Tapir Anatomy 2

Total Page:16

File Type:pdf, Size:1020Kb

Tapir Anatomy 2 PHOTOS CREDIT COVER Antwerp Zoo Bill Konstant Byron Jorjorian Daniel Zupanc Diego Lizcano Luciano Candisani Patrícia Medici Tapei Zoo Graphic Design: Clodoaldo L. Zafatoski +55 41 9672 2898 [email protected] i EDITORS Viviana Quse DVM MSc Facultad de Ciencias Veterinarias de Esperanza, Universidad Nacional del Litoral, Argentina Coordinator, Veterinary Committee, IUCN/SSC/Tapir Specialist Group (TSG) Coordinator, Zoo Committee, IUCN/SSC/Tapir Specialist Group (TSG) E-mail: [email protected] Renata Carolina Fernandes-Santos DVM MSc Veterinarian, Lowland Tapir Conservation Initiative, IPÊ - Instituto de Pesquisas Ecológicas, Brazil Member, IUCN/SSC/Tapir Specialist Group (TSG) Researcher, TRÍADE -Brazilian Institute for Conservation Medicine, Brazil E-mail: [email protected] ii AUTHORS Benoit de Thoisy DVM PhD Kwata Association, French Guiana Coordinator, Guiana Shield, IUCN/SSC Tapir Specialist Group (TSG) [email protected] BudhanPukazhenthi DVM Smithsonian Institute, USA Member, IUCN/SSC Tapir Specialist Group (TSG) Member, IUCN/SSC Wildlife Health Specialist Group (WHSG) [email protected] Donald L. Janssen DVM Dipl ACZM Corporate Director, Animal Health San Diego Zoo Global, USA Member, IUCN/SSC Tapir Specialist Group (TSG) [email protected] Iván Lira Torres DVM MSc Instituto de Ciencias Agropecuarias, Mexico Member, IUCN/SSC Tapir Specialist Group (TSG) [email protected] iii Joares A. May Jr Ralph Eric Thijl Vanstreels DVM MSc DVM PhD Pró-Carnívoros Institute, Brazil University of São Paulo (USP), Brazil [email protected] [email protected] Patrícia Medici Renata Carolina Fernandes-Santos MSc PhD DVM MSc Lowland Tapir Conservation Initiative Lowland Tapir Conservation Initiative IPÊ - Instituto de Pesquisas Ecológicas, Brazil IPÊ - Instituto de Pesquisas Ecológicas, Brazil Chair, IUCN/SSC Tapir Specialist Group (TSG) Member, IUCN/SSC/Tapir Specialist Group (TSG) [email protected] TRÍADE - Brazilian Institute for Conservation Medicine, Brazil Paulo Rogerio Mangini [email protected] DVM MSc PhD TRÍADE - Brazilian Institute for Conservation Sonia Hernández-Divers Medicine, Brazil DVM PhDDipl ACZM Vida Livre Medicina de Animais Selvagens College of Veterinary Medicine, University of Georgia, Member, IUCN/SSC Tapir Specialist Group (TSG) USA Member, IUCN/SSCPeccary Specialist Group (PSG) Member, IUCN/SSC Tapir Specialist Group (TSG) Member, IUCN/SSC Wildlife Health Specialist Group [email protected] (WHSG) [email protected] Viviana Quse DVM MSc Pilar Alexander Blanco Marquez Facultad de Ciencias Veterinarias de Esperanza, DVM Universidad Nacional del Litoral, Argentina Earthmatters.org, Venezuela Coordinator, Veterinary Committee, IUCN/SSC/Tapir [email protected] Specialist Group (TSG) Coordinator, Zoo Committee, IUCN/SSC/Tapir Specialist Group (TSG) [email protected] iv COLLABORATORS André Luiz Quagliatto Santos Daniela Cristina Silva Borges Joaquin Fernando Sanchez Peña PhD MSc Profesional de Apoyo en Biodiversidad Laboratório de Pesquisas em Animais Silvestres, Laboratório de Pesquisas em Animais Silvestres, Proyecto Corredor Biológico PNN Puracé - Faculdade de Medicina Veterinária, UFU - Faculdade de Medicina Veterinária, UFU - Guácharos, Colombia Universidade Federal de Uberlândia, Brazil Universidade Federal de Uberlândia, Brazil [email protected] [email protected] [email protected] Marcelo Schiavo Caio Filipe da Motta Lima Dorothée Ordonneau DVM, Brazil DVM MSc DVM [email protected] São Paulo Zoo, Brazil Lowland Tapir EEP [email protected] Vet advisor. CERZA Zoo, France Maria Fernanda Naegeli Gondim [email protected]; [email protected] DVM MSc Carl Traeholt IMD - Instituto Marcos Daniel PhD Programme Director, SE Asia Conservation Edna Fernanda Jimenez Salazar Pró-Tapir: Monitoramento e Proteção das Antas da Programme, Copenhagen Zoo, Denmark DVM Mata Atlântica Capixaba Malayan Tapir Coordinator, IUCN/SSC Tapir Centro de Urgencias y Atencion de Fauna Silvestre Specialist Group (TSG) Corporacion Autonoma Regional del Alto Magdalena TRÍADE - Brazilian Institute for Conservation