Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants

Total Page:16

File Type:pdf, Size:1020Kb

Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants molecules Review Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants Sebastian Schramm, Nikolai Köhler and Wilfried Rozhon * Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany; [email protected] (S.S.); [email protected] (N.K.) * Correspondence: [email protected]; Tel.: +49-8161-71-2023 Academic Editor: John C. D’Auria Received: 20 December 2018; Accepted: 29 January 2019; Published: 30 January 2019 Abstract: Pyrrolizidine alkaloids (PAs) are heterocyclic secondary metabolites with a typical pyrrolizidine motif predominantly produced by plants as defense chemicals against herbivores. They display a wide structural diversity and occur in a vast number of species with novel structures and occurrences continuously being discovered. These alkaloids exhibit strong hepatotoxic, genotoxic, cytotoxic, tumorigenic, and neurotoxic activities, and thereby pose a serious threat to the health of humans since they are known contaminants of foods including grain, milk, honey, and eggs, as well as plant derived pharmaceuticals and food supplements. Livestock and fodder can be affected due to PA-containing plants on pastures and fields. Despite their importance as toxic contaminants of agricultural products, there is limited knowledge about their biosynthesis. While the intermediates were well defined by feeding experiments, only one enzyme involved in PA biosynthesis has been characterized so far, the homospermidine synthase catalyzing the first committed step in PA biosynthesis. This review gives an overview about structural diversity of PAs, biosynthetic pathways of necine base, and necic acid formation and how PA accumulation is regulated. Furthermore, we discuss their role in plant ecology and their modes of toxicity towards humans and animals. Finally, several examples of PA-producing crop plants are discussed. Keywords: Borago officinalis; Crassocephalum; Copper-dependent diamine oxidase; Gynura bicolor; Homospermidine synthase; Lolium perenne; Necic acids; Necine bases; Pyrrolizidine alkaloid biosynthesis; Senecionine 1. Introduction Pyrrolizidine alkaloids (PAs) are heterocyclic organic compounds synthesized by plants that are thought to act as defense compounds against herbivores [1]. Estimates indicate that approximately 6.000 plant species worldwide, representing 3% of all flowering plants, produce these secondary metabolites. In particular, members of the Asteraceae, Boraginaceae, Heliotropiaceae, Apocynaceae, and some genera of the Orchidaceae and the Fabaceae are PA producers [2]. Reported concentrations vary greatly, from trace amounts to up to 19% dry weight, and are considered to be dependent on a number of factors including the developmental stage, tissue type, environmental conditions, and extraction procedures [3]. PAs consist of a necine base esterified with a necic acid. The necine base typically includes pyrrolizidine, a bicyclic aliphatic hydrocarbon consisting of two fused five-membered rings with a nitrogen at the bridgehead [4] (Figure1). Loline alkaloids may be formally considered as PAs since they also possess a pyrrolizidine system, although it contains an ether bridge linking carbon 2 (C-2) and carbon 7 (C-7). While stricto sensu PAs are exclusively formed in plants, lolines are synthesized by Molecules 2019, 24, 498; doi:10.3390/molecules24030498 www.mdpi.com/journal/molecules Molecules 2019, 24, 498 2 of 44 Molecules 2018, 23, x FOR PEER REVIEW 2 of 45 endophytic fungal symbionts of the genus Epichloë [5]. In addition, their biosynthesis is distinct from by endophytic fungal symbionts of the genus Epichloë [5]. In addition, their biosynthesis is distinct PAs [5–7]. Thus, lolines will be discussed only peripherally in this review. from PAs [5–7]. Thus, lolines will be discussed only peripherally in this review. FigureFigure 1. 1.Core Core structures structures and and examples examples for for pyrrolizidine, pyrrolizidine, loline, loline, indolizidine, indolizidine, quinolizidine, quinolizidine, tropane tropane andand granatane granatane alkaloids. alkaloids. In In contrast contrast to to the the other other alkaloids alkaloids pyrrolizidine pyrrolizidine alkaloids alkaloids appear appear mainly mainly as as NN-oxides,-oxides, as as shown shown for for the the example example of of senecionine- senecionine-NN-oxide.