Inhibition of a Mycothiol Biosynthetic Enzyme and a Detoxification Enzyme As Anti Tubercular Drug Targets

Total Page:16

File Type:pdf, Size:1020Kb

Inhibition of a Mycothiol Biosynthetic Enzyme and a Detoxification Enzyme As Anti Tubercular Drug Targets The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Mycothiol Disulfide Reductase as a Drug Target A thesis Presented in fulfilment of the requirement of the degree of DOCTOR OF PHILOSOPHY Department of Clinical Laboratory Sciences UNIVERSITY OF CAPE TOWN In the Division of Chemical Pathology APRIL 2010 Vuyo Bhongolethu Mavumengwana ii DECLARATION The work contained in this thesis is original, except where indicated and acknowledged. No portion of this work has been submitted for another degree at this or any other university. The University of Cape Town may reproduce the contents in whole or in part for the purposes of research. V.B. Mavumengwana April 2010 iii ACKNOWLEDGEMENTS I wish to express my gratitude to my supervisors Prof D.J Steenkamp and Prof. D.W. Gammon for their supervision, guidance and teaching throughout this study. I would also like to thank Dr Levecque, Mr Munyololo and Dr Kinfe for their support and assistance during my stay in the chemistry department. I’m indebted to my colleagues in the Division of Chemical Pathology, Dr Marakalala for testing my synthetic compounds against MshB and Mca and Dr Williams for cloning mtr in pSD26. I’m grateful to Gabriel and Nick for their friendship and willingness to help whenever I needed them. Ms Di James (Department of Molecular and Cell Biology, University of Cape Town) and Dr Wiid (University of Stellenbosch, South Africa) are gratefully acknowledged for sequencing experiments and anti-tubercular testing of compounds respectively. I am deeply indebted to Dr Tricia Owens (Division of Chemical Pathology, UCT) for her support and encouragement throughout my stay in the department, and to Dr André Trollip (BiotecSA) for caring and creating a work environment that facilitated the completion of my studies. You stood by me and gave me strength when I was ready to quit. I really have no words to describe my appreciation. Support from the National Research Foundation, and the University of Cape Town is gratefully acknowledged. iv ABSTRACT Tuberculosis, a common and deadly infectious disease is caused by the pathogen Mycobacterium tuberculosis . The recent emergence of multi-drug and extreme multi- drug resistant strains poses an even greater obstacle to controlling the disease, particularly in areas where efficient and effective health systems have not been properly addressed. Current treatments using first line drugs typically require extended use and strict compliance by patients, which is often not adhered to. As a result, there is an urgent need for new and highly effective drugs to combat this disease. Mycobacterium tuberculosis relies on mycothiol, a low molecular mass thiol used to circumvent oxidative stress generated by activated macrophages and to deal with antibiotics such as rifamycin. Enzymes involved in the biosynthesis of mycothiol have been elucidated over the past ten years and some have been designated to be essential in the growth of Mtb , with mycothiol disulfide reductase (Mtr) being one. Mtr is involved in the reduction of oxidized mycothiol (MSSM) to mycothiol (MSH) upon exposure of the microbe to oxidative stress. The rational behind this study involves the use of naphthoquinones grafted onto the mycothiol template as subversive substrates against Mtr. Initially, we had planned to clone and express Mtr in Corynebacterium glutamicum (C. glutamicum ) to try to obtain enhanced expression levels of Mtr, and