The Theory of the Grain of Sand Free

Total Page:16

File Type:pdf, Size:1020Kb

The Theory of the Grain of Sand Free FREE THE THEORY OF THE GRAIN OF SAND PDF Francois Schuiten,Benoit Peeters | 128 pages | 10 Jan 2017 | Idea & Design Works | 9781631404894 | English | San Diego, United States The Theory Of The Grain Of Sand : Benoit Peeters : In order to do this, he had to estimate the size of the universe according to the contemporary model, and invent a way to talk about extremely large numbers. First, Archimedes had to invent a system of naming large numbers. Archimedes called the numbers up to 10 8 "first order" and called 10 8 itself the "unit of the second order". This became the "unit of the third order", whose multiples were the third order, and so on. Archimedes continued naming numbers in this way up to a myriad-myriad times the unit of the 10 8 -th order, i. He then constructed the orders of the second period by taking multiples of this unit in a way analogous to the way in which the orders of the first period were constructed. Continuing in this manner, he eventually arrived at the orders of the myriad-myriadth period. The largest number named by Archimedes was the last number in this period, which is. Archimedes' system is reminiscent of a positional numeral system with base 10 8which is remarkable because the ancient Greeks used a very simple system for writing numberswhich employs 27 different letters of the alphabet for the units 1 through 9, the tens 10 through 90 and the hundreds through Archimedes then estimated an upper bound for the number of grains of sand required to fill the Universe. To do this, he used the heliocentric model of Aristarchus of Samos. The original work by Aristarchus has been lost. This work by Archimedes however is one of the few surviving references to his theory, [3] whereby the Sun remains unmoved while the Earth orbits the Sun. In Archimedes's own words:. His [Aristarchus'] hypotheses are that the fixed stars and the Sun remain unmoved, that the Earth revolves about the Sun on the circumference of a circle, the Sun lying in the middle of the orbit, and that the sphere of fixed stars, situated about the same center as the Sun, is so great that the circle in which The Theory of the Grain of Sand supposes the Earth to revolve bears such a proportion to The Theory of the Grain of Sand distance of the fixed stars as the center of the sphere bears to its surface. The reason for the large size of this model is that the Greeks were unable to observe stellar parallax with available techniques, which implies that any parallax is extremely The Theory of the Grain of Sand and so the stars must be placed at great distances from the Earth assuming heliocentrism to be true. According to Archimedes, Aristarchus did not state how far the stars were from the Earth. Archimedes therefore had to make the following assumptions:. This assumption can also be expressed by saying that the stellar parallax caused by the motion of the Earth around its orbit equals the solar parallax caused by motion around the Earth. Put in a ratio:. In order to obtain an upper bound, Archimedes made the following assumptions of their dimensions:. Archimedes then concluded that the diameter of the Universe was no more than 10 14 stadia in modern units, about 2 light yearsand that it would require no more than 10 63 grains of The Theory of the Grain of Sand to fill it. Since volume proceeds as the cube of a linear dimension "For it has been The Theory of the Grain of Sand that spheres The Theory of the Grain of Sand the triplicate ratio to one another of their diameters" then a sphere one dactyl in diameter would contain using our The Theory of the Grain of Sand number system 40 3or 64, poppy seeds. He then claimed without evidence that each poppy seed could contain a myriad 10, grains of sand. Multiplying the two figures together he proposed , as the number of hypothetical grains of sand in a sphere one dactyl in diameter. To make further calculations easier, he rounded up million to one billion, noting only that the first number is smaller than the second, and that therefore the number of grains of sand calculated subsequently will exceed the actual number of grains. Recall that Archimedes's meta-goal with this essay was to show how to calculate with what were previously considered impossibly large numbers, not The Theory of the Grain of Sand to accurately calculate the number of grains of sand in the universe. A Greek stadium had a length of Greek feet, and each foot was 16 dactyls long, so there were 9, dactyls in a stadium. Archimedes rounded this number up to 10, a myriad to make calculations easier, noting again that the resulting number will exceed the actual number of grains of sand. The cube of 10, is a trillion 10 12 ; and multiplying a billion the number of grains of sand in a dactyl-sphere by a trillion number of dactyl-spheres in a stadium-sphere yields 10 21the number of grains of sand in a stadium-sphere. Archimedes had estimated that the Aristarchian Universe was 10 14 stadia in diameter, so there would accordingly be 10 14 3 stadium-spheres in the universe, or 10 Multiplying 10 21 by 10 42 yields 10 63the number of grains of sand in the Aristarchian Universe. Following