(NEUROPTERA: CHRYSOPIDAE) and Utetheisa Crotalaria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biology and Thermal Requirements of Utetheisa Ornatrix (L.) (Lepidoptera: Arctiidae) Reared on Artificial Diet
647 Vol. 51, n. 4 : pp.647-653, July-Aug 2008 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Biology and Thermal Requirements of Utetheisa ornatrix (L.) (Lepidoptera: Arctiidae) Reared on Artificial Diet André Gustavo Corrêa Signoretti 1, Dori Edson Nava 2*, José Maurício Simões Bento 1 and José Roberto Postali Parra 1 1Departamento de Entomologia, Fitopatologia e Zoologia Agrícola; Escola Superior de Agricultura "Luiz de Queiroz"; Universidade de São Paulo; 13418-310; Piracicaba - SP - Brasil. 2Embrapa Clima Temperado; [email protected]; 96001-970; Pelotas - RS - Brasil ABSTRACT A study on the biology of Utetheisa ornatrix reared on the artificial diet, was conducted to determine the thermal requirements in each development stage. The aim was to find out the thermal regions in the São Paulo state where the pest could develop on Crotalaria spp. The insects were reared on an artificial diet based on the white beans and yeast. U. ornatrix thermal requirements were tested at 18, 20, 22, 25, 28, 30, and 32ºC 70±20% RH, and 14-h photophase. Lower threshold temperatures (TT) and thermal constants (K) for the egg, larval and pupal stages were 12.7ºC and 51.2 GDD, 13.5ºC and 290.9 GDD, 13.8ºC and 108.4 GDD, respectively; TT and K values for the biological cycle were 13.8ºC and 436.3 GDD. Key words: Crotalaria , Rattlebox moth, rearing technique INTRODUCTION In the past few years, the area planted to the crotalaria has increased significantly, reaching The Rattlebox moth, Utetheisa ornatrix (L., 1758) about 3,000 ha in Brazil (José Aparecido Donizete (Lepidoptera: Arctiidae), is considered to be the Cardoso, personal comunication). -
Utetheisa Ornatrix)
Female choice increases offspring fitness in an arctiid moth (Utetheisa ornatrix) Vikram K. Iyengar and Thomas Eisner* Department of Neurobiology and Behavior, W347 Mudd Hall, Cornell University, Ithaca, NY 14853 Contributed by Thomas Eisner, November 5, 1999 In Utetheisa ornatrix (Lepidoptera, Arctiidae), the female mates direct phenotypic benefits (from the nuptial gifts) and indirect preferentially with larger males. Having a larger father results in genetic benefits (from the expression of largeness in sons and the eggs being more richly endowed with defensive pyrrolizidine daughters). We postulated that these benefits should be mea- alkaloid (which the female receives from the male with the sperm surable and found that the offspring of preferred males do package, in quantity proportional to the male’s body mass, and indeed fare better than the offspring of nonpreferred males. passes on to the eggs); having a larger father also results in the Specifically, we showed that (i) eggs sired by preferred males are sons and daughters themselves being larger (body mass is herita- less vulnerable to predation; (ii) sons of preferred males are ble in Utetheisa). We provide evidence herein that these conse- more successful in courtship; and (iii) daughters of preferred quences enhance the fitness of the offspring. Eggs sired by larger males are more fecund. males are less vulnerable to predation (presumably because of Our basic protocol was as follows: (i) we confined a female their higher alkaloid content), whereas sons and daughters, by with two males (one large, one small) until she chose to mate virtue of being larger, are, respectively, more successful in court- with one of them (preferred male, primary mating); (ii)we ship and more fecund. -
Paternal Inheritance of a Female Moth's Mating Preference
letters to nature 11. Reznick, D. N., Shaw, F. H., Rodd, F. H. & Shaw, R. G. Evaluation of the rate of evolution in natural birds promote the evolution of exaggerated male traits through populations of guppies (Poecilia reticulata). Science 275, 1934–1936 (1997). 12. Majerus, M. E. N. Melanism: Evolution in Action (Oxford Univ. Press, Oxford, 1998). sexual selection. Specifically, the theory predicts that, because 13. Hendry, A. P.Adaptive divergence and the evolution of reproductive isolation in the wild: an empirical female preference alleles arising on the Z chromosome are demonstration using introduced sockeye salmon. Genetica 112, 515–534 (2001). transmitted to all sons that have the father’s attractive trait rather 14. Grant, P.R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296, than to only a fraction of the sons, such alleles will experience 707–711 (2002). 15. Baker, A. J. Genetic and morphometric divergence in ancestral European and descendent New Zeland stronger positive selection and be less vulnerable to chance loss populations of chaffinches (Fringilla coelebs). Evolution 46, 1784–1800 (1992). than would autosomal alleles. 16. Merila¨, J. & Crnokrak, P. Comparison of genetic differentiation at marker loci and quantitative traits. The benefits accrued by female Utetheisa as a result of mating J. Evol. Biol. 14, 892–903 (2001). 17. Wright, S. The genetical structure of populations. Ann. Eugen. 15, 323–354 (1951). preferentially with larger males have been characterized. The pheno- 18. Haugen, T. O. & Vøllestad, L. A. A century of life-history evolution in grayling. Genetica 112, 475–491 typic benefits take the form of nutrient and pyrrolizidine alkaloid (2001). -
