Development of a Pollination Service Measurement (PSM) Method Using Potted Plant Phytometry

Total Page:16

File Type:pdf, Size:1020Kb

Development of a Pollination Service Measurement (PSM) Method Using Potted Plant Phytometry See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/261328764 Development of a Pollination Service Measurement (PSM) method using potted plant phytometry Article in Environmental Monitoring and Assessment · April 2014 DOI: 10.1007/s10661-014-3758-x · Source: PubMed CITATIONS READS 4 198 5 authors, including: Thomas Stuart Woodcock Peter Kevan Rare Charitable Research Reserve University of Guelph 30 PUBLICATIONS 194 CITATIONS 338 PUBLICATIONS 6,886 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Dioecy in the High Arctic flora View project All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Peter Kevan letting you access and read them immediately. Retrieved on: 17 October 2016 Environ Monit Assess DOI 10.1007/s10661-014-3758-x Development of a Pollination Service Measurement (PSM) method using potted plant phytometry Thomas S. Woodcock & Laura J. Pekkola & Cara Dawson & Fawziah L. Gadallah & Peter G. Kevan Received: 10 September 2013 /Accepted: 21 March 2014 # Springer International Publishing Switzerland 2014 Abstract The value of pollination to human society is less certain and more labour-intensive methods of polli- not limited to agricultural production, but also in the nator collection and identification, and shows promise for sustainability of ecosystems and the services that they implementation in pollination monitoring and bioassess- provide. Seed set can be used as a comparative measure ment practices. of pollination effectiveness, with minimum variability expected when other resources are not limiting. Six spe- Keywords Sustainability. Ecosystem service . cies of self-incompatible fall asters (Symphyotrichum) Pollinator conservation . Biomonitoring . were used to evaluate pollination service at 12 sites across Symphyotrichum a spectrum of expected levels of pollination. Seed set per inflorescence was generally lower at sites with lower pollinator numbers and diversity, although as expected Introduction pollinator assemblage characteristics were highly variable within and between sites. However, rankings of sites Conservation of native, wild pollinators is critical to showed consistency of response across phytometer spe- ensuring the continued reproductive success and biodi- cies and between years; the summed ranks across multi- versity of the plants on which ecosystem structure and ple species appears to have as the greatest value in function depend (Fontaine et al. 2006; Ollerton et al. Pollination Service Measurement (PSM). Abundance, 2011; Frund et al. 2013). Flowering plants form the richness, and Shannon diversity of pollinator assem- trophic basis of productivity in most terrestrial ecosys- blages were highly autocorrelated and showed variable tems, and the maintenance and sustainability of plant relationships with seed set depending on plant species populations, independent of human intervention, is cru- and temporal scale of pollinator assemblage assessment. cial for the sustainability of the ecosystems themselves. Use of seed set to directly measure pollination service at a Animal pollinators, including but not limited to bees, site was consistent and cost effective when compared to flies, butterflies, beetles, bats, and birds, play a vital role : : : in mediating the sexual reproduction of approximately T. S. Woodcock (*) L. J. Pekkola C. Dawson 85 % of the world's flowering plants, and 78 % in P. G. Kevan temperate regions such as southern Canada (Ollerton Canadian Pollination Initiative (NSERC-CANPOLIN), School of Environmental Sciences, University of Guelph, et al. 2011). While pollination in agricultural systems Guelph, ON N1G 2 W1, Canada is routinely improved through the use of honey bees or e-mail: [email protected] other managed pollinators, similar approaches to polli- nation management in natural ecosystems are neither F. L. Gadallah Information and Indicators Division, Environment Canada, economically nor logistically feasible (Mader et al. 10 Wellington