Archimedes's estimate of a myriad 10, grains of sand in a poppy seed; 64, poppy seeds in a dactyl-sphere; the length of a stadium as 10, dactyls; and accepting 19mm as the width of a dactyl, the diameter of Archimedes's typical sand grain would be Archimedes made some interesting experiments and computations along the way. One experiment was to estimate the angular size of the Sun, as seen from the Earth. Archimedes's method is especially interesting as it takes into account the finite size of the eye's pupil, [6] and therefore may be the first known example of experimentation in psychophysics The Theory of the Grain of Sand, the branch of psychology dealing with the mechanics of human perception, whose development is generally attributed to Hermann von Helmholtz. Another interesting computation accounts for solar parallax and the different distances between the viewer and the Sun, whether viewed from the center of the Earth or The Theory of the Grain of Sand the surface of the Earth at sunrise. This may be the first known computation dealing with solar parallax. There are some, king Gelon, who think that the number of the sand is infinite in multitude; and I mean by the sand not only that which exists about Syracuse and the rest of Sicily but also that which is found in every region whether inhabited or uninhabited. Again there are some who, without regarding it as infinite, yet think that no number has been named which is great enough to exceed its magnitude. And it is clear that they who hold this view, if they imagined a mass made up of sand in other respects as large as the mass of the Earth, including in it all the seas and the hollows of the Earth filled up to a height equal to that of the highest of the mountains, would be many times further still from recognizing that any number could be expressed which exceeded the multitude of the sand so taken. But I will try to show you by means of geometrical proofs, which you will be able to follow, that, of the numbers named by me and given in the work which I sent to The Theory of the Grain of Sand, some exceed not only the number of the mass of sand equal in magnitude to the Earth filled up in the way described, but also that of the mass equal in magnitude to the universe. From Wikipedia, the free encyclopedia. Work by Archimedes. For other uses, see Psammite. Retrieved 17 February Ancient Greek and Hellenistic mathematics Euclidean geometry. Angle trisection Doubling the cube Squaring the circle Problem of Apollonius. Circles of Apollonius Apollonian circles Apollonian gasket Circumscribed circle Commensurability Diophantine equation Doctrine of proportionality Golden ratio Greek numerals Incircle and excircles of a triangle Method of exhaustion Parallel postulate Platonic solid Lune of Hippocrates Quadratrix of Hippias Regular polygon Straightedge and compass construction Triangle center. Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. Apollonius's theorem. Aristarchus's inequality Crossbar theorem Heron's formula Irrational numbers Menelaus's theorem Pappus's area theorem Ptolemy's inequality Ptolemy's table of chords Ptolemy's theorem Spiral of Theodorus. Cyrene Library of Alexandria Platonic Academy. Ancient Greek astronomy Greek numerals Latin translations of the 12th century Neusis construction. Archimedean solid Archimedes's cattle problem Archimedes's principle Archimedes's screw Claw of Archimedes. Hidden categories: Articles with short description Short description matches Wikidata Articles containing Greek-language text Use dmy dates from June Namespaces Article Talk. Views The Theory of the Grain of Sand Edit View history. Help Learn to edit Community portal Recent changes Upload file. Download as PDF Printable version. In Elements Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem The Theory of the Grain of Sand mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon.
Recommended publications
  • A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected]
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Pre-calculus and Trigonometry Mathematics via Primary Historical Sources (TRIUMPHS) Spring 3-2017 A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_precalc Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits oy u. Recommended Citation Otero, Danny, "A Genetic Context for Understanding the Trigonometric Functions" (2017). Pre-calculus and Trigonometry. 1. https://digitalcommons.ursinus.edu/triumphs_precalc/1 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Pre-calculus and Trigonometry by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. A Genetic Context for Understanding the Trigonometric Functions Daniel E. Otero∗ July 22, 2019 Trigonometry is concerned with the measurements of angles about a central point (or of arcs of circles centered at that point) and quantities, geometrical and otherwise, that depend on the sizes of such angles (or the lengths of the corresponding arcs). It is one of those subjects that has become a standard part of the toolbox of every scientist and applied mathematician. It is the goal of this project to impart to students some of the story of where and how its central ideas first emerged, in an attempt to provide context for a modern study of this mathematical theory.