although the expression of the enzyme was not successful we were able to confirm that C. glutamicum does indeed depend on MSH as has been previously suggested but not actually proven. MSH was isolated from C. glutamicum with the aid of a new derivatising agent 2-bromo- acetonaphthone (BAN) and characterized using a combination of NMR and mass spectrometry. Consequently, we were also able to establish that MSSnaph (obtained during the isolation process of MSH) is an alternative and better substrate for Mtr with a -1 5 km,app of 23 µM, a kcat and kcat /k m of 15.56 s and 8.17 x 10 respectively, as compared to the natural substrate (MSSM). v Synthesis of subversive substrates proceeded through the initial formation of 2-azido-2- deoxy-3,4,6-tri-O-acetyl-D-glucopyranosyl acetate (7). Phenyl-3,4,6-tri-O-acetyl-2-azido- 1-thio-α-D-glucopyranoside (12 ) was generated from this and, after reduction of the azide, linked to the carboxy terminus of substituted naphthoquinones using standard N-3- (dimethylaminopropyl)-N-ethyl-carbodiimide (EDC) and Hydroxybenzotriazole (HOBt) coupling procedures. Deacetylation using the Zemplén procedure gave the target naphthoquinone derivatives 35b (34%), 36b (46%), 37b (60%), and 38b (52%). R R1 1 R1 O O O R R R1 1 1 R R1 R1 1 OAc N NH2 N3 3 SPh SPh 7 12 R2 R1 O O R2 R1 R2 NH R1 O OH NH SPh O OH 35: n = 0 O SPh 36: n = 1 O n 37: n = 2 n 38: n = 3 O O a R1 = OAc deacetylation b R2 = OH The compounds exhibited specific activities ranging between 0.29 µmol/min/mg and 0.42 µmol/min/mg at 40 µM, and inhibition levels ranging between 4 and 14% at 40 µM when tested against Mtr. The Phenyl-2-deoxy-2-[3'-(8''-hydroxy-3''-methyl-1'',4''-dioxo-1'',4''- dihydronaphthalen-2''-yl)propanamido]-1-thio-α-D-glucopyranoside (35b) was the only compound that exhibited bacteriocidal effects when tested against Mtb using the radiometric respiratory technique based on the Bactec system. A range of thioglycosides and O-glycosides was also evaluated (at 500 µM) as possible inhibitors of Mtr and found to be of poor inhibitory nature exhibiting percentage inhibitions that ranged between 1.86-12.75% and 3.39-20.2% respectively. We also prepared INH-NAD(P) adduct mixtures based on published procedure and found for the vi first time that Mtr is also inhibited by the activated isoniazid, with percentage inhibitions ranging from 16.4% to 66%. Attempts to prepare Ethionamide-NAD(P) adduct mixtures using the same procedure were however, not successful. The finding that INH-NAD(P) adducts also inhibit Mtr offers a new direction for the design of inhibitors targeted at Mtr. vii Abbreviations AcCys Acetyl-cystein AcCySmB Bimane derivative of N-acetylcysteine Accq-fluor 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate ATP Adenosine triphosphate BAN 2-bromo-2’-acetonaphtone BF3.OEt2 Boron triflouride etherate Boc 2O Di-tert -butyldicarbonate CD 3OD Deuterated methanol CH 3CN Acetonitrile Cl 3CCN Trichloroacetonitrile COSY Correlation spectroscopy DCM Dichloromethane DEPT-NMR Distortionless enhancement by polarization transfer DMAP 4-Dimethyl aminopyridine DMSO Dimethyl sulfoxide DNA D eoxyribonucleic acid EDC N-3-(dimethylaminopropyl)-N-ethyl-carbodii mide EDTA Ethylenediaminetetraacetic acid EPO Medium used for growing electroporation competent cells (described in Appl Microbiol Biotechnol, 1999, 52: 541-545) EtOAc Ethyl acetate FAD Flavin adenine dinucleotide GlcNAc N-acetylglucosamine GlcNAc-Ins 1-D-myo-inosityl-2-acetamido-2-deoxy-alpha-D-glucopyranoside GSH Glutathione HBr Hydrogen bromide HOBt Hydroxybenzotriazole HPLC High performance liquid chromatography viii INH-NAD(P) Isonicotinoylated nicotinamide adenine dinuclotides IPTG