St, Gatineau, QC K1A 0H9, Canada 2010; Kjohl et al. 2011). Whether pollination service is Environ Monit Assess delivered by wild or managed pollinators, or a combi- technical expertise (and therefore incurs lower costs) nation thereof, there is a need for assessment and mon- than surveys of pollinator assemblages. For a plant to itoring of pollination success in both agricultural and be useful as a phytometer for PSM, its seed set must non-agricultural landscape elements. indicate pollination by animal pollinators and no other Historically, bioassessment and biomonitoring means. The plant must therefore be non-apomictic (un- methods have measured some aspect of community able to set seed without pollination), an obligate structure, such as richness, diversity, or abundance outcrosser (dioecious or self-incompatible, unable to (Allan et al. 1997; Townsend et al. 1997; Woodcock pollinate itself), and not wind-pollinated (its pollen must et al. 2008;Lissetal.2013), that acts as a proxy for be transported exclusively by an animal vector). In ecosystem services or processes, or an (often poorly addition, seed set must reflect levels of pollination lim- defined) concept of ecosystem “health” or “integrity.” itation, rather than resource limitation or innate limits to Using the community structure of organisms to infer the numbers of seeds produced. For example, some species rate or quality of the ecosystem processes that they of Asclepias are reliant on insects for pollination but will perform is common, but can have mixed or unpredict- produce very few seeds or fruit per inflorescence regard- able results (Karr 1981; Callicott et al. 1999; Schwartz less of initial pollination success (Wyatt 1976;Neyland et al. 2000; Costanza 2012; Liss et al. 2013). High et al. 1999). labour requirements for field sampling and sample pro- In this study, six species of fall asters cessing, and the requirement for expensive taxonomic (Symphyotrichum) which met the above requirements expertise, are significant drawbacks, and high variability were used as the test species. Plants are grown in pots in in the resulting data makes interpretation difficult and a controlled environment with abundant, standard re- development of appropriate responses difficult. In recent sources. Phytometers are experimental units of plants years, the development of approaches that directly mea- (single species or groups of several species) which are sure ecosystem function has been encouraged, although used to measure characteristics of an ecosystem in an none have been developed explicitly for pollination in a area of interest for a variety of experimental purposes biomonitoring context. Evaluation of plant reproductive (Steffan-Dewenter et al. 2002; Albrecht et al. 2007; success using ambient vegetation or potted plant Sahli and Conner 2007; McKinney and Goodell 2010; phytometers has been used to address a variety of eco- Sperling and Lortie 2010). Phytometers also allow for logical questions related to pollination. For example, replicability in both the environmental growing condi- seed set in crops or ambient vegetation has been used tions and in the plant assemblage used to determine to examine landscape-level pollination service and com- pollination success, allowing results obtained from dif- petition among plants for pollinators (Greenleaf and ferent sites to be directly compared. This study will Kremen 2006;Dauberetal.2010; Trant et al. 2010; assess the utility of the PSM approach by examining Hennig and Ghazoul 2011; Liss et al. 2013). Potted seed set of the six Symphyotrichum species at multiple plants have been used to measure pollen limitation sites in southern Ontario, Canada. Multi-year sampling (Campbell 1985; McKinney and Goodell 2010), effects of pollinator assemblages (of varying intensity) at these of neighbouring blooms on plant reproductive success sites indicates a broad gradient of abundance and diver- (Kunin 1997; Bosch and Waser 2001; Schulke and sity that allows evaluation of a priori expectations using Waser 2001; Spigler and Chang 2009; Lazaro and PSM. Totland 2010), and pollination responses to agricultural practices (Brittain et al. 