Member, IUCN Sustainable Use and Livelihoods - CAM - Neiva, Colombia Medicine Specialist Group (SULi) [email protected]; [email protected] [email protected] [email protected] Georgina O'Farrill Mauro Sanvicente López Carlos Sanchez PhD DMV DVM MSc Coordinator Mexico, University of Toronto, Canada Estudiante de Doctorado en Ciencias Senior Associate Veterinarian, Fort Worth Zoo, USA Member, IUCN/SSC Tapir Specialist Group (TSG) Colegio de Postgraduados, Puebla, Mexico [email protected] [email protected] [email protected] v Saulo Gonçalves Pereira MSc Laboratório de Pesquisas em Animais Silvestres, Faculdade de Medicina Veterinária, UFU - Universidade Federal de Uberlândia, Brazil [email protected] Zainal Zahari Zainuddin DMV Malaysian Dep. of Wildlife and National Parks [email protected] vi Quse V & Fernandes-Santos RC (Eds). 2014. Tapir Veterinary Manual. 2ndEdition. IUCN/SSC Tapir Specialist Group (TSG). 155p. vii TABLE OF CONTENTS FIGURES Figure 1 - Information that should be compiled and considered for tapir health studies.........................................................................................13 Figure 2 - Conservation Medicine / One Health approach.....................15 Figure 3 - A) Hindfeet (three digits); B) Forefoot (four digits); C) Tapir footprints on sand...................................................................................25 Figure 4 – Hip bone Tapirus terrestris....................................................26 Figure 5 – Femur of Tapirus terrestris....................................................26 Figure 6 – Patella Tapirus terrestris.......................................................27 Figure 7 – Coxae muscles of Tapirus terrestris......................................27 Figure 8 - Hip bone Tapirus terrestris. Origins of the coxae muscles....27 Figure 9 – Femur Tapirus terrestris. Origins (blue) and insertions (purple) of the coxae muscles................................................................28 Figure 10 - Patella, tibia and fibula Tapirus terrestris. Insertions of the muscles of the coxae..............................................................................28 Figure 11 – Tbia and fibula bones of Tapirus Terrestris.........................29 Figure 12 – Foot bones of Tapirus Terrestris.........................................29 Figure 13 – Muscles of the leg and foot Tapirus Terrestris....................30 Figure 14 – Femur bone T. terrestris, vista caudal................................30 viii Figure 15 – Tibia e fibulae of Tapirus Terrestris.....................................31 Figure 29 – Scapula of T. terrestris........................................................38 Figure 16 – Foot bones of Tapirus Terrestris. Insertions of the muscles of Figure 30 – Humerus of T. terrestris......................................................38 the leg and foot.......................................................................................31 Figure 31 – Musculus do cingulate of scapula of arms de T. terrestris, Figure 17 – Forearm musculature of T. terrestris , side view.................32 lateral and medial sides, respectively.....................................................39 Figure 18 – Hand muscles of T. terrestris , dorsolateral view................32 Figure 32 – Fixing points of the scapular girdle and arm muscles Tapirus terrestris. Yellow: point of muscle insertion. Blue: point of Figure 19 – Hand muscles of T. terrestris medialis palmar view............33 muscular origin.......................................................................................39 Figure 20 – Muscles of the forearm T. terrestris, medial view................33 Figure 33 - Lowland tapir. Newborn coat...............................................40 Figure 21 - Radiological image of the hand of T. terrestris, dorsal Figure 34 - Lowland tapir. Adult coat.....................................................40 view ........................................................................................................34 Figure 35 - Anesthetic dart shooting from the ground............................45 