Isopropyl-beta-D-thiogalactopyranoside Kcat kcat Turn over number kcat /k m Overall catalytic efficiency LB Lurea broth LBG Lurea broth containing filter sterilized glucose mBBr monobromobimane Mca Mycothiol S-conjugate amidase MDR Multidrug resistance MeOH Methanol MSH Mycothiol MshA 1L-myo-inositol-1- phosphate 1--D-N-acetylglucosaminyltransferase MshB 1-O-(2-acetamido-2-deoxy--D-glucopyranosyl)-D-myo -inositol deacetylase MshC ATP-dependent L-cysteine: 1-O-(2-amino-2-deoxy-D-glucopyranosyl)-D- myo -inositol ligase MshD Mycothiol synthase MSmB Monobromobimane derivative of mycothiol MSSM Mycothiol disulfide Mtr Mycothiol disulfide reductase NADPH Reduced nicotinamide adenine dinucleotide phosphate NADP + Oxidized nicotinamide adenine dinucleotide phosphate NADH Reduced nicotinamide adenine dinucleotide NAD + Oxidised nicotinamide adenine dinucleotide NaN 3 Sodium azide NMR Nuclear magnetic resonance NQ Naphthoquinone PCR Polymerase chain reaction PMSF Phenylmethylsulphonyl fluoride RNI Reactive nitrogen intermediate ix ROI Reactive oxygen intermediate SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis Tf 2O Trifluoromethanesulfonic (triflic) anhydride xv TfN 3 Triflyl azide THF Tetrahydrofuran TLCK N-p-tosyl-L-lysine-chloromethyl ketone TMS Trimethyl silyl TPCK N-p-tosyl-L-phenylalanine-chloromethyl ketone TR Trypanothione reductase TS 2 Trypanothione disulfide XDR Extensively drug resistant tuberculosis α-DGI 1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside xiv TABLE OF CONTENTS DECLARATION i ACKNOWLEDGEMENTS iii ABSTRACT iv ABBREVIATIONS vii LIST OF FIGURES AND TABLES x CONTENTS xiv CHAPTER 1 INTRODUCTION 1 1.1 Origins of Mycobacterium tuberculosis 1 1.2 Mtb pathogenesis and macrophage interaction 2 1.3 Thiols in intracellular redox reactions 5 1.3.1 Glutathione (GSH) 5 1.3.2 Mycothiol (MSH) 7 1.3.3 MSH Biosynthesis 8 1.3.4 Mycothiol dependent detoxification 12 1.3.41 NAD/MSH-dependent formaldehyde dehydrogenase 12 1.3.4.2 Mycothiol S-Conjugate Amidase 13 1.4 Mycothiol disulfide reductase 16 1.5 Mtb essential genes in MSH biosynthetic pathway 20 1.6 Mycothiol analogs 24
Recommended publications
  • A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium Smegmatis Is Involved in De Novo Cysteine Biosynthesis
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2020 A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis Saroj Kumar Mahato University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Cell Biology Commons, Molecular Biology Commons, and the Pathogenic Microbiology Commons Citation Mahato, S. K. (2020). A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis. Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3639 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Cell and Molecular Biology by Saroj Kumar Mahato Purbanchal University Bachelor of Science in Biotechnology, 2016 May 2020 University of Arkansas This thesis is approved for recommendation to the Graduate Council. ___________________________________ Young Min Kwon, Ph.D. Thesis Director ___________________________________ ___________________________________ Suresh Thallapuranam, Ph.D. Inés Pinto, Ph.D. Committee Member Committee Member ABSTRACT Mycobacteria include serious pathogens of humans and animals. Mycolicibacterium smegmatis is a non-pathogenic model that is widely used to study core mycobacterial metabolism. This thesis explores mycobacterial pathways of cysteine biosynthesis by generating and study of genetic mutants of M. smegmatis. Published in vitro biochemical studies had revealed three independent routes to cysteine synthesis in mycobacteria involving separate homologs of cysteine synthase, namely CysK1, CysK2, and CysM.