2010a, b), and other habitat conditions (Steffan-Dewenter et al. 2002;Artzand Materials and methods Waddington 2006; Sperling and Lortie 2010). The Pollination Service Measurement (PSM) system Field sites described here directly measures pollination service at a site by evaluating plant reproductive success (seed set) In 2011, test plants were deployed at five sites, at which in a standard array of potted plants. This approach is pollinator sampling was ongoing as part of other studies. expected to have the advantage of directly measuring The sites covered a wide range of expected pollination the target ecosystem service rather than inferring it from service, based on the history of the sites and information pollinator assemblage data, and requires less time and gleaned from ongoing pollinator sampling (Table 1). Environ Monit Assess Ta b l e 1 Descriptions and expected pollination service (PS; based organic farm sites (CVF-1, 2) was insufficient to make a prediction on long-term observations and/or sampling of the bee and syrphid of pollination service. All pollinator sampling occurred between assemblages) at the 12 study sites. Sampling and knowledge of the May 1 and August 31 Site code Site description and sampling history No. of sampling Expected
Recommended publications
  • The Potential Conservation Value of Unmowed Powerline Strips for Native Bees
    BIOLOGICAL CONSERVATION Biological Conservation 124 (2005) 133–148 www.elsevier.com/locate/biocon The potential conservation value of unmowed powerline strips for native bees K.N. Russell a,*, H. Ikerd b, S. Droege c a Division of Invertebrate Zoology, American Museum of Natural History, Central Park West, 79th Street, New York, NY 10024, USA b Bee Biology and Systematics Laboratory, Utah State University, 5310 Old Main Hill, Logan, UT 84322-5310, USA c USGS Patuxent Wildlife Research Center, 12100 Beech Forest, Laurel, MD 20708-4083, USA Received 17 February 2004 Abstract The land area covered by powerline easements in the United States exceeds the area of almost all national parks, including Yel- lowstone. In parts of Europe and the US, electric companies have altered their land management practices from periodic mowing to extraction of tall vegetation combined with the use of selective herbicides. To investigate whether this alternate management practice might produce higher quality habitat for native bees, we compared the bee fauna collected in unmowed powerline corridors and in nearby mowed grassy fields at the Patuxent Wildlife Research Center (MD). Powerline sites had more spatially and numerically rare species and a richer bee community than the grassy fields, although the difference was less pronounced than we expected. Powerline sites also had more parasitic species and more cavity-nesting bees. Bee communities changed progressively through the season, but differences between the site types were persistent. The surrounding, non-grassland landscape likely has a strong influence on the bee species collected at the grassland sites, as some bees may be foraging in the grasslands but nesting elsewhere.
    [Show full text]
  • Wild Bee Declines and Changes in Plant-Pollinator Networks Over 125 Years Revealed Through Museum Collections
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2018 WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS Minna Mathiasson University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Mathiasson, Minna, "WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS" (2018). Master's Theses and Capstones. 1192. https://scholars.unh.edu/thesis/1192 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS BY MINNA ELIZABETH MATHIASSON BS Botany, University of Maine, 2013 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences: Integrative and Organismal Biology May, 2018 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences: Integrative and Organismal Biology by: Dr. Sandra M. Rehan, Assistant Professor of Biology Dr. Carrie Hall, Assistant Professor of Biology Dr. Janet Sullivan, Adjunct Associate Professor of Biology On April 18, 2018 Original approval signatures are on file with the University of New Hampshire Graduate School.