Chemical Defence of the Warningly Coloured Caterpillars of Methona Themisto (Lepidoptera: Nymphalidae: Ithomiinae)
Eur. J. Entomol. 106: 253–259, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1449 ISSN 1210-5759 (print), 1802-8829 (online) Chemical defence of the warningly coloured caterpillars of Methona themisto (Lepidoptera: Nymphalidae: Ithomiinae) KAMILA F. MASSUDA and JOSÉ R. TRIGO* Laboratório de Ecologia Química, Departamento de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970 Campinas, SP, Brazil Key words. Aposematism, Brunfelsia uniflora, Camponotus crassus, Gallus gallus domesticus, learning, Lycosa erythrognatha, predation, Solanaceae, unpalatability Abstract. The caterpillars of the butterfly Methona themisto (Nymphalidae: Ithomiinae) are conspicuously coloured and feed exclu- sively on Brunfelsia uniflora (Solanaceae), a plant that is rich in secondary plant substances, which suggests the caterpillars are chemically protected against predators. Results of experiments indicate that predators determine the survival of Methona themisto caterpillars in the field and laboratory bioassays that this organism is eaten by ants and spiders but not chicks. Both the conspicuous orange and black striped colouration and chemical compounds of Methona themisto caterpillars seem to be related to protection against predation by visually hunting predators. Chicks ate proportionally more of the cryptically coloured 1st instar caterpillars than of the conspicuously coloured later instar caterpillars. That Methona themisto caterpillars are chemically defended is supported by the activity of the dichloromethanic extract of 5th instars in preventing predation by chicks. Caterpillars of Methona themisto are apo- sematic as they are both (1) unpalatable, and (2) their warning signal is easily recognized by potential predators. Chicks learned to avoid the aposematic 3rd or 5th instar caterpillars after one encounter. Mealworms painted to look like caterpillars were also rejected by chicks that had previously encountered Methona caterpillars. -
Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A
Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou To cite this version: Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou. Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research. Viruses, MDPI, 2018, 10 (7), pp.366. 10.3390/v10070366. hal-02140538 HAL Id: hal-02140538 https://hal.archives-ouvertes.fr/hal-02140538 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License viruses Article Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé 1,2, Carlos Lopez-Vaamonde 1,3 ID , Jenny S. Cory 4 and Elisabeth A. Herniou 1,* ID 1 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, 37200 Tours, France; [email protected] (J.T.); [email protected] -
Rattlebox Crotalaria Spp. Fabaceae (Legume Family)
Rattlebox Crotalaria spp. Fabaceae (Legume family) Habitat Some species of Crotolaria were introduced as a soil-building cover crop for the sandy soils in the southeastern United States and have since become established in disturbed soils along fences and roadsides in Florida and Georgia. An indigenous species, C. sagit- talis is common along river bottomland. Description Crotalaria are erect, herbaceous, variably hairy plants, and may be annual or perenni- al. The leaves are simple, alternate, lanceolate to obovate, with a finely haired under surface (Figure 4-8A). The flowers are yellow, with the leguminous calyx longer than the corolla (Figure 4-8B). The fruit is a leguminous pod, inflated, hairless, becoming black with maturity, and contains 10 to 20 glossy black, heart-shaped seeds, which often detach and rattle with the pod. Several species of Crotalaria have been associat- ed with livestock poisoning including C. sagittalis, C. spectabilis, and C. retusa. Principal Toxin The principal toxins in Crotalaria spp. are the pyrrolizidine alkaloids (PA), the most notable of which is monocrotalamine. The alkaloid is present in greatest quantity in the seeds, with lesser amounts in the leaves and stems. All livestock, including domestic fowl are susceptible to poisoning. Although acute deaths will occur from eating large quantities of the crotolaria seeds or plant, more typically animals will develop signs of liver disease and photosensitization from a few days up to 6 months later. Monocrotaline also causes severe pulmonary changes, and horses have been reported to die after developing an acute fibrosing alveolitis from eating a feed con- taining 40 percent crotolaria seeds.63,64 Figure 4-8B Rattlebox flower and seed pods (Crotolaria spectabilis). -