Figure 22 – Attachment points of the forearm and hand muscles Tapirus terrestris. Yellow: point of muscle insertion. Blue: point of muscular Figure 36 - Pitfall traps building............................................................47 origin.......................................................................................................34 Figure 37 - Anesthesia administration and manipulation of a lowland Figure 23 – Humerus , cranial face........................................................35 tapir inside a pitfall trap...........................................................................48 Figure 24 – Radius and ulna bones of T. terrestris medial view.............35 Figure 38 - Tapir being caught in a box trap..........................................50 Figure 25 – Radius and ulna bones of T. terrestris , side view...............36 Figure 39 - Intramuscular administration of anesthetic agents in lowland tapir.........................................................................................................54 Figure 26 – Carpal bones and metacarpal of T. terrestris, dorsal view. .......................................................................................................36 Figure 40 - Induction: lowland tapir
Recommended publications
  • The Ancients' One-Horned
    The Ancients’ One-Horned Ass: Accuracy and Consistency Chris Lavers HIS PAPER explores ancient Greek and Roman accounts of the one-horned ass.1 These narratives have been studied extensively by literary scholars and historians but have Tbeen largely ignored by zoologists and geographers. When the zoological and geographical underpinnings of the accounts are examined, however, it becomes apparent that these ancient writers may have had a more definite notion of the region about which they wrote than hitherto has been assumed. The animals contributing to the descriptions of the one-horned ass by Ctesias, Pliny, and Aelian can be found in the highlands of Central Asia. Indeed, Central Asia appears to be the only place on the Earth’s surface that could have given rise to the corpus of ancient accounts of the unicorned ass and the animals that shared its landscape. 1. Introduction Ctesias of Cnidus was a Greek physician who spent seventeen years ministering at the court of the King of Persia. In 398 B.C. he returned to Greece and began two reference works, a history of Persia in twenty-three volumes, now mostly lost, and Indica, a treatise on the region probably roughly coincident with 1 It will quickly become apparent to regular readers of this journal that the author is not a classicist. I am greatly indebted to Kent Rigsby, the editorial board of GRBS, and an anonymous reviewer for considering a manuscript from a zoologist, and for their kind assistance in turning a clumsy initial submission into the present, less clumsy version. All opinions and errors are mine.
    [Show full text]
  • An Act Prohibiting the Import, Sale and Possession of African Elephants, Lions, Leopards, Black Rhinoceros, White Rhinoceros and Giraffes
    Substitute Senate Bill No. 925 Public Act No. 21-52 AN ACT PROHIBITING THE IMPORT, SALE AND POSSESSION OF AFRICAN ELEPHANTS, LIONS, LEOPARDS, BLACK RHINOCEROS, WHITE RHINOCEROS AND GIRAFFES. Be it enacted by the Senate and House of Representatives in General Assembly convened: Section 1. (NEW) (Effective October 1, 2021) (a) For purposes of this section, "big six African species" means any specimen of any of the following members of the animal kingdom: African elephant (loxodonta africana), African lion (panthera leo), African leopard (panthera pardus pardus), black rhinoceros (diceros bicornis), white rhinoceros (ceratotherium simum cottoni) and African giraffe (giraffa camelopardalis), including any part, product or offspring thereof, or the dead body or parts thereof, except fossils, whether or not it is included in a manufactured product or in a food product. (b) No person shall import, possess, sell, offer for sale or transport in this state any big six African species. (c) Any law enforcement officer shall have authority to enforce the provisions of this section and, whenever necessary, to execute any warrant to search for and seize any big six African species imported, possessed, sold, offered for sale or transported in violation of this section. Substitute Senate Bill No. 925 (d) The provisions of subsection (b) of this section shall not apply if the possession of such specimen of a big six African species is expressly authorized by any federal law or permit, or if any of the following conditions exist that are not otherwise prohibited