    [Show full text]
  • Journal of Hymenoptera Research
    c 3 Journal of Hymenoptera Research . .IV 6«** Volume 15, Number 2 October 2006 ISSN #1070-9428 CONTENTS BELOKOBYLSKIJ, S. A. and K. MAETO. A new species of the genus Parachremylus Granger (Hymenoptera: Braconidae), a parasitoid of Conopomorpha lychee pests (Lepidoptera: Gracillariidae) in Thailand 181 GIBSON, G. A. P., M. W. GATES, and G. D. BUNTIN. Parasitoids (Hymenoptera: Chalcidoidea) of the cabbage seedpod weevil (Coleoptera: Curculionidae) in Georgia, USA 187 V. Forest GILES, and J. S. ASCHER. A survey of the bees of the Black Rock Preserve, New York (Hymenoptera: Apoidea) 208 GUMOVSKY, A. V. The biology and morphology of Entedon sylvestris (Hymenoptera: Eulophidae), a larval endoparasitoid of Ceutorhynchus sisymbrii (Coleoptera: Curculionidae) 232 of KULA, R. R., G. ZOLNEROWICH, and C. J. FERGUSON. Phylogenetic analysis Chaenusa sensu lato (Hymenoptera: Braconidae) using mitochondrial NADH 1 dehydrogenase gene sequences 251 QUINTERO A., D. and R. A. CAMBRA T The genus Allotilla Schuster (Hymenoptera: Mutilli- dae): phylogenetic analysis of its relationships, first description of the female and new distribution records 270 RIZZO, M. C. and B. MASSA. Parasitism and sex ratio of the bedeguar gall wasp Diplolqjis 277 rosae (L.) (Hymenoptera: Cynipidae) in Sicily (Italy) VILHELMSEN, L. and L. KROGMANN. Skeletal anatomy of the mesosoma of Palaeomymar anomalum (Blood & Kryger, 1922) (Hymenoptera: Mymarommatidae) 290 WHARTON, R. A. The species of Stenmulopius Fischer (Hymenoptera: Braconidae, Opiinae) and the braconid sternaulus 316 (Continued on back cover) INTERNATIONAL SOCIETY OF HYMENOPTERISTS Organized 1982; Incorporated 1991 OFFICERS FOR 2006 Michael E. Schauff, President James Woolley, President-Elect Michael W. Gates, Secretary Justin O. Schmidt, Treasurer Gavin R.
    [Show full text]
  • Swarth, C. Et Al. the 2007 Jug Bay Bioblitz Reliort. 2008
    2007 Jug Bay BioBlitz Report Christopher Swarth, Lindsay Hollister, Elaine Friebele, Karyn Molines and Susan Matthews Jug Bay Wetlands Sanctuary December 2008 Introduction A BioBlitz is a 24-hour field survey and inventory of organisms in a well-defined area such as a park or other natural area. The objective of this intensive survey is to generate a catalog or list of all species that are identified or collected during the brief survey period. The first BioBlitz in the United States was conducted in 1996 in Washington, DC. Today dozens of BioBlitzes are held annually in the United States (see Wikipedia Encyclopedia; http://en.wikipedia.org/wiki/BioBlitz. A BioBlitz increases local knowledge of biodiversity and involves local naturalists and the public in coordinated fieldwork and observation. The surveys raise the awareness among the general public about the natural world and the importance of biodiversity. The species distribution and occurrence information that is obtained from a BioBlitz also provides resource managers with a deeper understanding of the natural lands under their management, thus enabling improved habitat stewardship. The 2007 Jug Bay BioBlitz took place at the Jug Bay Wetlands Sanctuary over a 24-hour period, from 12:00 (noon) on 15 September to 12:00 on 16 September. We organized this event in order to take advantage of the growing interest in biodiversity by the public and to tap in to the community of active, highly skilled naturalists in the Washington DC/Baltimore area. For this first-time effort we concentrated the field surveys on groups of organisms for which local biogeographical information was poor or incomplete (for example, ants, ground bees, spiders and zooplankton), rather than on the groups for which our knowledge on distribution was relatively thorough such as birds and herps.
