Highlights Section Reports
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 2019 Uzbekistan Memo to File (MTF) and IEE Amendment for USAID-Funded Agriculture Value Chains (AVC) Programmatic PERSUAP Face
2019 Uzbekistan Memo to File (MTF) and IEE Amendment for USAID-funded Agriculture Value Chains (AVC) Programmatic PERSUAP Face Sheet MTF Information TO: Will Gibson, BEO THROUGH: Nina Kavetskaya, MEO Andrei Barannik, REA CC: MEO Tracking FROM: Bahtiyor Mirzabaev, COR SUBJECT: 2019 Uzbekistan P-PERSUAP analysis of all 2018 Uzbekistan-registered pesticides and use sectors for current EPA active registration and restriction data. Also, this study includes new sectors, crops, pests, diseases, weeds updates and new preventive IPM information for each. ISSUE FOR DECISION: You are requested to approve the new 2019 Uzbekistan P-PERSUAP, which analyzes all 2018 Uzbek registered pesticides, and adds links to MSDSs for “same or similar” pesticide products. IEE Amendment and P-PERSUAP Face Sheet Information PROGRAM/ACTIVITY DATA Activity Location:/Country Code Uzbekistan/Central Asia Activity Name: All USAID/CA/Uzbekistan programs Activity Number: Multiple Life-of-Activity Funding: $17,039,595 (Agricultural Value Chains, AVC) Period Covered: Present date to 2020 IEE and PERSUAP Prepared by: Alan Schroeder, PhD, MBA; Sunnat Jalolov, MSc Funding Period: FY2015 - 2020 IEE Amendments (Y/N): YES – amends Asia 15-047 and all current USAID/CA and USAID/CA/Uzbekistan IEEs covering activities with potential pesticide use in Uzbekistan Dates P-PERSUAP Prepared, Reviewed and Edited: April to December 2018 1 SUMMARY This Initial Environmental Examination (IEE) for the 2019 USAID/CA/Uzbekistan Programmatic Pesticide Evaluation Report Safer Use Action Plan (PERSUAP) addresses the requirements of 22 CFR 216.3(b) (“Pesticide Procedures”) regarding the assistance in procurement or use or both, without restriction, of pesticides on all USAID/CA/Uzbekistan programs. -
Coleoptera: Chrysomelidae: Alticinae) of the Fauna of Latvia
Acta Zoologica Lituanica, 2009, Volumen 19, Numerus 2 DOI: 10.2478/v10043-009-0011-x ISSN 1648-6919 TO THE KNOWLEDGE OF FLEA BEETLES (COLEOPTERA: CHRYSOMELIDAE: ALTICINAE) OF THE FAUNA OF LATVIA. 3. GENERA NEOCREPIDODERA HEIKERTINGER, 1911 AND CREPIDODERA CHEVROLAT, 1836 Andris BUKEJS Institute of Systematic Biology, Daugavpils University, Vienības 13, Daugavpils, LV-5401, Latvia. E-mail: [email protected] Abstract. Faunal data on four species of the genus Neocrepidodera Heikertinger, 1911 and on five spe- cies of the genus Crepidodera Chevrolat, 1836 are presented. A total of 806 specimens of these genera have been processed. The bibliographic information on these flea beetle genera in Latvia is summarised for the first time. One species, Crepidodera lamina (Bedel, 1901), is deleted from the list of Latvian Coleoptera. The annotated list of Latvian species is given, including five species of Neocrepidodera Heikertinger, 1911 and five species of Crepidodera Chevrolat, 1836. Key words: Coleoptera, Chrysomelidae, Alticinae, Neocrepidodera, Crepidodera, fauna, Latvia INTRODUCT I ON and Pūtele 1976; Rūtenberga 1992; Barševskis 1993, 1997; Bukejs and Telnov 2007. The most recent lists of This publication continues our study on flea beetles of Latvian Neocrepidodera and Crepidodera can be found the Latvian fauna (Bukejs 2008b, c). in the published catalogues of Latvian Coleoptera by There are 48 species and subspecies of the genus Neo- Telnov et al. (1997) and Telnov (2004), respectively. crepidodera Heikertinger, 1911 and 17 species of the The imagoes of Crepidodera feed on leaves of Salix genus Crepidodera Chevrolat, 1836 known in the Pa- and Populus. The larvae of Crepidodera aurata (Mar- laearctic region (Gruev & Döberl 1997). -
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus. -
Introducción General 1
UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Estudio de la diversidad de insectos asociados a las principales plagas de Eucalyptus spp., para la selección de potenciales agentes de control biológico Tesis presentada para optar al título de Doctora de la Universidad de Buenos Aires en el área Ciencias Biológicas. Eliana Marina Cuello Directores de Tesis: Dra. Silvia N. López Dr. Eduardo N. Botto Consejera de Estudios: Dra. María Busch Lugar de trabajo: Insectario de Investigaciones para la Lucha Biológica, Instituto de Microbiología y Zoología Agrícola, INTA, Castelar. Fecha de defensa: 15 de marzo de 2019 1 Estudio de la diversidad de insectos asociados a las plagas principales de Eucalyptus spp., para la selección de potenciales agentes de control biológico Resumen Las plagas de eucaliptos más importantes en la Argentina son Glycaspis brimblecombei, Thaumastocoris peregrinus y Leptocybe invasa, todas ellas de reciente aparición en nuestro país. El abordaje más efectivo al problema de las plagas forestales es el manejo integrado, que combina diferentes tácticas entre las que se incluye el control biológico. El objetivo de esta tesis fue estudiar la diversidad de insectos asociados a Eucalyptus spp., con énfasis en las asociaciones tróficas que vinculan a G. brimblecombei y T. peregrinus con sus enemigos naturales (parasitoides/predadores), con el fin de identificar potenciales agentes para su control biológico. Se investigaron las variaciones en la abundancia de G. brimblecombei, T. peregrinus y L. invasa y la influencia de las variables meteorológicas en diferentes especies de eucaliptos. Se analizó la diversidad de insectos entomófagos y sus interacciones con G. brimblecombei y T. -
Willi Orchids
growers of distinctively better plants. Nunured and cared for by hand, each plant is well bred and well fed in our nutrient rich soil- a special blend that makes your garden a healthier, happier, more beautiful place. Look for the Monrovia label at your favorite garden center. For the location nearest you, call toll free l-888-Plant It! From our growing fields to your garden, We care for your plants. ~ MONROVIA~ HORTICULTURAL CRAFTSMEN SINCE 1926 Look for the Monrovia label, call toll free 1-888-Plant It! co n t e n t s Volume 77, Number 3 May/June 1998 DEPARTMENTS Commentary 4 Wild Orchids 28 by Paul Martin Brown Members' Forum 5 A penonal tour ofplaces in N01,th America where Gaura lindheimeri, Victorian illustrators. these native beauties can be seen in the wild. News from AHS 7 Washington, D . C. flower show, book awards. From Boon to Bane 37 by Charles E. Williams Focus 10 Brought over f01' their beautiful flowers and colorful America)s roadside plantings. berries, Eurasian bush honeysuckles have adapted all Offshoots 16 too well to their adopted American homeland. Memories ofgardens past. Mock Oranges 41 Gardeners Information Service 17 by Terry Schwartz Magnolias from seeds, woodies that like wet feet. Classic fragrance and the ongoing development of nell? Mail-Order Explorer 18 cultivars make these old favorites worthy of considera Roslyn)s rhodies and more. tion in today)s gardens. Urban Gardener 20 The Melting Plot: Part II 44 Trial and error in that Toddlin) Town. by Susan Davis Price The influences of African, Asian, and Italian immi Plants and Your Health 24 grants a1'e reflected in the plants and designs found in H eading off headaches with herbs. -
1. Padil Species Factsheet Scientific Name: Common Name Image
1. PaDIL Species Factsheet Scientific Name: Neotoxoptera formosana (Takahashi, 1921) (Hemiptera: Aphididae: Aphidinae: Macrosiphini) Common Name Onion Aphid Live link: http://www.padil.gov.au/maf-border/Pest/Main/141145 Image Library New Zealand Biosecurity Live link: http://www.padil.gov.au/maf-border/ Partners for New Zealand Biosecurity image library Landcare Research — Manaaki Whenua http://www.landcareresearch.co.nz/ MPI (Ministry for Primary Industries) http://www.biosecurity.govt.nz/ 2. Species Information 2.1. Details Specimen Contact: MAF Plant Health & Environment Laboratory - [email protected] Author: MAF Plant Health & Environment Laboratory Citation: MAF Plant Health & Environment Laboratory (2011) Onion Aphid(Neotoxoptera formosana)Updated on 4/15/2014 Available online: PaDIL - http://www.padil.gov.au Image Use: Free for use under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY- NC 4.0) 2.2. URL Live link: http://www.padil.gov.au/maf-border/Pest/Main/141145 2.3. Facets Commodity Overview: Horticulture Commodity Type: Garlic & Onions Groups: Bugs Status: NZ - Exotic Pest Status: 0 Unknown Distribution: 0 Unknown Host Family: 0 Unknown 2.4. Other Names Fullawayella formosana Takahashi, 1921 Homoptera Micromyzus formosanus (Takahashi, 1921) 2.5. Diagnostic Notes **Adult** **Apterous Viviparous**: Body 1.6-2.3 mm long, shining magenta red to almost black, with antennae black basally and distally. Inner face of antennal tubercles approximately parallel in dorsal view, or only slightly converging apically; antennal segments I and II and distal parts of femora black. Minimum diameter of stem"" of siphunculus greater than diameter of hind tibia at its midpoint; alata with black-bordered wing-veins. -