The Contents and Pharmacology of Crotalaria Juncea- a Review
IOSR Journal Of Pharmacy www.iosrphr.org (e)-ISSN: 2250-3013, (p)-ISSN: 2319-4219 Volume 6, Issue 6 Version. 2 (June 2016), PP. 77-86 The contents and pharmacology of Crotalaria juncea- A review Prof Dr Ali Esmail Al-Snafi Department of Pharmacology, College of Medicine, Thi qar University, Nasiriyah, P O Box 42, Iraq . Abstract: The preliminary phytochemical screening of the Crotalaria juncea leaves revealed the presence of carbohydrates, steroids, triterpenes, phenolics, flavonoids, alkaloids, aminoacids, saponins, glycosides, tannins and volatile oils. The plant possessed hypolipidemic, reproductive, antioxidant, antibacterial, antifungal, anti- diarrhoeal, anti-inflammatory, hepatoprotective, and many other pharmacological effects. This review was designed to highlight the chemical constituents and pharmacological effects of Crotalaria juncea. Keywords: constituents, pharmacology Crotalaria juncea. I. INTRODUCTION Herbal medicine is the oldest form of medicine known to mankind. It was the mainstay of many early civilizations and still the most widely practiced form of medicine in the world today(1). Plants generally produce many secondary metabolites which are bio-synthetically derived from primary metabolites and constitute an important source of many pharmaceutical drugs(2-60). The preliminary phytochemical screening of the Crotalaria juncea leaves revealed the presence of carbohydrates, steroids, triterpenes, phenolics, flavonoids, alkaloids, aminoacids, saponins, glycosides, tannins and volatile oils. The plant possessed hypolipidemic, reproductive, antioxidant, antibacterial, antifungal, anti-diarrhoeal, anti-inflammatory, hepatoprotective, and many other pharmacological effects. This review will highlight the chemical constituents and pharmacological effects of Crotalaria juncea. II. PLANT PROFILE: Synonymas: Crotalaria benghalensis Lam., Crotalaria cannabinus Royle, Crotalaria fenestrata Sims, Crotalaria ferestrata Sims, Crotalaria porrecta Wall., Crotalaria sericea Willd., Crotalaria tenuifolia Roxb. -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
Plant-Derived Pyrrolizidine Alkaloid Protects Eggs of a Moth (Utetheisa Ornatrix) Against a Parasitoid Wasp (Trichogramma Ostriniae)
Plant-derived pyrrolizidine alkaloid protects eggs of a moth (Utetheisa ornatrix) against a parasitoid wasp (Trichogramma ostriniae) Alexander Bezzerides*, Tze-Hei Yong†, Julie Bezzerides*, Jad Husseini*, Joshua Ladau*, Maria Eisner*, and Thomas Eisner*‡ Departments of *Neurobiology and Behavior and †Entomology, Cornell University, Ithaca, NY 14853 Contributed by Thomas Eisner, April 13, 2004 Pyrrolizidine alkaloid (PA), sequestered by the moth Utetheisa ornatrix from its larval food plant, is transmitted by both males and females to the eggs. Males confer PA on the female by seminal infusion, and females pass this gift, together with PA that they themselves procured as larvae, to the eggs. Here we show that PA protects the eggs against parasitization by the chalcidoid wasp, Trichogramma ostriniae. Eggs laid subsequent to a first mating of an Utetheisa female receive most of their PA from the female. The amount they receive from the male is insufficient to provide for full protection. However, female Utetheisa are promiscuous and there- fore likely to receive PA on a cumulative basis from their male partners. chemical defense ͉ parasitism ͉ Arctiidae ͉ Trichogrammatidae he moth Utetheisa ornatrix (henceforth called Utetheisa), a Tmember of the tiger moth family (Arctiidae), is distasteful at all stages of development. As a larva, it feeds on plants of the genus Crotalaria (Fabaceae), from which it sequesters toxic, intensely bitter, pyrrolizidine alkaloids (PAs). The compounds are retained systemically through metamorphosis by both sexes and eventually are allocated in part to the eggs. Both sexes Fig. 1. Trichogramma on an egg of Utetheisa. The specimen was abruptly contribute to the egg endowment. -
Sunn Hemp (Crotalaria Juncea) Plant Guide