-oxide. TheThe fused fused bicyclic bicyclic system system of of PAs PAs resembles resembles indolizidine indolizidine and and quinolizidine quinolizidine alkaloids, alkaloids, which which containcontain aa fivefive andand aa six-membered six-membered ringring oror twotwo six-memberedsix-membered rings,rings, respectivelyrespectively [[8]8] (Figure(Figure1 ).1). TropaneTropane and and granatane granatane alkaloids alkaloids also showalso ashow similar a structuresimilar consistingstructure ofconsisting a five and of a six-membereda five and a ringsix-membered or two six-membered ring or two rings, six-membered respectively rings, [9]. respectively However, in [9]. contrast However, to necine in contrast bases, theto necine rings ofbases, tropane the andrings granatane of tropane alkaloids and granatane are bridged alkaloids rather are thanbridged fused. rather While than severalfused. While tropane several and quinolizidinetropane and alkaloidsquinolizidine including alkaloids atropine including (the racemic atropine mixture (the racemic of (±)-hyoscyamine) mixture of (±)-hyoscyamine) and sparteine areand used sparteine in medicine are used [9], in PAs medicine are mainly [9], PAs known are mainly for their known hepatotoxic for their and hepatotoxic potentially and carcinogenic potentially propertiescarcinogenic [10]. properties Nevertheless, [10]. some Nevertheless, PAs show some interesting PAs show pharmacological interesting propertiespharmacological that are properties currently underthat are investigation currently under (see Section investigation 5.3)[10 ,11(see]. WhileChapter tropane 5.3) [10,11]. and quinolizidine While tropane alkaloids and quinolizidine are usually presentalkaloids in plantsare usually in their present free forms, in plants PAs are in mainlytheir free present forms, as NPAs-oxides are (Figuremainly 1present), which as are N highly-oxides water-soluble(Figure 1), which and consideredare highly water-soluble less toxic than and the considered free PAs. less toxic than the free PAs. 2.2. Structural Structural Diversity Diversity of of Pyrrolizidine Pyrrolizidine Alkaloids Alkaloids WithinWithin the the combination combination of of a a set set of of necine necine bases bases (Figures (Figure2 2; and Figure3) and 3) aand considerable a considerable number number of necicof necic acids acids (Figure (Figure4), an enormous4), an enormous structural structural diversity diversity of PAs can of bePAs obtained. can be Thisobtained. is further This amplified is further byamplified modifications, by modifications, including N -oxidationincluding ofN the-oxidation tertiary of nitrogen the tertiary of the necinenitrogen base, of hydroxylationthe necine base, of thehydroxylation necine base and/orof the necine the necic base acid, and/or and the acetylation necic acid, of hydroxyand acetylation groups of of hydroxy the acid moiety.groups Thus,of the itacid is notmoiety. surprising Thus, thatit is severalnot surprising hundreds that of several different hund PAsreds have of already different been PAs identified have already and eachbeen yearidentified new variantsand each are year described. new variants are described. 2.1.2.1. Diversity Diversity of of Necine Necine Bases Bases InIn addition addition to to the the pyrrolizidine pyrrolizidine ring ring system system most most necine necine bases bases possess possess a a hydroxymethyl hydroxymethyl group group atat positionposition 1 (Figure 22),), which is is a aconsequence consequence of ofthe the biosynthetic biosynthetic pathway pathway (see (seeChapter Section 3.1). 3.1 Since). Since1-hydroxymethylpyrrolizidine 1-hydroxymethylpyrrolizidine contains contains two twochiral chiral centers, centers, carbons carbons C-1 C-1 and and C-8, C-8, in totaltotal fourfour compoundscompounds exist: exist: The The enantiomers enantiomers (-)/(+)-trachelanthamidine (-)/(+)-trachelanthamidine and and (-)/(+)-isoretronecanole (-)/(+)-isoretronecanole (Figure (Figure2B). Among2B). Among them, (-)-trachelanthamidinethem, (-)-trachelanthamidine and (-)-isoretronecanole and (-)-isoretronecanole are most are frequently most frequently found, for found, instance, for asinstance, the necine as basethe necine of trachelanthamine base of trachelanthamine (Figure5C) and(Figure the nervosines5C) and the [ 12 nervosines] (Figure5 E),[12] respectively. (Figure 