 407 - t � ..,. "' . ..,. ICS 1967 Fig. 4. The Avreid-Laget area. The coronites are: - l) troctolite, clinopyroxene and bronzite troctolite, - 2) noritic troctolite, - 3) troctolitic gabbro, - 4) olivine gabbro, - 5) gabbro. Apatite dikes have developed (particularly at Hasdalen) and rutile-hearing veins occur at Laget and Stamsöy. Plagioclase-rich segregations (consisting of oligoclase or andesine, usually with associated quartz) have formed layers, lenses, ptygmatic-folds, and veins in amphibolite and metagabbro. The adjacent rock is frequently enriched in homblende andfor biotite and both of these minerals may occur within the felsic segregations. Larger borlies of plagioclase-rich pegmatite (consisting of albite, oligoclase or sodic andesine with varying amounts of quartz, homblende or biotite) have intrusive relationships and appear to have been derived from extemal sources. Large 'granitic' pegmatites are often associated with the hyperite masses which are thought to have provided zones of low pressure to which the pegma­ titic fluids could migrate. Where pegmatites cut coronite they cause local amphibolitisation and where they have intruded amphibolite, the latter is often enriched in biotite. 08 IAN C. STARMER SPINEL - ""d �� x' m� z .. m .:C 3 Fig. 5. The recalculated modes of the original intrusions, showing some cryptic variation of component minerals. THE
Recommended publications
  • Beneficiation of Stillwater Complex Rock for the Production of Lunar Simulants
    National Aeronautics and NASA/TM—2014–217502 Space Administration IS20 George C. Marshall Space Flight Center Huntsville, Alabama 35812 Beneficiation of Stillwater Complex Rock for the Production of Lunar Simulants D.L. Rickman Marshall Space Flight Center, Huntsville, Alabama C. Young Metallurgical and Materials Engineering, Montana Tech, Butte, Montana D. Stoeser USGS, Denver, Colorado J. Edmunson Jacobs ESSSA Group, Huntsville, Alabama March 2014 The NASA STI Program…in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical conferences, NASA Scientific and Technical Information (STI) symposia, seminars, or other meetings sponsored Program Office plays a key part in helping NASA or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the lead center for projects, and mission, often concerned with NASA’s scientific and technical information. The subjects having substantial public interest. NASA STI Program Office provides access to the NASA STI Database, the largest collection of • TECHNICAL TRANSLATION. aeronautical and space science STI in the world. English-language translations of foreign The Program Office is also NASA’s institutional scientific and technical material pertinent to mechanism for disseminating the results of its NASA’s mission. research and development activities. These results are published by NASA in the NASA STI Report Specialized services that complement the STI Series, which includes the following report types: Program Office’s diverse offerings include creating custom thesauri, building customized databases, • TECHNICAL PUBLICATION.
    [Show full text]
  • Noritic Anorthosite Bodies in the Sierra Nevada Batholith
    MINERALOGICAL SOCIETY OF AMERICA, SPECIAL PAPER 1, 1963 INTERNATIONALMINERALOGICAL ASSOCIATION,PAPERS, THIRD GENERAL MEETING NORITIC ANORTHOSITE BODIES IN THE SIERRA NEVADA BATHOLITH ALDEN A. LOOMISl Department of Geology, Stanford University, Stanford, California ABSTRACT A group of small noritic plutons were intruded prior to the immediately surrounding granitic rocks in a part of the composite Sierra Nevada batholith near Lake Tahoe. Iron was more strongly concentrated in the late fluids of individual bodies than during the intrusive sequence as a whole. Pyroxenes are more ferrous in rocks late in the sequence, although most of the iron is in late magnetite which replaces pyroxenes. Both Willow Lake type and normal cumulative layering are present. Cumulative layering is rare; Willi ow Lake layering is common and was formed early in individual bodies. Willow Lake layers require a compositional uniqueness providing high ionic mobility to explain observed relations. The Sierran norites differ from those in large stratiform plutons in that (1) the average bulk composition is neritic anorthosite in which typical rocks contain over 20% AbO" and (2) differentiation of both orthopyroxene and plagioclase produced a smooth progressive sequence of mineral compositions. A plot of modal An vs. En for all the rocks in the sequence from early Willow Lake-type layers to late no rite dikes defines a smooth non-linear trend from Anss-En76 to An,,-En54. TLe ratio An/ Ab decreased faster than En/Of until the assemblage Anso-En65 was reached and En/Of began to decrease more rapidly. Similar plots for large stratiform bodies show too much scatter to define single curves.
    [Show full text]
  • List of New Mineral Names: with an Index of Authors
    415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis.