Plant Guide for the stem to harden and the leaves to fill out, while still SUNN HEMP remaining short enough for goats to reach leaves. Crotalaria juncea L. The leaves of C. juncea can be used for cattle forage Plant Symbol = CRJU during late summer and early fall, but the amount of fiber in stems is too high 6 weeks after planting to be used as Contributed by: USDA NRCS Cape May Plant Materials suitable forage (Mansoer et al., 1997). Mannetje (2012) Center, Cape May, NJ found that the leaves and stems must be dried before fed to cattle and sheep. Cover crop/green manure: C. juncea is used as a nitrogen-fixing green manure to improve soil quality, reduce soil erosion, conserve soil moisture, suppress weeds and nematodes, and recycle plant nutrients. It grows quickly and can produce more than 5,000 lb dry matter/acre and 120 lb nitrogen/acre in 9–12 weeks (Clark, 2007). Fertilized and hand-weeded plots have yielded 5.6–6.2 T (short tons) per acre (Duke, 1983). Leaves have a nitrogen concentration between 2–5% and roots and stems have between 0.6–2% (Treadwell and Alligood, 2008). Its fast growth makes it ideally suited for planting in late summer rotations before fall cash crops. Sunn hemp (Crotalaria juncea).(Photo by Chris Miller, USDA-NRCS, Wildlife: Deer will browse plants and turkey and quail Cape May Plant Materials Center) will use C. juncea for shelter and food. Alternate Names Ethnobotany Alternate Common Names: Indian hemp, Madras hemp, C. juncea has been grown as a fiber crop in India since brown hemp 600 BC (Treadwell and Alligood, 2008) and is still used for fiber production in India and Pakistan (Wang and Scientific Alternate Names: McSorley, 2009). -
Herbaceous Plant Species Diversity in Communal Agro-Pastoral And
Tropical Grasslands-Forrajes Tropicales (2019) Vol. 7(5):502–518 502 DOI: 10.17138/TGFT(7)502-518 Research Paper Herbaceous plant species diversity in communal agro-pastoral and conservation areas in western Serengeti, Tanzania Diversidad de especies herbáceas en áreas de uso agropastoril comunal y protegidas en Serengeti occidental, Tanzania PIUS YORAM KAVANA1,2, ANTHONY Z. SANGEDA2, EPHRAIM J. MTENGETI2, CHRISTOPHER MAHONGE3, JOHN BUKOMBE1, ROBERT FYUMAGWA1 AND STEPHEN NINDI4 1Tanzania Wildlife Research Institute, Arusha, Tanzania. www.tawiri.or.tz 2Department of Animal, Aquaculture and Range Sciences, College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania. coa.sua.ac.tz/aanimal 3Department of Policy Planning and Management, College of Social Sciences and Humanities, Sokoine University of Agriculture, Morogoro, Tanzania. cssh.sua.ac.tz 4National Land Use Planning Commission of Tanzania, Dar-es-Salaam, Tanzania. www.nlupc.go.tz Abstract Agro-pastoralism involves the growing of crops and keeping of livestock as a livelihood strategy practiced by communities in rural areas in Africa and is highly dependent on environmental factors including rainfall, soil and vegetation. Agro- pastoral activities, e.g. livestock grazing and land clearing for crop cultivation, impact on environmental condition. This study evaluated the impacts of agro-pastoral activities on herbaceous plant species diversity and abundance in western Serengeti relative to conservation (protected) areas. A vegetation survey was conducted along the grazing gradients of ten 4 km transects from within village lands to protected areas. A total of 123 herbaceous species belonging to 20 families were identified. Higher herbaceous species diversity and richness were found in protected areas than in communal grazing lands. -
Report on an Ecological Survey of the Serengeti National Park Tanganyika November and December 1956
Report on an Ecological Survey of the Serengeti National Park Tanganyika November and December 1956 PREPARED for the FAUNA PRESERVATION SOCIETY By W. H. Pearsall, D.Sc, F.R.S. Quain Professor of Botany, University of London THE FAUNA PRESERVATION SOCIETY _/o THE ZOOLOGICAL SOCIETY OF LONDON, REGENT'S PARK LONDON, N.W.I Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.229, on 01 Oct 2021 at 01:14:04, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0030605300039375 FOREWORD In January, 1956, news reached the Fauna Preservation Society of proposals to partition the Serengeti National Park, Tanganyika. These were later published by the Tanganyika Government in a White Paper and were reluctantly accepted by the Trustees of the Park. The proposals did not, however, receive the approval of either the Tanganyika or the Kenya wild life societies, which in their published comments, requested that a committee should be set up to reconsider them. International opinion had also been aroused and a small party, arranged and accompanied by Mr. It. M. Arundel, led by Mr. L. M. Talbot and sponsored by the American Wild Life Management Institute and the American Committee for International Wild Life Protection, visited the Serengeti. A report on this visit was published by Mr. Talbot, who was then the staff ecologist of the International Union for the Conservation of Nature and Natural Resources. Meanwhile the Fauna Preservation Society collected much evidence from many sources and proposed to the Colonial Office that, before any changes in the Serengeti National Park were made, an ecological survey of the area should be carried out and an independent inquiry held.