    [Show full text]
  • Forage and Habitat for Pollinators in the Northern Great Plains—Implications for U.S
    Prepared in cooperation with the U.S. Department of Agriculture Forage and Habitat for Pollinators in the Northern Great Plains—Implications for U.S. Department of Agriculture Conservation Programs Open-File Report 2020–1037 U.S. Department of the Interior U.S. Geological Survey A B C D E F G H I Cover. A, Bumble bee (Bombus sp.) visiting a locowood flower. Photograph by Stacy Simanonok, U.S. Geological Survey (USGS). B, Honey bee (Apis mellifera) foraging on yellow sweetclover (Melilotus officinalis). Photograph by Sarah Scott, USGS. C, Two researchers working on honey bee colonies in a North Dakota apiary. Photograph by Elyssa McCulloch, USGS. D, Purple prairie clover (Dalea purpurea) against a backdrop of grass. Photograph by Stacy Simanonok, USGS. E, Conservation Reserve Program pollinator habitat in bloom. Photograph by Clint Otto, USGS. F, Prairie onion (Allium stellatum) along the slope of a North Dakota hillside. Photograph by Mary Powley, USGS. G, A researcher assesses a honey bee colony in North Dakota. Photograph by Katie Lee, University of Minnesota. H, Honey bee foraging on alfalfa (Medicago sativa). Photograph by Savannah Adams, USGS. I, Bee resting on woolly paperflower (Psilostrophe tagetina). Photograph by Angela Begosh, Oklahoma State University. Front cover background and back cover, A USGS research transect on a North Dakota Conservation Reserve Program field in full bloom. Photograph by Mary Powley, USGS. Forage and Habitat for Pollinators in the Northern Great Plains—Implications for U.S. Department of Agriculture Conservation Programs By Clint R.V. Otto, Autumn Smart, Robert S. Cornman, Michael Simanonok, and Deborah D. Iwanowicz Prepared in cooperation with the U.S.
    [Show full text]
  • Land Uses That Support Wild Bee (Hymenoptera: Apoidea: Anthophila) Communities Within an Agricultural Matrix
    Land uses that support wild bee (Hymenoptera: Apoidea: Anthophila) communities within an agricultural matrix A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Elaine Celeste Evans IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Dr. Marla Spivak December 2016 © Elaine Evans 2016 Acknowledgements Many people helped me successfully complete this project. Many years ago, my advisor, mentor, hero, and friend, Marla Spivak, saw potential in me and helped me to become an effective scientist and educator working to create a more bee-friendly world. I have benefitted immensely from her guidance and support. The Bee Lab team, both those that helped me directly in the field, and those that advised along the way through analysis and writing, have provided a dreamy workplace: Joel Gardner, Matt Smart, Renata Borba, Katie Lee, Gary Reuter, Becky Masterman, Judy Wu, Ian Lane, Morgan Carr- Markell. My committee helped guide me along the way and steer me in the right direction: Dan Cariveau (gold star for much advice on analysis), Diane Larson, Ralph Holzenthal, and Karen Oberauser. Cooperation with Chip Eullis and Jordan Neau at the USGS enabled detailed land use analysis. The bee taxonomists who helped me with bee identification were essential for the success of this project: Jason Gibbs, John Ascher, Sam Droege, Mike Arduser, and Karen Wright. My friends and family eased my burden with their enthusiasm for me to follow my passion and their understanding of my monomania. My husband Paul Metzger and my son August supported me in uncountable ways.
    [Show full text]
  • Hymenoptera: Apoidea) Habitat in Agroecosystems Morgan Mackert Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Strategies to improve native bee (Hymenoptera: Apoidea) habitat in agroecosystems Morgan Mackert Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Recommended Citation Mackert, Morgan, "Strategies to improve native bee (Hymenoptera: Apoidea) habitat in agroecosystems" (2019). Graduate Theses and Dissertations. 17255. https://lib.dr.iastate.edu/etd/17255 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Strategies to improve native bee (Hymenoptera: Apoidea) habitat in agroecosystems by Morgan Marie Mackert A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Ecology and Evolutionary Biology Program of Study Committee: Mary A. Harris, Co-major Professor John D. Nason, Co-major Professor Robert W. Klaver The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright © Morgan Marie Mackert, 2019. All rights reserved ii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ............................................................................................... iv ABSTRACT ....................................................................................................................... vi CHAPTER 1.