    [Show full text]
  • Geochemistry of the Mafic and Felsic Norite: Implications for the Crystallization History of the Sudbury Igneous Complex, Sudbury Ontario
    Geochemistry of the Mafic and Felsic Norite: Implications for the Crystallization History of the Sudbury Igneous Complex, Sudbury Ontario G. R. Dessureau Mineral Exploration Research Centre, Department of Earth Sciences, Laurentian University, Sudbury, ON, P3E 6B5 e-mail: [email protected] Introduction Whistle Embayment Geology The 1.85 Ga Sudbury Igneous Complex The Whistle Embayment occurs along the (SIC) is a 60 x 30 km layered igneous body NE margin of the basin under the Main Mass of the occupying the floor of a crater in northern Ontario. SIC and extends into the footwall as an Offset dyke The SIC comprises, from base to top: a (Whistle/Parkin Offset). Pattison (1979) and discontinuous unit of sulfide-rich, inclusion-bearing Lightfoot et al. (1997) provide detailed descriptions norite (Contact Sublayer), mafic norite, felsic of the embayment environment at Whistle. The norite, gabbro transition zones, and granophyre embayment contains up to ~300m of inclusion-rich, (Main Mass). Concentric and radial Quartz Diorite sulfide-bearing Sublayer in a well-zoned funnel Offset Dykes extend into the footwall rocks. extending away from the base of the SIC. Poikilitic, The distributions of the Sublayer and hypersthene-rich Mafic Norite occurs in and along associated Ni-Cu-PGE ores are controlled by the the flanks of the embayment as discontinuous morphology of the footwall: the Sublayer and lenses between the Sublayer and the Felsic Norite. contact ores are thickest within km-sized radial The Felsic Norite in the Whistle area ranges from depressions in the footwall referred to as ~450m thick adjacent to the embayment to >600m embayments (e.g., Whistle Embayment) and thick directly over the embayment.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • Petrology of the Noritic and Gabbronoritic Rocks Below the J-M Reef in the Mountain View Area, Stillwater Complex, Montana
    Petrology of the Noritic and Gabbronoritic Rocks below the J-M Reef in the Mountain View Area, Stillwater Complex, Montana U.S. GEOLOGICAL SURVEY BULLETIN 1674-C Chapter C Petrology of the Noritic and Gabbronoritic Rocks below the J-M Reef in the Mountain View Area, Stillwater Complex, Montana By NORMAN J PAGE and BARRY C. MORING U.S. GEOLOGICAL SURVEY BULLETIN 1674 CONTRIBUTIONS ON ORE DEPOSITS IN THE EARLY MAGMATIC ENVIRONMENT DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1990 For sale by the Books and Open-File Reports Section, U.S. Geological Survey Federal Center, Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Page, Norman, J Petrology of the noritic and gabbronoritic rocks below the J-M Reef in the Mountain View area, Stillwater Complex, Montana / by Norman J Page and Barry C. Moring. p. cm. (U.S. Geological Survey bulletin ; 1674-C) (Contributions on ore deposits in the early magmatic environment Includes bibliographical references. Supt. of Docs, no.: I 19.3: 1674-C 1. Petrology Beartooth Mountains Region (Mont, and Wyo.) 2. Geolo­ gy Beartooth Mountains Region (Mont, and Wyo.) I. Moring, Barry C. II. Title. III. Title: Stillwater Complex, Montana. IV. Series. V. Series: Contri­ butions on ore deposits in the early magmatic environment ; ch.
    [Show full text]
  • Wang Et Al., 2001
    American Mineralogist, Volume 86, pages 790–806, 2001 Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy ALIAN WANG,* BRAD L. JOLLIFF, LARRY A. HASKIN, KARLA E. KUEBLER, AND KAREN M. VISKUPIC Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, Missouri 63130, U.S.A. ABSTRACT This study reports the use of Raman spectral features to characterize the structural and composi- tional characteristics of different types of pyroxene from rocks as might be carried out using a por- table field spectrometer or by planetary on-surface exploration. Samples studied include lunar rocks, martian meteorites, and terrestrial rocks. The major structural types of quadrilateral pyroxene can be identified using their Raman spectral pattern and peak positions. Values of Mg/(Mg + Fe + Ca) of pyroxene in the (Mg, Fe, Ca) quadrilateral can be determined within an accuracy of ±0.1. The preci- sion for Ca/(Mg + Fe + Ca) values derived from Raman data is about the same, except that correc- tions must be made for very low-Ca and very high-Ca samples. Pyroxenes from basalts can be distinguished from those in plutonic equivalents from the distribution of their Mg′ [Mg/(Mg + Fe)] and Wo values, and this can be readily done using point-counting Raman measurements on unpre- pared rock samples. The correlation of Raman peak positions and spectral pattern provides criteria to distinguish pyroxenes with high proportions of non-quadrilateral components from (Mg, Fe, Ca) quadrilateral pyroxenes. INTRODUCTION pyroxene group of minerals is amenable to such identification Laser Raman spectroscopy is well suited for characteriza- and characterization.