(Orchidaceae). Plant Syst
J. Orchid Soc. India, 30: 1-10, 2016 ISSN 0971-5371 DEVELOPMENT OF MALLLEEE AND FEMALLLE GAMETOPHYTES IN HABENARIA OVVVALIFOLIA WIGHT (ORCHIDAAACCCEEEAAAE) M R GURUDEVAAA Department of Botany, Visveswarapura College of Science, K.R. Road, Bengaluru - 560 004, Karnataka, India Abstract The anther in Habenaria ovalifolia Wight was dithecous and tetrasporangiate. Its wall development confirmed to the monocotyledonous type. Each archesporial cell developed into a block of sporogenous cells and finally organized into pollen massulae. The anther wall was 4-5 layered. The endothecial cells developed ring-like tangential thickening on their inner walls. Tapetal cells were uninucleate and showed dual origin. The microspore tetrads were linear, tetrahedral, decussate and isobilateral. The pollens were shed at 2-celled stage. The ovules were anatropous, bitegmic and tenuinucellate. The inner integument alone formed the micropyle. The development of embryo sac was monosporic and G-1a type. The mature embryo sac contained an egg apparatus, secondary nucleus and three antipodal cells. Double fertilization occurred normally. Introduction species. THE ORCHIDACEAE, one of the largest families of Materials and Methods angiosperms is the most evolved amongst the Habenaria ovalifolia Wight is a terrestrial herb with monocotyledons. The orchid embryology is interesting, ellipsoidal underground tubers. There are about 4-6 as these plants exhibit great diversity in the oblong or obovate, acute, entire leaves cluster below development of male and female gametophyte. The the middle of the stem (Fig. 1). The inflorescence is a first embryological study in the family was made by many flowered raceme. The flowers are green, Muller in 1847. Since then several investigations have bracteate and pedicellate (Fig. -
Taxonomic Studies of Louisiana Aphids. Henry Bruce Boudreaux Louisiana State University and Agricultural & Mechanical College
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1947 Taxonomic Studies of Louisiana Aphids. Henry Bruce Boudreaux Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Part of the Life Sciences Commons Recommended Citation Boudreaux, Henry Bruce, "Taxonomic Studies of Louisiana Aphids." (1947). LSU Historical Dissertations and Theses. 7904. https://digitalcommons.lsu.edu/gradschool_disstheses/7904 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. MANUSCRIPT THESES Unpublished theses submitted for the master*s and doctor*s degrees and deposited in the Louisiana State University Library are available for inspection. Use of any thesis is limited by the rights of the author# Bibliographical references may be noted* but passages may not be copied unless the author has given permission# Credit must be given in subsequent written or published work# A library which borrows this thesis for use by its clientele i3 expected to make sure that the borrower is aware of the above res tr ic t ions # LOUISIANA STATE UNIVERSITY LIBRARY TAXONOMIC STUDIES OF LOUISIANA APHIDS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College In partial fulfillment of the requirements for the degree of Doctor of Philosophy In The Department of Zoology, Physiology and Entomology by Henry Bruce Boudreaux B»S», Southwestern Louisiana Institute, 1936 M.S*, Louisiana State University, 1939 August, 19h6 UMI Number: DP69282 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. -
Homestead Gardens Snow Cone Candytuft
Davidsonville MD & Severna Park MD | HomesteadGardens.com Snow Cone™ Candytuft Iberis sempervirens 'Snow Cone' Height: 6 inches Spread: 15 inches Spacing: 12 inches Sunlight: Hardiness Zone: 2b Description: This variety is a compact, trouble free edger for rock gardens, slopes, or sunny pathways; features a froth of pure white flowers in spring, and very fine evergreen foliage for the rest of the year: benefits from good snow cover; a dramatic mass planting Snow Cone Candytuft flowers Photo courtesy of NetPS Plant Finder Ornamental Features Snow Cone Candytuft is smothered in stunning white flowers at the ends of the stems from early to late spring. Its narrow leaves remain green in color throughout the year. The fruit is not ornamentally significant. Landscape Attributes Snow Cone Candytuft is an herbaceous evergreen perennial with a ground-hugging habit of