    [Show full text]
  • If 1+1=2 Then the Pythagorean Theorem Holds, Or One More Proof of the Oldest Theorem of Mathematics
    !"#$%"&"!'()**#%"$'+&'%,#'`.#%/)'01"+/P'3$"4#/5"%6'+&'7/9)'0)/#2 Vol. 10 (XXVII) no. 1, 2013 ISSN-L 1841-9267 (Print), ISSN 2285-438X (Online), ISSN 2286-3184 (CD-ROM) If 1+1=2 then the Pythagorean theorem holds, or one more proof of the oldest theorem of mathematics Alexandru HORVATH´ ”Petru Maior” University of Tg. Mures¸, Romania e-mail: [email protected] ABSTRACT The Pythagorean theorem is one of the oldest theorems of mathematics. It gained dur- ing the time a central position and even today it continues to be a source of inspiration. In this note we try to give a proof which is based on a hopefully new approach. Our treatment will be as intuitive as it can be. Keywords: Pythagorean theorem, geometric transformation, Euclidean geometry MSC 2000: 51M04, 51M05, 51N20 One of the oldest theorems of mathematics – the T T Pythagorean theorem – states that the area of the square drawn on the hypotenuse (the side opposite the right angle) of a right angled triangle, is equal to the sum of the areas of the squares constructed on the other two sides, (the catheti). That is, 2 2 2 a + b = c , if we denote the length of the sides of the triangle by a, b, c respectively. Figure 1. The transformation Loomis ([3]) collected several hundreds of different proofs of this theorem, and classified them in categories. Maor ([4]) traces the evolution of the Pythagorean theorem and its impact on mathematics and on our culture in gen- Let us assume T is such a transformation having a as the eral.
    [Show full text]
  • Theorems and Postulates
    Theorems and Postulates JJJG Given AB and a number r between 0 and 180, there Postulate 1-A is exactly one JrayJJG with endpoint A , extending on Protractor Postulate either side of AB , such that the measure of the angle formed is r . ∠A is a right angle if mA∠ is 90. Definition of Right, Acute ∠A is an acute angle if mA∠ is less than 90. and Obtuse Angles ∠A is an obtuse angle if mA∠ is greater than 90 and less than 180. Postulate 1-B If R is in the interior of ∠PQS , then mPQRmRQSmPQS∠ +∠ =∠ . Angle Addition If mP∠+∠=∠QRmRQSmPQS, then R is in the interior of ∠PQS. Vertical angles are congruent. The sum of the measures of the angles in a linear pair is 180˚. The sum of the measures of complementary angles is 90˚. Two points on a line can be paired with real numbers so that, given Postulate 2-A any two points R and S on the line, R corresponds to zero, and S Ruler corresponds to a positive number. Point R could be paired with 0, and S could be paired with 10. R S -2 -1 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10 Postulate 2-B If N is between M and P, then MN + NP = MP. Segment Addition Conversely, if MN + NP = MP, then N is between M and P. Theorem 2-A In a right triangle, the sum of the squares of the measures Pythagorean of the legs equals the square of the measure of the Theorem hypotenuse.