    [Show full text]
  • The Bushveld Igneous Complex
    The Bushveld Igneous Complex THE GEOLOGY OF SOUTH AFRICA’S PLATINUM RESOURCES By C. A. Cousins, MSC. Johannesburg Consolidated Investment Company Limited A vast composite body of plutonic and volcanic rock in the central part of the Transvaal, the Bushveld igneous complex includes the platinum reef worked by Rustenburg Platinum Mines Limited and constituting the world’s greatest reserve of the platinum metals. This article describes the geological and economic aspects of this unusually interesting formation. In South Africa platinum occurs chiefly in square miles. Two of these areas lie at the the Merensky Reef, which itself forms part of eastern and western ends of the Bushveld and the Bushveld igneous complex, an irregular form wide curved belts, trending parallel to oval area of some 15,000 square miles occupy- the sedimentary rocks which they overlie, and ing a roughly central position in the province dipping inwards towards the centre of the of the Transvaal. A geological map of the Bushveld at similar angles. The western belt area, which provides the largest known has a flat sheet-like extension reaching the example of this interesting type of formation, western boundary of the Transvaal. The is shown on the facing page. third area extends northwards and cuts out- The complex rests upon a floor of sedi- side the sedimentary basin. Its exact relation- mentary rocks of the Transvaal System. This ship to the other outcrops within the basin floor is structurally in the form of an immense has not as yet been solved. oval basin, three hundred miles long and a As the eastern and western belts contain hundred miles broad.
    [Show full text]
  • Geomorphology of the Bushveld Complex
    Cademo Lab. Xeo16xico de Laxe Coruña. 1997. Vol. 22, pp. 209-227 Geomorphology of the Bushveld Complex Geomorfología del Complejo de Bushveld LAGEAT,Y. This paper deals wich che differenc relacion becween scruccure and lichology in che geomorphology of che Bushveld Complexo The final resules demonscrace chac, even so differenc scale ofsize, widerfor che epirogenic-cecconic movements and smaller for che lichology, che cwo faccors need co be considered for a beccer underscanding ofche landscape evolucion ofche area. Key words: ulerabasic and basic rocks, Bushveld Complex, scruccural geomorphology, lichological differences. LAGEAT, Y. (Universicé Blaise Pascaland UPRES-A 6042 (CNRS). Clermont-Ferrand (France) 210 Lageat, Y. CAD. LAB. XEOL. LAXE 22 (997) INTRODUCTION subdued topography. So, being concerned with the relationships between scenery and In spiteofthestrong emphasisonclimatic structure, the study wil1 consider two topics in French geomorphology since the different but complementary topics: fifties, research dealing with structural differential erosion and regional evolution landforms developed in crystalline shields ofa shield area (Y. LAGEAT, 1989). pioneered by the late Professor P. Birot has been upheld. In numerous regional monographs, widely distributed between GEOLOGICAL POTENTIAL theArcticCircleand theTropicofCapricorn, special attention has been devoted to the A presentation of the geology of the relationships between landforms and Bushveld Complex is essential to any geological structure, with the purpose to understanding of its surface morphology. distinguish between the direct control of Ranging in composition from ultrabasic ro recent faulting and the response of acid, it outcrops largely within a region contrasting rock units todifferential erosiono covered bya characteristicvegetation termed This ambiguity may be easily overcome in «Bushveld».
    [Show full text]
  • 62237 Troctolitic Anorthosite 62.4 Grams
    62237 Troctolitic Anorthosite 62.4 grams Figure 1: Photo of 62237. NASA S72-41797 (B&W), NASA S72-38959 (color). Cube is 1 cm. Introduction 62237 and 62236 are chalky white rocks that were Warren and Wasson (1977) concluded that 62237 is collected together along with 62235 and incidental soil, “chemically pristine”, because it was lacking in from the rim of Buster Crater, station 2, Apollo 16 meteoritic siderophiles. (figure 2), where they were found half buried in the regolith (Sutton 1981). The mineral chemistry of these 62237 has been crushed to form a cataclastic texture, rocks is similar and indicates that they belong to the but, in places, the original coarse-grained igneous suite of lunar plutonic rocks termed ferroan anorthosite texture can be discerned by relic clasts (figure 3). (James 1980). Mineralogy Olivine: Olivine (Fo ) crystals up to 3 mm in size Petrography 59-61 Dymek et al. (1975) concluded that 62237 was a slowly are reported in 62237 by Dymek et al. (1975). Warren cooled plutonic lunar rock (figure 1). The mineralogy and Wasson (1977) and Bersch et al. (1991) also of 62237 is that of a ferroan anorthosite with fairly provided analyses of olivine in 62237. Dymek et al. abundant (~20%) mafic minerals (figure 5). noted that olivine in 62237 was extremely depleted in Ca. Lunar Sample Compendium C Meyer 2011 Figure 2: Location of 62237. Pyroxene: Dymek et al. (1975) and Bersch et al. (1991) determined the composition of pyroxene in 62237 (figure 4). Plagioclase: Plagioclase in 62237 is An95-99 and contains only small amount of minor elements (Dymek et al.