5E), Examplesrespectively. forPAs Examples containing for (+)-trachelanthamidinePAs containing (+)-tr andachelanthamidine (+)-isoretronecanole and (+)-isoretronecanole are acetyllaburnine [ 13are] (Figureacetyllaburnine5G) and madhumidine [13] (Figure A 5G) [ 14], and respectively. madhumid Theine most A frequent[14], respectively. modification The of saturated most frequent necine basesmodification is hydroxylation of saturated at C-7. necine However, bases theis hydroxylation positions C-2 andat C-7. C-6 However, are also occasionally the positions hydroxylated. C-2 and C-6 Necineare also bases occasionally like (-)-platynecine, hydroxylated. possessing Necine bases hydroxy like groups(-)-platynecine, on C-7 and possessing C-8, and hydroxy (-)-rosmarinecine
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Biology and Thermal Requirements of Utetheisa Ornatrix (L.) (Lepidoptera: Arctiidae) Reared on Artificial Diet
    647 Vol. 51, n. 4 : pp.647-653, July-Aug 2008 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Biology and Thermal Requirements of Utetheisa ornatrix (L.) (Lepidoptera: Arctiidae) Reared on Artificial Diet André Gustavo Corrêa Signoretti 1, Dori Edson Nava 2*, José Maurício Simões Bento 1 and José Roberto Postali Parra 1 1Departamento de Entomologia, Fitopatologia e Zoologia Agrícola; Escola Superior de Agricultura "Luiz de Queiroz"; Universidade de São Paulo; 13418-310; Piracicaba - SP - Brasil. 2Embrapa Clima Temperado; [email protected]; 96001-970; Pelotas - RS - Brasil ABSTRACT A study on the biology of Utetheisa ornatrix reared on the artificial diet, was conducted to determine the thermal requirements in each development stage. The aim was to find out the thermal regions in the São Paulo state where the pest could develop on Crotalaria spp. The insects were reared on an artificial diet based on the white beans and yeast. U. ornatrix thermal requirements were tested at 18, 20, 22, 25, 28, 30, and 32ºC 70±20% RH, and 14-h photophase. Lower threshold temperatures (TT) and thermal constants (K) for the egg, larval and pupal stages were 12.7ºC and 51.2 GDD, 13.5ºC and 290.9 GDD, 13.8ºC and 108.4 GDD, respectively; TT and K values for the biological cycle were 13.8ºC and 436.3 GDD. Key words: Crotalaria , Rattlebox moth, rearing technique INTRODUCTION In the past few years, the area planted to the crotalaria has increased significantly, reaching The Rattlebox moth, Utetheisa ornatrix (L., 1758) about 3,000 ha in Brazil (José Aparecido Donizete (Lepidoptera: Arctiidae), is considered to be the Cardoso, personal comunication).
    [Show full text]
  • Utetheisa Ornatrix)
    Female choice increases offspring fitness in an arctiid moth (Utetheisa ornatrix) Vikram K. Iyengar and Thomas Eisner* Department of Neurobiology and Behavior, W347 Mudd Hall, Cornell University, Ithaca, NY 14853 Contributed by Thomas Eisner, November 5, 1999 In Utetheisa ornatrix (Lepidoptera, Arctiidae), the female mates direct phenotypic benefits (from the nuptial gifts) and indirect preferentially with larger males. Having a larger father results in genetic benefits (from the expression of largeness in sons and the eggs being more richly endowed with defensive pyrrolizidine daughters). We postulated that these benefits should be mea- alkaloid (which the female receives from the male with the sperm surable and found that the offspring of preferred males do package, in quantity proportional to the male’s body mass, and indeed fare better than the offspring of nonpreferred males. passes on to the eggs); having a larger father also results in the Specifically, we showed that (i) eggs sired by preferred males are sons and daughters themselves being larger (body mass is herita- less vulnerable to predation; (ii) sons of preferred males are ble in Utetheisa). We provide evidence herein that these conse- more successful in courtship; and (iii) daughters of preferred quences enhance the fitness of the offspring. Eggs sired by larger males are more fecund. males are less vulnerable to predation (presumably because of Our basic protocol was as follows: (i) we confined a female their higher alkaloid content), whereas sons and daughters, by with two males (one large, one small) until she chose to mate virtue of being larger, are, respectively, more successful in court- with one of them (preferred male, primary mating); (ii)we ship and more fecund.