    [Show full text]
  • Comparative Analysis of Mutants in the Mycothiol Biosynthesis Pathway in Mycobacterium Smegmatis
    Biochemical and Biophysical Research Communications 363 (2007) 71–76 www.elsevier.com/locate/ybbrc Comparative analysis of mutants in the mycothiol biosynthesis pathway in Mycobacterium smegmatis Mamta Rawat a, Chantale Johnson a, Vanessa Cadiz a, Yossef Av-Gay b,* a Department of Biology, California State University-Fresno, Fresno, CA 937401, USA b Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada V5Z 3J5 Received 17 August 2007 Available online 31 August 2007 Abstract The role of mycothiol in mycobacteria was examined by comparative analysis of mutants disrupted in the four known genes encoding the protein machinery needed for mycothiol biosynthesis. These mutants were sensitive to acid stress, antibiotic stress, alkylating stress, and oxidative stress indicating that mycothiol and mycothiol-dependent enzymes protect the mycobacterial cell against attack from various different types of stresses and toxic agents. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Mycothiol; Mycothiol deacetylase; Mycothiol ligase; Mycothiol synthase; Oxidative stress; Toxins; Xenobiotics Mycobacteria, like most other Gram-positive bacteria do We have previously reported that Mycobacterium not make glutathione but produce another low molecular smegmatis mutants disrupted in the four known genes weight thiol, mycothiol (MSH) (Fig. 1), 1-D-myoinosityl- [3,9–11] involved in mycothiol biosynthesis are resistant to 2-(n-acetyl-L-cysteinyl)-amido-2-deoxy-a-D-glucopyranoside. isoniazid, a front-line drug used in the treatment of tubercu- Since MSH is unique to actinomycetales [1], enzymes losis. We have also reported that M. smegmatis mutants involved in MSH biosynthesis and metabolism are poten- lacking mycothiol ligase activity and thus mycothiol are tial targets for drugs directed against pathogenic mycobac- sensitive to a wide range of antibiotics, alkylating agents, teria like Mycobacterium tuberculosis.
    [Show full text]
  • Great South African Molecules: the Case for Mycothiol
    REVIEW ARTICLE C.M. Nkambule, 67 S. Afr. J. Chem., 2017, 70, 67–81, <http://journals.sabinet.co.za/sajchem/>. Great South African Molecules: The Case For Mycothiol Comfort M. Nkambule Department of Chemistry, Tshwane University of Technology, Pretoria, 0001, South Africa. Received 13 September 2016, revised 15 March 2017, accepted 17 March 2017. ABSTRACT South Africa has one of the oldest chemical societies in the world and has a long history of natural products, synthetic, and medici- nal chemistry yet the visibility of molecules discovered or synthesized in South Africa is very low. Is this because South African scientists are incapable of discovering influential and celebrated molecules, or is there inadequate publicity of such discoveries? Perspective profiles on the discovery and scope of research on ‘Great South African Molecules’ should be a good start to redress this state of affairs. One such molecule deserving publicity is the antioxidant mycothiol which is produced by mycobacteria. This is a molecule of interest not only because of its medicinal potential in the fight against tuberculosis, but also from synthetic methodology and enzyme inhibition studies. This review aims to illuminate the scope of research in mycothiol chemistry for the purpose of promoting multidisciplinary investigations related to this South African molecule. KEYWORDS Mycothiol, Mycobacterium tuberculosis, great molecules, chemistry Nobel Prize. Table of Contents 1. What is a Great Molecule?· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 2. Is Mycothiol a Great Molecule? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 71 2.1. Is Mycothiol a South African Molecule? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 71 3. Why is Mycothiol a Molecule of Great Potential? · · · · · · · · · · · · · · · · · · · · · · · · · · · 72 3.1. Mycothiol’s Significance to the TB Problem· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 72 3.2.
    [Show full text]
  • Biosynthesis and Functions of Bacillithiol, a Major Low-Molecular-Weight Thiol in Bacilli
    Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli Ahmed Gaballaa,1, Gerald L. Newtonb,1, Haike Antelmannc, Derek Parsonaged, Heather Uptone, Mamta Rawate, Al Claiborned, Robert C. Faheyb, and John D. Helmanna,2 aDepartment of Microbiology, Cornell University, Ithaca, NY 14853-8101; bDepartment of Chemistry and Biochemistry, University of California, La Jolla, CA 92093-0314; cInstitute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487 Greifswald, Germany; dCenter for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157; and eDepartment of Biology, California State University, Fresno, CA 93740 Edited* by Richard M. Losick, Harvard University, Cambridge, MA, and approved February 25, 2010 (received for review January 26, 2010) Bacillithiol (BSH), the α-anomeric glycoside of L-cysteinyl-D-glucosamine disulfide oxidoreductases (TDORs) including thioredoxins (Trx) with L-malic acid, is a major low-molecular-weight thiol in Bacillus sub- and glutaredoxins (5). Oxidized glutaredoxins are reduced by GSH tilis and related bacteria. Here, we identify genes required for BSH generating oxidized GSSG, which is in turn reduced by glutathione biosynthesis and provide evidence that the synthetic pathway has sim- reductase at the expense of NADPH. Thioredoxins are directly ilarities to that established for the related thiol (mycothiol) in the reduced by Trx reductase. Actinobacteria. Consistent with a key role for BSH in detoxification of In addition to disulfide bond formation, thiols can function as electrophiles, the BshA glycosyltransferase and BshB1 deacetylase are nucleophiles to form S-conjugates (6, 7). Thiols react rapidly with encoded in an operon with methylglyoxal synthase. BshB1 is partially some alkylating agents (e.g., N-ethylmaleimide, iodoacetamide) redundant in function with BshB2, a deacetylase of the LmbE family.