    [Show full text]
  • Greater One-Horned Rhinoceros Or Indian Rhino
    GREATER ONE-HORNED RHINO Perissodactyla Family: Rhinocerotidae Genus: Rhinoceros Species: unicornis Range: Nepal and Northeastern India (Assam). Limited to 10 sites in India and 2 in Nepal Habitat: floodplains of large rivers, swampy and tall grass areas, reed beds, grasslands and wooded meadows Niche: crepuscular terrestrial herbivore Wild diet: grass, fruit, leaves, branches of trees and shrubs, and cultivated crops. Zoo diet: horse chow, alfalfa, oats, hay, fruits, vegetables, acacia Life Span: (Wild) 35-40 years (Captivity) 47 years Sexual dimorphism: male is larger Location in SF Zoo: Lion Fountain Trail in pachyderm building APPEARANCE & PHYSICAL ADAPTATIONS: The greater-one horned rhinoceros or Indian rhino is the largest Asian rhino, and is characterized by skin folds that resemble armor plating with wart-like bumps that cover the shoulder and upper leg region. They have a single blunt, somewhat stubby horn that sits on a bony knob and is composed of hardened, compressed keratin (hair-like) fibers. Weight: M 4,800 lbs. F 3,500 lb Indian rhinos have a prehensile (grasping) upper lip that is flexible and Length: 7-14 ft is used to grasp bunches of grass in a browsing motion or can be SH: M 5.9' / F5.2' tucked out of the way for grazing short grasses. Their excellent sense TL: 28 in. of smell and hearing gives rhinos information about their surroundings and help them detect danger. Rhinos have poor vision, and are extremely near-sighted, making them very dangerous and unpredictable and likely to charge unfamiliar sounds and smells. Like horses, rhinos run and walk on their toes, and can run a surprising 28 to 35 miles per hour for short distances.
    [Show full text]
  • Evolutionary History of MHC Class I Genes in the Mammalian Order Perissodactyla
    J Mol Evol (1999) 49:316–324 © Springer-Verlag New York Inc. 1999 Evolutionary History of MHC Class I Genes in the Mammalian Order Perissodactyla E.C. Holmes,1 S.A. Ellis2 1 The Wellcome Trust Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 2 Institute for Animal Health, Compton, Nr Newbury, RG20 7NN, UK Received: 17 November 1998 / Accepted: 7 April 1999 Abstract. We carried out an analysis of partial se- intracellular pathogens to cytotoxic T lymphocytes and quences from expressed major histocompatibility com- thus elicit an immune response. The MHC class I region plex (MHC) class I genes isolated from a range of equid varies in size and complexity between mammalian spe- species and more distantly related members of the mam- cies, most probably due to frequent expansions and con- malian order Perissodactyla. Phylogenetic analysis re- tractions of that area of the genome (Delarbre et al. 1992; vealed a minimum of six groups, five of which contained Vincek et al. 1987). In all examples studied to date genes and alleles that are found in equid species and one (mostly primate and rodent), between one and three group specific to the rhinoceros. Four of the groups con- genes are expressed and have antigen presenting func- tained only one, or very few sequences, indicating the tion—the classical class I, or class Ia, genes. All other presence of relatively nonpolymorphic loci, while an- genes in the region either are not expressed or have un- other group contained the majority of the equid se- known or unrelated functions—the nonclassical class I, quences identified.
    [Show full text]
  • La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
    La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles.