    [Show full text]
  • Clinical Biochemistry of Hepatotoxicity
    linica f C l To o x l ic a o n r l o u g Singh, J Clinic Toxicol 2011, S:4 o y J Journal of Clinical Toxicology DOI: 10.4172/2161-0495.S4-001 ISSN: 2161-0495 ReviewResearch Article Article OpenOpen Access Access Clinical Biochemistry of Hepatotoxicity Anita Singh1, Tej K Bhat2 and Om P Sharma2* 1CSK Himachal Pradesh, Krishi Vishva Vidyalaya, Palampur (HP) 176 062, India 2Biochemistry Laboratory, Indian Veterinary Research Institute, Regional Station, Palampur (HP) 176 061, India Abstract Liver plays a central role in the metabolism and excretion of xenobiotics which makes it highly susceptible to their adverse and toxic effects. Liver injury caused by various toxic chemicals or their reactive metabolites [hepatotoxicants) is known as hepatotoxicity. The present review describes the biotransformation of hepatotoxicants and various models used to study hepatotoxicity. It provides an overview of pathological and biochemical mechanism involved during hepatotoxicity together with alteration of clinical biochemistry during liver injury. The review has been supported by a list of important hepatotoxicants as well as common hepatoprotective herbs. Keywords: Hepatotoxicity; Hepatotoxicant; In Vivo models; In Vitro production of bile thus leading to the body’s inability to flush out the models; Pathology; Alanine aminotransferase; Alkaline phosphatase; chemicals through waste. Smooth endoplasmic reticulum of the liver is Bilirubin; Hepatoprotective the principal ‘metabolic clearing house’ for both endogenous chemicals like cholesterol, steroid hormones, fatty acids and proteins, and Introduction exogenous substances like drugs and alcohol. The central role played by liver in the clearance and transformation of chemicals exposes it to Hepatotoxicity refers to liver dysfunction or liver damage that is toxic injury [4].
    [Show full text]
  • National Center for Toxicological Research
    National Center for Toxicological Research Annual Report Research Accomplishments and Plans FY 2015 – FY 2016 Page 0 of 193 Table of Contents Preface – William Slikker, Jr., Ph.D. ................................................................................... 3 NCTR Vision ......................................................................................................................... 7 NCTR Mission ...................................................................................................................... 7 NCTR Strategic Plan ............................................................................................................ 7 NCTR Organizational Structure .......................................................................................... 8 NCTR Location and Facilities .............................................................................................. 9 NCTR Advances Research Through Outreach and Collaboration ................................... 10 NCTR Global Outreach and Training Activities ............................................................... 12 Global Summit on Regulatory Science .................................................................................................12 Training Activities .................................................................................................................................14 NCTR Scientists – Leaders in the Research Community .................................................. 15 Science Advisory Board ...................................................................................................
    [Show full text]
  • 1 Gene Clusters for Insecticidal Loline Alkaloids in the Grass-Endophytic Fungus
    Genetics: Published Articles Ahead of Print, published on January 16, 2005 as 10.1534/genetics.104.035972 1 1 Gene Clusters for Insecticidal Loline Alkaloids in the Grass-Endophytic Fungus 2 Neotyphodium uncinatum 3 4 Martin J. Spiering*, Christina D. Moon*1, Heather H. Wilkinson† and Christopher L. 5 Schardl* 6 7 *Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546- 8 0312 9 10 †Department of Plant Pathology and Microbiology, Texas A&M University, College 11 Station, Texas 77843-2132 12 13 1Present address: Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, 14 United Kingdom 15 16 Sequence data from this article have been deposited with the GenBank database under 17 accession nos. AY723749, AY723750 and AY724686. 18 2 18 Running title: Loline alkaloid gene clusters 19 20 Key words: alkaloids, biosynthesis genes, pyrrolizidines, RNA-interference, symbiosis 21 22 Corresponding author: Christopher L. Schardl, Department of Plant Pathology, 23 University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, 24 KY 40546-0312, USA. Email [email protected]; Tel 859-257-7445 ext 80730; Fax 859- 25 323-1961 26 3 26 ABSTRACT 27 Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and protect 28 the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium 29 uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline- 30 alkaloid production. Nine genes were identified in a 25-kb region of LOL-1, and 31 designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and 32 lolE-1.