    [Show full text]
  • Configurations on Centers of Bankoff Circles 11
    CONFIGURATIONS ON CENTERS OF BANKOFF CIRCLES ZVONKO CERINˇ Abstract. We study configurations built from centers of Bankoff circles of arbelos erected on sides of a given triangle or on sides of various related triangles. 1. Introduction For points X and Y in the plane and a positive real number λ, let Z be the point on the segment XY such that XZ : ZY = λ and let ζ = ζ(X; Y; λ) be the figure formed by three mj utuallyj j tangenj t semicircles σ, σ1, and σ2 on the same side of segments XY , XZ, and ZY respectively. Let S, S1, S2 be centers of σ, σ1, σ2. Let W denote the intersection of σ with the perpendicular to XY at the point Z. The figure ζ is called the arbelos or the shoemaker's knife (see Fig. 1). σ σ1 σ2 PSfrag replacements X S1 S Z S2 Y XZ Figure 1. The arbelos ζ = ζ(X; Y; λ), where λ = jZY j . j j It has been the subject of studies since Greek times when Archimedes proved the existence of the circles !1 = !1(ζ) and !2 = !2(ζ) of equal radius such that !1 touches σ, σ1, and ZW while !2 touches σ, σ2, and ZW (see Fig. 2). 1991 Mathematics Subject Classification. Primary 51N20, 51M04, Secondary 14A25, 14Q05. Key words and phrases. arbelos, Bankoff circle, triangle, central point, Brocard triangle, homologic. 1 2 ZVONKO CERINˇ σ W !1 σ1 !2 W1 PSfrag replacements W2 σ2 X S1 S Z S2 Y Figure 2. The Archimedean circles !1 and !2 together.
    [Show full text]
  • Kaleidoscopic Symmetries and Self-Similarity of Integral Apollonian Gaskets
    Kaleidoscopic Symmetries and Self-Similarity of Integral Apollonian Gaskets Indubala I Satija Department of Physics, George Mason University , Fairfax, VA 22030, USA (Dated: April 28, 2021) Abstract We describe various kaleidoscopic and self-similar aspects of the integral Apollonian gaskets - fractals consisting of close packing of circles with integer curvatures. Self-similar recursive structure of the whole gasket is shown to be encoded in transformations that forms the modular group SL(2;Z). The asymptotic scalings of curvatures of the circles are given by a special set of quadratic irrationals with continued fraction [n + 1 : 1; n] - that is a set of irrationals with period-2 continued fraction consisting of 1 and another integer n. Belonging to the class n = 2, there exists a nested set of self-similar kaleidoscopic patterns that exhibit three-fold symmetry. Furthermore, the even n hierarchy is found to mimic the recursive structure of the tree that generates all Pythagorean triplets arXiv:2104.13198v1 [math.GM] 21 Apr 2021 1 Integral Apollonian gaskets(IAG)[1] such as those shown in figure (1) consist of close packing of circles of integer curvatures (reciprocal of the radii), where every circle is tangent to three others. These are fractals where the whole gasket is like a kaleidoscope reflected again and again through an infinite collection of curved mirrors that encodes fascinating geometrical and number theoretical concepts[2]. The central themes of this paper are the kaleidoscopic and self-similar recursive properties described within the framework of Mobius¨ transformations that maps circles to circles[3]. FIG. 1: Integral Apollonian gaskets.
    [Show full text]
  • On Dynamical Gaskets Generated by Rational Maps, Kleinian Groups, and Schwarz Reflections
    ON DYNAMICAL GASKETS GENERATED BY RATIONAL MAPS, KLEINIAN GROUPS, AND SCHWARZ REFLECTIONS RUSSELL LODGE, MIKHAIL LYUBICH, SERGEI MERENKOV, AND SABYASACHI MUKHERJEE Abstract. According to the Circle Packing Theorem, any triangulation of the Riemann sphere can be realized as a nerve of a circle packing. Reflections in the dual circles generate a Kleinian group H whose limit set is an Apollonian- like gasket ΛH . We design a surgery that relates H to a rational map g whose Julia set Jg is (non-quasiconformally) homeomorphic to ΛH . We show for a large class of triangulations, however, the groups of quasisymmetries of ΛH and Jg are isomorphic and coincide with the corresponding groups of self- homeomorphisms. Moreover, in the case of H, this group is equal to the group of M¨obiussymmetries of ΛH , which is the semi-direct product of H itself and the group of M¨obiussymmetries of the underlying circle packing. In the case of the tetrahedral triangulation (when ΛH is the classical Apollonian gasket), we give a piecewise affine model for the above actions which is quasiconformally equivalent to g and produces H by a David surgery. We also construct a mating between the group and the map coexisting in the same dynamical plane and show that it can be generated by Schwarz reflections in the deltoid and the inscribed circle. Contents 1. Introduction 2 2. Round Gaskets from Triangulations 4 3. Round Gasket Symmetries 6 4. Nielsen Maps Induced by Reflection Groups 12 5. Topological Surgery: From Nielsen Map to a Branched Covering 16 6. Gasket Julia Sets 18 arXiv:1912.13438v1 [math.DS] 31 Dec 2019 7.