    [Show full text]
  • The Significance of N-Methylation of Bacillithiol on Its Biological Activity As a Redox Cofactor
    THE SIGNIFICANCE OF N-METHYLATION OF BACILLITHIOL ON ITS BIOLOGICAL ACTIVITY AS A REDOX COFACTOR Hazel Nicole Moxham A thesis submitted for the Degree of Master of Science by Research University of East Anglia School of Pharmacy September 2018 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived therefrom must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. 1 Abstract Low molecular weight thiols play a crucial role in a multitude of biological processes such as maintaining redox homeostasis and the detoxification of chemical stressors. Different classes of microorganisms utilise different low molecular weight thiols. For example: glutathione is found eukaryotes and most gram-negative bacteria, mycothiol is found in the actinomycetes, and bacillithiol is found in the firmicutes. This study focused on N-methyl-bacillithiol, the novel low molecular weight thiol found in the green sulfur bacteria. Due to the unavailability of the thiol, the biophysical properties of a series of related derivatives were analysed and compared. Six thiols were examined so that each of their macroscopic and microscopic pKa values as well as their thiol-disulfide exchange rate constants and their copper catalysed autoxidation rates were isolated. The results determined that each thiol maintains its own set of biophysical properties that are unique to each compound. These were then observed alongside others within the literature to compare and contrast. Predictions were made regarding the properties of N-methylated bacillithiol by associating the data of those with similar structural differences.
    [Show full text]
  • Investigations Into Intracellular Thiols of Biological Importance
    Investigations into Intracellular Thiols of Biological Importance by Christine Elizabeth Hand A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemistry Waterloo, Ontario, Canada, 2007 © Christine Elizabeth Hand 2007 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract The presence of thiols in living systems is critical for the maintenance of cellular redox homeostasis, the maintenance of protein thiol-disulfide ratios and the protection of cells from reactive oxygen species. In addition to the well studied tripeptide glutathione (γ-Glu-Cys-Gly), a number of compounds have been identified that contribute to these essential cellular roles. Many of these molecules are of great clinical interest due to their essential role in the biochemistry of a number of deadly pathogens, as well as their possible role as therapeutic agents in the treatment of a number of diseases. A series of studies were undertaken using theoretical, chemical and biochemical approaches on a selection of thiols, ergothioneine, the ovothiols and mycothiol, to further our understanding of these necessary biological components. Ergothioneine is present at significant physiological levels in humans and other mammals; however, a definitive role for this thiol has yet to be determined. It has been implicated in radical scavenging in vivo and shows promise as a therapeutic agent against disease states caused by oxidative damage.
    [Show full text]
  • Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT)
    International Journal of Molecular Sciences Review Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT) Abu Iftiaf Md Salah Ud-Din 1, Alexandra Tikhomirova 1 and Anna Roujeinikova 1,2,* 1 Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; [email protected] (A.I.M.S.U.-D.); [email protected] (A.T.) 2 Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia * Correspondence: [email protected]; Tel.: +61-3-9902-9194; Fax: +61-3-9902-9222 Academic Editor: Claudiu T. Supuran Received: 30 May 2016; Accepted: 20 June 2016; Published: 28 June 2016 Abstract: General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections.