    [Show full text]
  • CHEMICAL PRODUCTS CORPORATION April 20, 2018 Via
    CHEMICAL PRODUCTS CORPORATION CARTERSVILLE, GEORGIA 30120 POST OFFICE BOX 2470 TELEPHONE 770-382-2144 FAX 770-386-6053 April 20, 2018 Via Certified Mail and Electronic Mail ([email protected]) USEPA Headquarters William Jefferson Clinton Federal Building 1200 Pennsylvania Avenue, NW Mail Code: 2821T Washington, DC 20460 Subject: Information Quality Guidelines (IQG) identifier: RFC #17003 Additional Information demonstrating that National Toxicology Program Technical Report 494 should not be the basis for provisional screening values presented in Appendix A of “Provisional Peer-Reviewed Toxicity Values for 9,10- Anthraquinone (CASRN 84-65-1)”, EPA/690/R-11/007F, Final 2-17-2011 or the screening levels for “Anthraquinone, 9,10-” in EPA’s Regional Screening Level Tables Dear Sir or Madam: This letter contains additional information to supplement the Request for Correction submitted by Chemical Products Corporation (CPC) on April 6, 2018, assigned Information Quality Guidelines Identifier RFC #17003. The contents of this letter provide yet another sufficient reason to conclude that the National Toxicology Program (NTP) peer review panel which accepted the conclusions presented in NTP Technical Report 494 (TR-494) were not presented accurate information, thus, the peer review panel was unable to render a sound scientific judgment regarding the conclusions presented in TR-494. The peer review of TR- 494 does not meet the “sound and objective scientific practices” REQUEST FOR CORRECTION SUBMITTED BY CHEMICAL PRODUCTS CORPORATION Additional Information IQG identifier: RFC #17003 Page 2 of 5 April 20, 2018 requirement contained in the EPA Guidelines and should not be accepted by EPA as a valid peer review.
    [Show full text]
  • Solanecio Biafrae: an Underutilized Nutraceutically-Important African
    Pharmacogn. Rev. PLANT REVIEW A multifaceted peer reviewed journal in the field of Pharmacognosy and Natural Products www.phcogrev.com | www.phcog.net Solanecio biafrae: An Underutilized Nutraceutically-Important African Indigenous Vegetable Oluwakemi Adetutu Bello, Opeyemi Isaac Ayanda, Oluwadurotimi Samuel Aworunse, Babafemi Ibukun Olukanmi, Michael Olasunkanmi Soladoye1, Edward Babatunde Esan2, Olawole Odun Obembe Department of Biological Sciences, Covenant University, Canaanland Ota, 2Department of Basic Sciences, Babcock University, Ilishan‑Remo, Ogun State, 1Department of Biological Sciences, Environmental Biology Unit, Augustine University, Ilara Epe, Lagos State, Nigeria ABSTRACT Solanecio biafrae (Olive and Hierne) C. Jeffrey (1986) (Family: Asteraceae), has synonyms Senecio biafrae Olive and Hierne (1877) and Crassocephalum biafrae (Olive and Hierne) S. Moore (1912). It is a perennial standent, underutilized African indigenous medicinal vegetable. It was first reported and published in Flora of Tropical Africa. Its common names varied from Gnanvule in Cote d’Ivoire to Worowo/bologi in Nigeria. It has alternate, simple, succulent, petiolated, and exauriculate leaves. Its propagation is vegetative by rooting of cuttings. However, there is no report on its propagation by seed. It is ubiquitous in cocoa plots in Nigeria, especially southwest; due to deliberate protection for economic revenue, but this has little‑uncoordinated cultivation indication. These deliberately protected few are exposed to contamination by a chemical used for protecting cocoa plants. It is highly nutritive and rich in protein. It is also medicinally important as a galactagogue and for treatment of diabetes, high blood pressure, and infertility. It has biological activity against Staphylococcus aureus and Escherichia coli. It also has traditional and cultural claims for initiation and rituals.