    [Show full text]
  • Landscape Pattern and Wild Bee Communities in Maine Brianne Du Clos University of Maine, [email protected]
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Spring 5-11-2019 Landscape Pattern and Wild Bee Communities in Maine Brianne Du Clos University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Agricultural Education Commons, Agricultural Science Commons, Agronomy and Crop Sciences Commons, Apiculture Commons, Biodiversity Commons, Botany Commons, Entomology Commons, Fruit Science Commons, Integrative Biology Commons, Laboratory and Basic Science Research Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Du Clos, Brianne, "Landscape Pattern and Wild Bee Communities in Maine" (2019). Electronic Theses and Dissertations. 2970. https://digitalcommons.library.umaine.edu/etd/2970 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. LANDSCAPE PATTERN AND WILD BEE COMMUNITIES IN MAINE By Brianne Elizabeth Du Clos B.S. University of Wisconsin-Superior, 2009 M.S. University of Maine, 2012 A DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Ecology and Environmental Sciences) The Graduate School The University of Maine May 2019 Advisory Committee: Cynthia S. Loftin, Unit Leader, U.S. Geological Survey Maine Cooperative Fish and Wildlife Research Unit, Associate Professor of Wildlife Ecology, Co-Advisor Francis A. Drummond, Professor of Insect Ecology, Co-Advisor Dana Marie Bauer, Assistant Director and Research Scientist, George Perkins Marsh Institute, Clark University Alison C.
    [Show full text]
  • A Comparison of Bee Communities Between Primary and Mature Secondary Forests in the Longleaf Pine Ecosystem Michael D
    www.nature.com/scientificreports OPEN A comparison of bee communities between primary and mature secondary forests in the longleaf pine ecosystem Michael D. Ulyshen1*, Scott Pokswinski2 & J. Kevin Hiers2 Much of the once-dominant longleaf pine (Pinus palustris Mill.) ecosystem has been lost from the Coastal Plain of the southeastern United States and only a few scattered remnants of primary forest remain. Despite much interest in understanding and restoring this ecosystem, relatively few studies have attempted to characterize or assess the conservation status of the longleaf bee fauna. The objective of this study was to compare the diversity and composition of bee communities between primary and mature secondary (>100 years old) fre-maintained forests in Georgia and Florida. We used colored pan traps to sample bees at three primary and four secondary locations divided between two regions characterized by sandy (Eglin Air Force Base) or clayey (Red Hills) soils. There were no overall diferences between primary and secondary forests in bee richness, diversity, evenness or abundance. Community composition difered among locations but we found no evidence that primary remnants provide critical habitat to sensitive bee species. Natural habitats play a key role in supporting diverse pollinator populations (i.e., bees, fies, butterfies, etc.) and the conversion of these areas to intensive agriculture has been identifed as one of the major drivers of pollinator declines1,2. Eforts to understand bee diversity in natural habitats and how these organisms are afected by distur- bance history and management decisions are therefore of great interest. Although the value of forests to pollina- tors has received relatively little attention compared to other land use categories, it is clear that forest type, forest age, disturbance history, management practices and other factors can strongly infuence the diversity of bees and other fower-visiting insects3,4.
    [Show full text]
  • Bees of Ohio: a Field Guide
    Bees of Ohio: A Field Guide North American Native Bee Collaborative The Bees of Ohio: A Field Guide (Version 1.1.1 , 5/2020) was developed based on Bees of ​ Maryland: A Field Guide, authored by the North American Native Bee Collaborative ​ Editing and layout for The Bees of Ohio : Amy Schnebelin, with input from MaLisa Spring and Denise Ellsworth. Cover photo by Amy Schnebelin Copyright Public Domain. 2017 by North American Native Bee Collaborative Public Domain. This book is designed to be modified, extracted from, or reproduced in its entirety by any group for any reason. Multiple copies of the same book with slight variations are completely expected and acceptable. Feel free to distribute or sell as you wish. We especially encourage people to create field guides for their region. There is no need to get in touch with the Collaborative, however, we would appreciate hearing of any corrections and suggestions that will help make the identification of bees more accessible and accurate to all people. We also suggest you add our names to the acknowledgments and add yourself and your collaborators. The only thing that will make us mad is if you block the free transfer of this information. The corresponding member of the Collaborative is Sam Droege ([email protected]). ​ ​ First Maryland Edition: 2017 First Ohio Edition: 2020 ISBN None North American Native Bee Collaborative Washington D.C. Where to Download or Order the Maryland version: PDF and original MS Word files can be downloaded from: http://bio2.elmira.edu/fieldbio/handybeemanual.html.