    [Show full text]
  • Tonalite, Diorite, Gabbro, Norite, and Anorthosite
    GLY 4310 LAB 6 TONALITE, DIORITE, GABBRO, NORITE, AND ANORTHOSITE LEUCOCRATIC (0-30% MAFIC) PHANERITIC ROCK FELSICS MAFICS NOTES Plagioclase Quartz K-Spar Biotite Hornblende Ortho- Clino- Pyroxene Pyroxene 32 90% 10% Medium-grained Anorthosite Subh Anh Clino-pyroxene is augite. 2.5mm green/black Plagioclase is anorthite. 10mm laths or 2mm 7mm TRACE MINERAL: equant fibrous euhedral pyrite. Rock has pale bluish hue. 340 90% 3% 7% Medium-grained Anorthosite Anh-subh Anh-subh Anh-subh Clinopyroxene is white to tan Black Dark green probably augite. 3mm laths 1.5mm 1.5mm Plagioclase is anorthite. TRACE MINERALS: Biotite & muscovite. 1 GLY 4310 LAB 6 MESOTYPE (30-60% MAFIC) PHANERITIC ROCK FELSICS MAFICS NOTES Plagioclase Quartz K-Spar Biotite Hornblende Ortho- Clino- Pyroxene Pyroxene 24 45% 25% 8% 17% 5% Medium-Coarse grained. Tonalite Anh Anh Anh Subh Anh Clinopyroxene is augite. White/gray Gray 2mm 5mm 4mm 8mm Greenish Plagioclase is probably 3mm 2mm Columnar 1.5mm andesine. Laths or Rounded Some of the plagioclase equant crystals show twinning in hand specimen. 28 32% 3% 55% 5% Medium-grained. Hornblende Subh Anh Subh Anh Clinopyroxene is augite. Gabbro Clear gray Grayish Black Greenish Plagioclase displays some 1.5mm laths 2mm 1.5mm 5mm 0.5mm twinning. Rounded Equant 2 GLY 4310 LAB 6 MELANOCRATIC (60-100% MAFIC) PHANERITIC ROCK FELSICS MAFICS NOTES Plagioclase Quartz K-Spar Biotite Hornblende Ortho- Clino- Pyroxene Pyroxene 25 17% 7% 12% 60% Medium-coarse grained. Diorite Anh Anh Anh Subh Rock is equigranular. White Gray 2mm Black SPHENE - 4%, Subh, 1mm, 0.5mm, 2mm, 1mm, yellow, elongated.
    [Show full text]
  • Geology 222 Laboratory Project Layered Mafic Intrusions
    Geology 222 Laboratory Project Layered Mafic Intrusions Layered mafic intrusions present an unusual record of a natural crystallization experiment. In an ideal case, a magma chamber is filled with a mafic liquid of relatively low viscosity. Crystals of sufficient density that grow from this liquid settle to the bottom of the magma chamber as they grow. Layers of crystals are formed yielding a “magmatic sedimentary rock”. The first-formed crystals are on the bottom of the magma chamber and later-formed crystals are stratigraphically above earlier-formed crystals. If one looks at the compositions of the crystals in the layers, changes that occur during the solidification of the magma can be discovered. Actual layered mafic intrusions are rarely as simple as the idealized model. Plagioclase commonly sinks, rather than floats as its density suggests it would do. Crystal settling can be rhythmic rather than continuous. Density currents can develop and lead to cross-bedding. Some (intercumulus) liquid can be trapped as a pore fluid among the settled crystals and may possibly be squeezed out as the crystal layers are compressed. Additional batches of magma can be added to the magma chamber over time, changing the composition of the evolving liquid. The lab assignment is to look carefully at rocks from one layered mafic intrusions for which we have thin sections (Bushveld, Kiglapait, and Stillwater). You should describe fully three thin sections from the intrusion of your choice. Chose thin sections that are not similar to one another. Identify the minerals. Give a mode. Include in your report photomicrographs or sketches of textures that you see.
    [Show full text]