    [Show full text]
  • Hepatic Veno-Occlusive Disease As a Result of a Traditional Remedy: Confirmation of Toxic Pyrrolizidine Alkaloids As the Cause
    676 ORIGINAL ARTICLE J Clin Pathol: first published as 10.1136/jcp.55.9.676 on 1 September 2002. Downloaded from Hepatic veno-occlusive disease as a result of a traditional remedy: confirmation of toxic pyrrolizidine alkaloids as the cause, using an in vitro technique M Zuckerman, V Steenkamp, M J Stewart ............................................................................................................................. J Clin Pathol 2002;55:676–679 See end of article for Background/Aims: A child presented with hepatic veno-occlusive disease after having been adminis- authors’ affiliations tered a short course of treatment with a traditional herbal remedy. The child subsequently died. Post- ....................... mortem liver histology confirmed the diagnosis. This study aimed to investigate the hypothesis that the Correspondence to: herbal remedy was the cause of veno-occlusive disease. Dr M J Stewart, Department Methods: Extracts of the traditional remedy were analysed by colorimetry and gas chromatography/ of Chemical Pathology, mass spectrometry. Cultured hepatocytes were treated with an extract of the plant material and exam- University of the ined for morphological changes. Witwatersrand Medical Results: The screening analyses indicated the presence of toxic pyrrolizidine alkaloids, which were School, 7 York Road, Parktown 2193, Gauteng, later confirmed by gas chromatography/mass spectrometry. The cell studies indicated dose related South Africa; toxicity, with necrosis at high concentrations and apoptosis and abnormalities of the cytoskeleton at [email protected] lower concentrations. Accepted for publication 5 Conclusions: The simple screening techniques used allowed rapid confirmation of the presence of September 2001 toxic pyrrolizidines in the remedy. The in vitro method confirmed the toxicity of herbal extracts to hepa- ......................
    [Show full text]
  • Karakterisasi Simplisia Dan Uji Aktivitas Antioksidan Ekstrak Etanol Daun Sintrong Skripsi Oleh: Putri Wulan Sari Nim 151501074
    KARAKTERISASI SIMPLISIA DAN UJI AKTIVITAS ANTIOKSIDAN EKSTRAK ETANOL DAUN SINTRONG (Crassocephalum crepidioides (Benth.) S. Moore) METODE DPPH (1,1-diphenyl-2-picrylhidrazil) SKRIPSI OLEH: PUTRI WULAN SARI NIM 151501074 PROGRAM STUDI SARJANA FARMASI FAKULTAS FARMASI UNIVERSITAS SUMATERA UTARA MEDAN 2020 UNIVERSITAS SUMATERA UTARA KARAKTERISASI SIMPLISIA DAN UJI AKTIVITAS ANTIOKSIDAN EKSTRAK ETANOL DAUN SINTRONG (Crassocephalum crepidioides (Benth.) S. Moore) METODE DPPH (1,1-diphenyl-2-picrylhidrazil) SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Farmasi pada Fakultas Farmasi Universitas Sumatera Utara OLEH: PUTRI WULAN SARI NIM 151501074 PROGRAM STUDI SARJANA FARMASI FAKULTAS FARMASI UNIVERSITAS SUMATERA UTARA MEDAN 2020 UNIVERSITAS SUMATERA UTARA PENGESAHAN SKRIPSI KARAKTERISASI SIMPLISIA DAN UJI AKTIVITAS ANTIOKSIDAN EKSTRAK ETANOL DAUN SINTRONG (Crassocephalum crepidioides (Benth.) S. Moore) METODE DPPH (1,1-diphenyl-2-picrylhidrazil) OLEH: PUTRI WULAN SARI NIM 151501074 Dipertahankan di Hadapan Penguji Skripsi Fakultas Farmasi Universitas Sumatera Utara pada Tanggal: 03 Maret 2020 Disetujui oleh: Panitia Penguji: Pembimbing, Dra. Suwarti Aris, M.Si., Apt Prof. Dr. Jansen Silalahi, M.App.Sc., Apt. NUP 990100000 NIP 195006071979031001 Dra. Suwarti Aris, M.Si., Apt Ketua Program Studi Sarjana Farmasi, NUP 990100000 Dr. Sumaiyah, M.Si., Apt. Dra. Erly Sitompul, M.Si., Apt. NIP 197712262008122002 NIP 1950066121980032001 Medan, 03 Maret 2020 Disahkan Oleh: Dekan Prof. Dr. Masfria, M.S., Apt. NIP 19570723198601200 UNIVERSITAS SUMATERA UTARA KATA PENGANTAR Puji syukur penulis ucapkan kepada Allah Swt yang telah memberikan karunia yang berlimpah sehingga penulis dapat menyelesaikan skripsi ini dengan judul “Karakterisasi Simplisia Dan Uji Aktivitas Antioksidan Ekstrak Etanol Daun Sintrong (Crassocephalum crepidioides (Benth.) S. Moore) Metode DPPH(1,1-Diphenyl-2-Picrylhidrazil)”.Skripsi ini diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Farmasi di Fakultas Universitas Sumatera Utara.