    [Show full text]
  • Tapir Tracks Dear Educator
    TAPIR TRACKS A Curriculum Guide for Educators 2 Tapir Tracks Dear Educator, Welcome to Tapir Tracks! This curriculum was created for classroom teachers and educators at zoos and other nonformal science learning centers to enable you and your students to discover tapirs of the Americas and Asia. Because tapirs spread seeds from the fruits they eat, these little-known mammals are essential to the health of the forests they inhabit. However, tapir populations are rapidly declining. Loss of their habitat and hunting threaten tapir survival. An international team of scientists and conservationists works to study wild tapirs, manage the zoo-based population, protect habitat, and educate local communities. We collaborate through the Tapir Specialist Group, of the International Union for Conservation of Nature (IUCN) Species Survival Commission. This packet includes background information along with lesson plans and activities that can easily be adapted for kindergarten, elementary and secondary school students (grades K-12). An online link is included for you to download images and videos to use in your teaching: http://tapirs.org/resources/educator-resources. This toolkit is designed to enable you to meet curriculum requirements in multiple subjects. Students can explore the world’s tapirs through science, environmental studies, technology, social studies, geography, the arts and creative writing activities. We hope that by discovering tapirs through these lessons and engaging activities that students will care and take action to protect tapirs
    [Show full text]
  • The Interspecific Relationships of Black Rhinoceros (Diceros Bicornis) in Hluhluwe-Imfolozi Park
    The interspecific relationships of black rhinoceros (Diceros bicornis) in Hluhluwe-iMfolozi Park Roan David Plotz B.Sc. (ConsBiolEcol) (Hons1); GradDipEd (Sec) A thesis submitted to Victoria University of Wellington in fulfilment of the requirement for the degree of Doctor of Philosophy in Ecology and Biodiversity 2014 1 “To Ryker, may the wild places of this world long remain protected to captivate and inspire you” Black rhino near the Black iMfolozi River in Hluhluwe-iMfolozi Park, Zululand, South Africa (Photograph by Dale Morris). “We learn more by looking for the answer to a question and not finding it than we do from learning the answer itself.” Lloyd Alexander 2 ABSTRACT As habitat loss, predators (human and non-human) and disease epidemics threaten species worldwide, protected sanctuaries have become vital to species conservation. Hluhluwe-iMfolozi Park (HiP) in South Africa is at the centre of one of the world’s greatest conservation success stories. The formal proclamation of HiP in 1895 prevented the extinction of the south-central black rhino (Diceros bicornis minor) population. In recent times HiP has been a strategic source population for the D. b. minor range expansion program, facilitating an 18-fold population increase across southern Africa. However, HiP’s own black rhino population appears to be in decline. Evidence for decline is most often attributed to overpopulation and poor habitat quality that is driving apparently significant increases in the average home range sizes, poor growth rates (i.e., low calf recruitment) and poor body condition of black rhino. Other factors such as non-human calf predation and parasitism have also been raised as potential causes of decline but remain untested.
    [Show full text]
  • Deciduous Forest
    Biomes and Species List: Deciduous Forest, Desert and Grassland DECIDUOUS FOREST Aardvark DECIDUOUS FOREST African civet DECIDUOUS FOREST American bison DECIDUOUS FOREST American black bear DECIDUOUS FOREST American least shrew DECIDUOUS FOREST American pika DECIDUOUS FOREST American water shrew DECIDUOUS FOREST Ashy chinchilla rat DECIDUOUS FOREST Asian elephant DECIDUOUS FOREST Aye-aye DECIDUOUS FOREST Bobcat DECIDUOUS FOREST Bornean orangutan DECIDUOUS FOREST Bridled nail-tailed wallaby DECIDUOUS FOREST Brush-tailed phascogale DECIDUOUS FOREST Brush-tailed rock wallaby DECIDUOUS FOREST Capybara DECIDUOUS FOREST Central American agouti DECIDUOUS FOREST Chimpanzee DECIDUOUS FOREST Collared peccary DECIDUOUS FOREST Common bentwing bat DECIDUOUS FOREST Common brush-tailed possum DECIDUOUS FOREST Common genet DECIDUOUS FOREST Common ringtail DECIDUOUS FOREST Common tenrec DECIDUOUS FOREST Common wombat DECIDUOUS FOREST Cotton-top tamarin DECIDUOUS FOREST Coypu DECIDUOUS FOREST Crowned lemur DECIDUOUS FOREST Degu DECIDUOUS FOREST Working Together to Live Together Activity—Biomes and Species List 1 Desert cottontail DECIDUOUS FOREST Eastern chipmunk DECIDUOUS FOREST Eastern gray kangaroo DECIDUOUS FOREST Eastern mole DECIDUOUS FOREST Eastern pygmy possum DECIDUOUS FOREST Edible dormouse DECIDUOUS FOREST Ermine DECIDUOUS FOREST Eurasian wild pig DECIDUOUS FOREST European badger DECIDUOUS FOREST Forest elephant DECIDUOUS FOREST Forest hog DECIDUOUS FOREST Funnel-eared bat DECIDUOUS FOREST Gambian rat DECIDUOUS FOREST Geoffroy's spider monkey