    [Show full text]
  • Read Book Advanced Euclidean Geometry Ebook
    ADVANCED EUCLIDEAN GEOMETRY PDF, EPUB, EBOOK Roger A. Johnson | 336 pages | 30 Nov 2007 | Dover Publications Inc. | 9780486462370 | English | New York, United States Advanced Euclidean Geometry PDF Book As P approaches nearer to A , r passes through all values from one to zero; as P passes through A , and moves toward B, r becomes zero and then passes through all negative values, becoming —1 at the mid-point of AB. Uh-oh, it looks like your Internet Explorer is out of date. In Elements Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. It might also be so named because of the geometrical figure's resemblance to a steep bridge that only a sure-footed donkey could cross. Calculus Real analysis Complex analysis Differential equations Functional analysis Harmonic analysis. This article needs attention from an expert in mathematics. Facebook Twitter. On any line there is one and only one point at infinity. This may be formulated and proved algebraically:. When we have occasion to deal with a geometric quantity that may be regarded as measurable in either of two directions, it is often convenient to regard measurements in one of these directions as positive, the other as negative. Logical questions thus become completely independent of empirical or psychological questions For example, proposition I. This volume serves as an extension of high school-level studies of geometry and algebra, and He was formerly professor of mathematics education and dean of the School of Education at The City College of the City University of New York, where he spent the previous 40 years.
    [Show full text]
  • On the Standard Lengths of Angle Bisectors and the Angle Bisector Theorem
    Global Journal of Advanced Research on Classical and Modern Geometries ISSN: 2284-5569, pp.15-27 ON THE STANDARD LENGTHS OF ANGLE BISECTORS AND THE ANGLE BISECTOR THEOREM G.W INDIKA SHAMEERA AMARASINGHE ABSTRACT. In this paper the author unveils several alternative proofs for the standard lengths of Angle Bisectors and Angle Bisector Theorem in any triangle, along with some new useful derivatives of them. 2010 Mathematical Subject Classification: 97G40 Keywords and phrases: Angle Bisector theorem, Parallel lines, Pythagoras Theorem, Similar triangles. 1. INTRODUCTION In this paper the author introduces alternative proofs for the standard length of An- gle Bisectors and the Angle Bisector Theorem in classical Euclidean Plane Geometry, on a concise elementary format while promoting the significance of them by acquainting some prominent generalized side length ratios within any two distinct triangles existed with some certain correlations of their corresponding angles, as new lemmas. Within this paper 8 new alternative proofs are exposed by the author on the angle bisection, 3 new proofs each for the lengths of the Angle Bisectors by various perspectives with also 5 new proofs for the Angle Bisector Theorem. 1.1. The Standard Length of the Angle Bisector Date: 1 February 2012 . 15 G.W Indika Shameera Amarasinghe The length of the angle bisector of a standard triangle such as AD in figure 1.1 is AD2 = AB · AC − BD · DC, or AD2 = bc 1 − (a2/(b + c)2) according to the standard notation of a triangle as it was initially proved by an extension of the angle bisector up to the circumcircle of the triangle.
    [Show full text]
  • The Stoics and the Practical: a Roman Reply to Aristotle
    DePaul University Via Sapientiae College of Liberal Arts & Social Sciences Theses and Dissertations College of Liberal Arts and Social Sciences 8-2013 The Stoics and the practical: a Roman reply to Aristotle Robin Weiss DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/etd Recommended Citation Weiss, Robin, "The Stoics and the practical: a Roman reply to Aristotle" (2013). College of Liberal Arts & Social Sciences Theses and Dissertations. 143. https://via.library.depaul.edu/etd/143 This Thesis is brought to you for free and open access by the College of Liberal Arts and Social Sciences at Via Sapientiae. It has been accepted for inclusion in College of Liberal Arts & Social Sciences Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. THE STOICS AND THE PRACTICAL: A ROMAN REPLY TO ARISTOTLE A Thesis Presented in Partial Fulfillment of the Degree of Doctor of Philosophy August, 2013 BY Robin Weiss Department of Philosophy College of Liberal Arts and Social Sciences DePaul University Chicago, IL - TABLE OF CONTENTS - Introduction……………………..............................................................................................................p.i Chapter One: Practical Knowledge and its Others Technê and Natural Philosophy…………………………….....……..……………………………….....p. 1 Virtue and technical expertise conflated – subsequently distinguished in Plato – ethical knowledge contrasted with that of nature in
    [Show full text]
  • Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
    Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions.