    [Show full text]
  • Symphytum Officinale) Hairy Roots by Rnai Silencing of Homospermidine Synthase
    Published online: 2019-08-26 Original Papers Reduction of Pyrrolizidine Alkaloid Levels in Comfrey (Symphytum officinale) Hairy Roots by RNAi Silencing of Homospermidine Synthase Authors Lars H. Kruse 1, 3, Thomas Stegemann1, Julia Jensen-Kroll 1, Annika Engelhardt 1, Anne-Maria Wesseling 1, Annemarie Lippert 2, Jutta Ludwig-Müller 2,DietrichOber1 Affiliations ABSTRACT 1 Botanisches Institut, Kiel University, Kiel, Germany Comfrey is a medicinal plant, extracts of which are tradition- 2 Institut für Botanik, Technische Universität Dresden, ally used for the treatment of painful inflammatory muscle Dresden, Germany and joint problems, because the plant contains allantoin and 3 Plant Biology Section, School of Integrative Plant Science, rosmarinic acid. However, its medicinal use is limited because Cornell University, USA of its toxic pyrrolizidine alkaloid (PA) content. PAs encompass more than 400 different compounds that have been identified Key words from various plant lineages. To date, only the first pathway- Symphytum officinale, alkaloid extraction, transgenic tissue specific enzyme, homospermidine synthase (HSS), has been culture, transcript quantification, Boraginaceae characterized. HSS catalyzes the formation of homospermi- dine, which is exclusively incorporated into PAs. HSS has been received May 6, 2019 recruited several times independently in various plant line- revised August 5, 2019 ages during evolution by duplication of the gene encoding de- accepted August 15, 2019 oxyhypusine synthase (DHS), an enzyme of primary metabo- Bibliography lism. Here, we describe the establishment of RNAi knockdown DOI https://doi.org/10.1055/a-0998-5125 hairy root mutants of HSS in Symphytum officinale. A knock- – Published online August 26, 2019 | Planta Med 2019; 85: down of HSS by 60 80% resulted in a significant reduction of 1177–1186 © Georg Thieme Verlag KG Stuttgart · New York | homospermidine by ~ 86% and of the major PA components ‑ ‑ ISSN 0032‑0943 7 acetylintermedine N-oxide and 3 acetylmyoscorpine N-ox- ide by approximately 60%.
    [Show full text]
  • Antioxidative and Chemopreventive Properties of Vernonia Amygdalina and Garcinia Biflavonoid
    Int. J. Environ. Res. Public Health 2011, 8, 2533-2555; doi:10.3390/ijerph8062533 OPEN ACCESS International Journal of Environmental Research and Public Health ISSN 1660-4601 www.mdpi.com/journal/ijerph Review Antioxidative and Chemopreventive Properties of Vernonia amygdalina and Garcinia biflavonoid Ebenezer O. Farombi 1,* and Olatunde Owoeye 2 1 Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria 2 Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mails: [email protected]; [email protected]; Tel.: +234-8023470333; Fax: +234-2-8103043. Received: 27 November 2010; in revised form: 12 January 2011 / Accepted: 13 January 2011 / Published: 23 June 2011 Abstract: Recently, considerable attention has been focused on dietary and medicinal phytochemicals that inhibit, reverse or retard diseases caused by oxidative and inflammatory processes. Vernonia amygdalina is a perennial herb belonging to the Asteraceae family. Extracts of the plant have been used in various folk medicines as remedies against helminthic, protozoal and bacterial infections with scientific support for these claims. Phytochemicals such as saponins and alkaloids, terpenes, steroids, coumarins, flavonoids, phenolic acids, lignans, xanthones, anthraquinones, edotides and sesquiterpenes have been extracted and isolated from Vernonia amygdalina. These compounds elicit various biological effects including cancer chemoprevention. Garcinia kola (Guttiferae) seed, known as ―bitter kola‖, plays an important role in African ethnomedicine and traditional hospitality. It is used locally to treat illnesses like colds, bronchitis, bacterial and viral infections and liver diseases. A number of useful phytochemicals have been isolated from the seed and the most prominent of them is the Garcinia bioflavonoids mixture called kolaviron.
    [Show full text]