    [Show full text]
  • Mapping the Geographic Distribution of Tungiasis in Sub-Saharan Africa
    Supplementary Materials SUPPORTING INFORMATION for: Mapping the Geographic Distribution of Tungiasis in Sub-Saharan Africa Table of Contents Table S1: Modeling algorithm predictive performance Map S1: Model Uncertainty Map (Coefficient of Variation) Map S2: Binary (presence/absence) – weighted mean threshold: 0.438 Table S2: Tungiasis occurrence locations in SSA (n = 87) Table 1. Weighted mean validation indicators (AUC, TSS, KAPPA) for the tested modeling approaches: ROC: the area under the receiver operating characteristic (ROC) curve, TSS: true skill statistic, Cohen’s Kappa (Heidke skill score). GAM GBM GLM MAXENT RF ROC TSS KAPPA ROC TSS KAPPA ROC TSS KAPPA ROC TSS KAPPA ROC TSS KAPPA 0.81 0.63 0.61 0.86 0.70 0.68 0.83 0.65 0.63 0.83 0.64 0.62 0.94 0.86 0.83 Crystals 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/crystals Crystals 2020, 10, x FOR PEER REVIEW 2 of 11 Map S1: A. Uncertainty (Coefficient of Variation). Crystals 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/crystals Crystals 2020, 10, x FOR PEER REVIEW 3 of 11 Map S2: Binary (presence/absence) – weighted mean threshold: 0.438. Crystals 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/crystals Crystals 2020, 10, x FOR PEER REVIEW 4 of 11 Table 2. Tungiasis occurrence locations in SSA (n = 87). Longitude Latitude Country Source Summary of Findings 33.1962 0.43936 Uganda GBIF.org (13 May 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.xcpprz Human Observation 9.58941 -2.2466 Gabon GBIF.org (13 May 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.xcpprz Human Observation 11.79 -0.6204 Gabon GBIF.org (13 May 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.xcpprz Preserved Specimen 11.5199 3.89846 Cameroon GBIF.org (13 May 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.xcpprz Preserved Specimen 8.87296 9.88455 Nigeria Ames, C.G.
    [Show full text]
  • Bill Analysis for File Copy
    OLR Bill Analysis sSB 925 AN ACT PROHIBITING THE IMPORT, SALE AND POSSESSION OF AFRICAN ELEPHANTS, LIONS, LEOPARDS, BLACK RHINOCEROS, WHITE RHINOCEROS AND GIRAFFES. SUMMARY This bill generally bans importing, possessing, selling, offering for sale, or transporting in Connecticut a specimen (dead or alive) of any of six types of African animals, which the bill collectively refers to as the “big six African species.” It applies to certain elephants, lions, leopards, giraffes, and two rhinoceros species. The bill establishes a graduated penalty structure for violations, ranging from no penalty for someone who, unaware and in good faith, violates the ban, to a class D felony for someone with at least two prior violations subject to penalty. In all cases, the bill requires seizing the specimen and any other property or item used in connection with the violation. The specimen, property, or item is then forfeited and, unless the specimen is alive, destroyed. The bill contains several exemptions, including for a specimen that is already legally in the state or distributed to a beneficiary or heir, as long as the owner or distributee timely obtains a certificate of possession from the Department of Energy and Environmental Protection (DEEP). The ban also does not apply to fossils and ivory and the following under certain conditions: circuses; museums; zoological institutions; and motion picture, television, or digital media production companies. Lastly, the bill specifies that the ban does not prohibit transporting through the state endangered or threatened species subject to the terms of another state’s permit, which existing law allows. The United States regulates the trade of the species covered by the Researcher: KLM Page 1 5/8/21 2021SB-00925-R010637-BA.DOCX bill, except the African giraffe, through the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and laws such as the Endangered Species Act (16 U.S.C.