growth. It brings an extremely fine and delicate texture to the garden composition and should be used to full effect. This is a relatively low maintenance plant, and should only be pruned after flowering to avoid removing any of the current season's flowers. It has no significant negative characteristics. Snow Cone Candytuft is recommended for the following landscape applications; - Mass Planting - Rock/Alpine Gardens - Border Edging - General Garden Use - Groundcover Davidsonville MD & Severna Park MD | HomesteadGardens.com Planting & Growing Snow Cone Candytuft will grow to be only 6 inches tall at maturity, with a spread of 15 inches. When grown in masses or used as a bedding plant, individual plants should be spaced approximately 12 inches apart. Its foliage tends to remain low and dense right to the ground. -
Insects for Weed Control: Status in North Dakota
Insects for Weed Control: Status in North Dakota E. U. Balsbaugh, Jr. Associate Professor, Department of Entomology R. D. Frye Professor, Department of Entomology C. G. Scholl Plant Protection Specialist, North Dakota State Department of Agriculture A. W. Anderson Associate Professor, Department of Entomology Two foreign species of weevils have been introduced into North Dakota for the biological control of musk thistle, Carduus nutans L. - Rhinocyllus conicus (Froelich), a seed feeding weevH, and Ceutorrhynchidius horridus (Panzer), an internal root and lower stem inhabiting species. R. conicus has survived for several generations and is showing some promise for thistle suppression in Walsh County, but releases of C. hor ridus have been unsuccessful. The pigweed nea beetle, Disonycha glabrata (Fab.), which is native in southern United States, has been introduced into experimental sugarbeet plots in the Red River Valley for testing its effects at controlling rough pigweed or redroot, Amaranthus retroflexus L. Although both larvae and adults of these beetles feed heavily on pigweed, damage to the weed occurs too late in the season for them to be effective in suppressing weed growth or seed set. An initial survey for native insects of bindweed has been conducted. Feeding by localized populations of various insects, particularly tortoise beetles, has been observed. Several foreign species of nea beetles and a stem boring beetle are anticipated for release against leafy spurge. Entomologists at North Dakota State University are successful. In 1940, the cactus-feeding moth, Cac studying insects that feed on weeds to determine if the toblastis cactorum (Berg), was transported from its insects can reduce populations of selected weeds to native Argentina to Australia where it greatly reduced levels at which the weeds no longer are economically im the numbers of prickly pear cactus, Opuntia spp. -
Alsip Home and Nursery Nana Candytuft
Nana Candytuft* Iberis sempervirens 'Nana' Height: 8 inches Spread: 18 inches Spacing: 14 inches Sunlight: Hardiness Zone: 3 Nana Candytuft in bloom Ornamental Features Photo courtesy of NetPS Plant Finder Nana Candytuft is smothered in stunning white flowers at the ends of the stems from mid to late spring. Its narrow leaves remain green in color throughout the year. The fruit is not ornamentally significant. Landscape Attributes Nana Candytuft is an herbaceous evergreen perennial with a mounded form. It brings an extremely fine and delicate texture to the garden composition and should be used to full effect. This is a relatively low maintenance plant, and should only be pruned after flowering to avoid removing any of the current season's flowers. It has no significant negative characteristics. Nana Candytuft is recommended for the following landscape applications; - Mass Planting - Rock/Alpine Gardens - Border Edging - General Garden Use - Groundcover Planting & Growing Nana Candytuft will grow to be about 8 inches tall at maturity, with a spread of 18 inches. When grown in masses or used as a bedding plant, individual plants should be spaced approximately 14 inches apart. Its foliage tends to remain low and dense right to the ground. It grows at a medium rate, and under ideal conditions can be expected to live for approximately 10 years. This plant does best in full sun to partial shade. It is very adaptable to both dry and moist growing conditions, but will not tolerate any standing water. It is not particular as to soil type or pH. It is highly tolerant of urban pollution and will even thrive in inner city environments.