    [Show full text]
  • Why Mathematical Proof?
    Why Mathematical Proof? Dana S. Scott, FBA, FNAS University Professor Emeritus Carnegie Mellon University Visiting Scholar University of California, Berkeley NOTICE! The author has plagiarized text and graphics from innumerable publications and sites, and he has failed to record attributions! But, as this lecture is intended as an entertainment and is not intended for publication, he regards such copying, therefore, as “fair use”. Keep this quiet, and do please forgive him. A Timeline for Geometry Some Greek Geometers Thales of Miletus (ca. 624 – 548 BC). Pythagoras of Samos (ca. 580 – 500 BC). Plato (428 – 347 BC). Archytas (428 – 347 BC). Theaetetus (ca. 417 – 369 BC). Eudoxus of Cnidus (ca. 408 – 347 BC). Aristotle (384 – 322 BC). Euclid (ca. 325 – ca. 265 BC). Archimedes of Syracuse (ca. 287 – ca. 212 BC). Apollonius of Perga (ca. 262 – ca. 190 BC). Claudius Ptolemaeus (Ptolemy)(ca. 90 AD – ca. 168 AD). Diophantus of Alexandria (ca. 200 – 298 AD). Pappus of Alexandria (ca. 290 – ca. 350 AD). Proclus Lycaeus (412 – 485 AD). There is no Royal Road to Geometry Euclid of Alexandria ca. 325 — ca. 265 BC Euclid taught at Alexandria in the time of Ptolemy I Soter, who reigned over Egypt from 323 to 285 BC. He authored the most successful textbook ever produced — and put his sources into obscurity! Moreover, he made us struggle with proofs ever since. Why Has Euclidean Geometry Been So Successful? • Our naive feeling for space is Euclidean. • Its methods have been very useful. • Euclid also shows us a mysterious connection between (visual) intuition and proof. The Pythagorean Theorem Euclid's Elements: Proposition 47 of Book 1 The Pythagorean Theorem Generalized If it holds for one Three triple, Similar it holds Figures for all.
    [Show full text]
  • SPATIAL STATISTICS of APOLLONIAN GASKETS 1. Introduction Apollonian Gaskets, Named After the Ancient Greek Mathematician, Apollo
    SPATIAL STATISTICS OF APOLLONIAN GASKETS WEIRU CHEN, MO JIAO, CALVIN KESSLER, AMITA MALIK, AND XIN ZHANG Abstract. Apollonian gaskets are formed by repeatedly filling the interstices between four mutually tangent circles with further tangent circles. We experimentally study the nearest neighbor spacing, pair correlation, and electrostatic energy of centers of circles from Apol- lonian gaskets. Even though the centers of these circles are not uniformly distributed in any `ambient' space, after proper normalization, all these statistics seem to exhibit some interesting limiting behaviors. 1. introduction Apollonian gaskets, named after the ancient Greek mathematician, Apollonius of Perga (200 BC), are fractal sets obtained by starting from three mutually tangent circles and iter- atively inscribing new circles in the curvilinear triangular gaps. Over the last decade, there has been a resurgent interest in the study of Apollonian gaskets. Due to its rich mathematical structure, this topic has attracted attention of experts from various fields including number theory, homogeneous dynamics, group theory, and as a consequent, significant results have been obtained. Figure 1. Construction of an Apollonian gasket For example, it has been known since Soddy [23] that there exist Apollonian gaskets with all circles having integer curvatures (reciprocal of radii). This is due to the fact that the curvatures from any four mutually tangent circles satisfy a quadratic equation (see Figure 2). Inspired by [12], [10], and [7], Bourgain and Kontorovich used the circle method to prove a fascinating result that for any primitive integral (integer curvatures with gcd 1) Apollonian gasket, almost every integer in certain congruence classes modulo 24 is a curvature of some circle in the gasket.
    [Show full text]