    [Show full text]
  • Fire, Grazing, and Other Drivers of Bee Communities in Remnant Tallgrass Prairie
    The Revery Alone Won’t Do: Fire, Grazing, and Other Drivers of Bee Communities in Remnant Tallgrass Prairie A THESIS SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Patrick Pennarola IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Ralph Holzenthal, adviser April 2019 © Patrick Pennarola, 2019 Acknowledgement: This research was conducted on the colonized homelands of the Anishinaabe, Dakota, and Lakota peoples, who are still here. i Dedication To Anya, for who you are To my child, for whoever you become To Nora, for the courage to see it through ii Table of contents Acknowledgement . .. i Dedication . .. ii List of Tables . .. iv List of Figures . .. v Introduction . .. 1 Bees in decline . .. .1 Tallgrass prairie in Minnesota. .. 5 Bees’ response to management. .. 9 Conclusion . .. .12 Chapter 1: The role of fire and grazing in driving patterns of bee abundance, species richness, and diversity . .. 13 Synopsis. .13 Introduction . .13 Methods . .18 Results. 26 Discussion. 28 Chapter 2: The trait-based responses of bee communities to environmental drivers of tallgrass prairie . .. .51 Synopsis. .51 Introduction . .52 Methods . .57 Results. 68 Discussion. 70 Bibliography . .. 81 Appendix A: Table of species collected . .82 Appendix B: Table of species by traits . .96 iii List of Tables Table 1: Parameters for all linear and generalized-linear mixed-effects models built. 37 Table 2: Wald’s Test χ2 values for terms in generalized linear model of adjusted bee abundance . .38 Table 3: Wald’s Test χ2 values for terms in generalized linear model of Chao 2 estimated species richness . .39 Table 4: F-test values for terms in linear model of Shannon’s H diversity index .
    [Show full text]
  • Historical Changes in Northeastern US Bee Pollinators Related to Shared Ecological Traits Ignasi Bartomeusa,B,1, John S
    Historical changes in northeastern US bee pollinators related to shared ecological traits Ignasi Bartomeusa,b,1, John S. Ascherc,d, Jason Gibbse, Bryan N. Danforthe, David L. Wagnerf, Shannon M. Hedtkee, and Rachael Winfreea,g aDepartment of Entomology, Rutgers University, New Brunswick, NJ 08901; bDepartment of Ecology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden; cDivision of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024-5192; dDepartment of Biological Sciences, Raffles Museum of Biodiversity Research, National University of Singapore, Singapore 117546; eDepartment of Entomology, Cornell University, Ithaca, NY 14853; fDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043; and gDepartment of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901 Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved February 1, 2013 (received for review October 24, 2012) Pollinators such as bees are essential to the functioning of ter- characterized by particularly intensive land use and may not be restrial ecosystems. However, despite concerns about a global representative of changes in the status of bees in other parts of pollinator crisis, long-term data on the status of bee species are the world. Thus, the existence of a widespread crisis in pollinator limited. We present a long-term study of relative rates of change declines, as often portrayed in the media and elsewhere (4), rests for an entire regional bee fauna in the northeastern United States, on data of limited taxonomic or geographic scope. based on >30,000 museum records representing 438 species. Over Environmental change affects species differentially, creating a 140-y period, aggregate native species richness weakly de- “losers” that decline with increased human activity, but also creased, but richness declines were significant only for the genus “winners” that thrive in human-altered environments (14).
    [Show full text]