    [Show full text]
  • Pdf, 16.47 Mb
    https://www.mdc-berlin.de/de/veroeffentlichungstypen/clinical- journal-club Als gemeinsame Einrichtung von MDC und Charité fördert das Experimental and Clinical Research Center die Zusammenarbeit zwischen Grundlagenwissenschaftlern und klinischen Forschern. Hier werden neue Ansätze für Diagnose, Prävention und Therapie von Herz-Kreislauf- und Stoffwechselerkrankungen, Krebs sowie neurologischen Erkrankungen entwickelt und zeitnah am Patienten eingesetzt. Sie sind eingelanden, um uns beizutreten. Bewerben Sie sich! An otherwise healthy 10-year-old girl presented to the primary care clinic with a 10-day history of multiple itchy papules on the soles of her feet and on her toes. The lesions had black dots in the center and were painful. Two weeks earlier, the family had traveled to rural Brazil. During that time, the patient had played in a pigsty without wearing shoes. Sand fleas were removed from multiple lesions. What is the most likely diagnosis? Coxsackievirus infection Furuncular myiasis Foreign body granulomas Tungiasis Scabies infestation Correct! The correct answer is tungiasis. Tungiasis is a skin infestation caused by the sand flea Tunga penetrans, an ectoparasite that is found throughout tropical and subtropical parts of the world. Treatment included flea removal and local wound care. Die Myiasis (nach griechisch μυῖα myia = „Fliege“) oder auch Fliegenmadenkrankheit ist der Befall von Lebewesen mit den Larven (Maden) von Fliegen, welche von dem Gewebe, den Körperflüssigkeiten oder dem Darminhalt des Wirtes leben. Sie ist bei Menschen in Mittel- und Südamerika sowie in Regionen mit tropischen oder subtropischem Klima verbreitet. In der Tiermedizin kommt ein Fliegenmadenbefall auch in Europa häufiger vor. Betroffen sind vor allem stark geschwächte oder anderweitig erkrankte Tiere, die nicht mehr in der Lage sind, sich selbst zu putzen.
    [Show full text]
  • (EHV-1 and EHV-9): Genetic Diversity, Latency and Co-Infections
    viruses Article Zebra Alphaherpesviruses (EHV-1 and EHV-9): Genetic Diversity, Latency and Co-Infections Azza Abdelgawad 1, Armando Damiani 2, Simon Y. W. Ho 3, Günter Strauss 4, Claudia A. Szentiks 1, Marion L. East 1, Nikolaus Osterrieder 2 and Alex D. Greenwood 1,5,* 1 Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, Berlin 10315, Germany; [email protected] (A.A.); [email protected] (C.A.S.); [email protected] (M.L.E.) 2 Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin 14163, Germany; [email protected] (A.D.); [email protected] (N.O.) 3 School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia; [email protected] 4 Tierpark Berlin-Friedrichsfelde, Am Tierpark 125, Berlin 10307, Germany; [email protected] 5 Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19, Berlin 14163, Germany * Correspondence: [email protected]; Tel.: +49-30-516-8255 Academic Editor: Joanna Parish Received: 21 July 2016; Accepted: 14 September 2016; Published: 20 September 2016 Abstract: Alphaherpesviruses are highly prevalent in equine populations and co-infections with more than one of these viruses’ strains frequently diagnosed. Lytic replication and latency with subsequent reactivation, along with new episodes of disease, can be influenced by genetic diversity generated by spontaneous mutation and recombination. Latency enhances virus survival by providing an epidemiological strategy for long-term maintenance of divergent strains in animal populations. The alphaherpesviruses equine herpesvirus 1 (EHV-1) and 9 (EHV-9) have recently been shown to cross species barriers, including a recombinant EHV-1 observed in fatal infections of a polar bear and Asian rhinoceros.
    [Show full text]