    [Show full text]
  • Report on “Thiol Levels in Bacillus Species
    Report on “Thiol levels in Bacillus species exposed to ultraviolet radiation” (NASA Astrobiology Program - Minority Institution Support Faculty Research Awards: August 22, 2011- May 21, 2012) Submitted November 25, 2012 As mandated by the Committee of Space Research, space-faring nations must take precautions in preventing contamination of extraterrestrial bodies by limiting the amount of microbes present to the greatest possible extent. Surveys of spacecraft assembly clean rooms for microbes have revealed the existence of strains of bacteria resistant to high levels of ultraviolet (UV) radiation and vaporous hydrogen peroxide, which are used to sterilize clean rooms. In order to develop effective ways to eradicate these bacteria prior to the spacecraft leaving Earth, we must understand how these bacteria are able to survive these extremophilic conditions. We are particularly concerned about spore forming bacteria, such as Bacillus pumilus SAFR-032 and Bacillus horneckaie, which are highly resistant to UV and oxidative stress. First, we have demonstrated that these species like other Bacilli contains a novel low molecular weight thiol (LMW), bacillithiol. LMW thiols like bacillithiol play a critical role in maintaining a reducing environment and are involved in protection of organisms against a variety of stresses. Bacillithiol has been shown to protect against hypochlorite stress by S-bacillithiolation of cysteines in critical proteins such as glyceraldehyde- 3-phosphate dehydrogenase. We have examined samples of B. pumilus SAFR-032 spores exposed to four different extreme conditions at the International Space Center: (1) deep space, (2) Martian atmosphere, (3) deep space with UV radiation, and (4) Martian atmosphere with UV radiation. Thiol analysis of the surviving spores indicates that levels of bacillithiol are ten times higher in UV radiation treated samples exposed to both deep space and Martian atmosphere conditions.
    [Show full text]
  • Glutathione Disulfide and S-Nitrosoglutathione Detoxification
    FEBS Letters 583 (2009) 3215–3220 journal homepage: www.FEBSLetters.org Glutathione disulfide and S-nitrosoglutathione detoxification by Mycobacterium tuberculosis thioredoxin system Rodgoun Attarian, Chelsea Bennie, Horacio Bach, Yossef Av-Gay * Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada V5Z 3J5 article info a b s t r a c t Article history: Mycobacterium tuberculosis resides within alveolar macrophages. These phagocytes produce reac- Received 1 August 2009 tive nitrogen and oxygen intermediates to combat the invading pathogens. The macrophage gluta- Accepted 1 September 2009 thione (GSH) pool reduces nitric oxide (NO) to S-nitrosoglutathione (GSNO). Both glutathione Available online 6 September 2009 disulfide (GSSG) and GSNO possess mycobactericidal activities in vitro. In this study we demonstrate that M. tuberculosis thioredoxin system, comprises of thioredoxin reductase B2 and thioredoxin C Edited by Stuart Ferguson reduces the oxidized form of the intracellular mycothiol (MSSM) and is able to efficiently reduce GSSG and GSNO in vitro. Our study suggests that the thioredoxin system provide a general reduction Keywords: mechanism to cope with oxidative stress associated with the microbe’s metabolism as well as to Mycobacteria Tuberculosis detoxify xenobiotics produced by the host. Thioredoxin Ó 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Glutathione S-nitrosoglutathione Mycothiol 1. Introduction defense against oxygen toxicity [4]. M. tuberculosis lacks GSH and instead uses mycothiol (MSH), which functions as the mycobacte- Mycobacterium tuberculosis, the causative agent of tuberculosis, ria’s main anti-oxidant defense [4]. is a human intracellular pathogen responsible for two million Thioredoxin systems [5] are key ubiquitous thiol-disulfide deaths worldwide per annum [1].
    [Show full text]
  • Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols Focus Review †,‡ †,‡ ‡,§ ‡,§ ∥ Ari Zeida, Madia Trujillo, Gerardo Ferrer-Sueta, Ana Denicola, Darío A
    Review Cite This: Chem. Rev. 2019, 119, 10829−10855 pubs.acs.org/CR Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols Focus Review †,‡ †,‡ ‡,§ ‡,§ ∥ Ari Zeida, Madia Trujillo, Gerardo Ferrer-Sueta, Ana Denicola, Darío A. Estrin, and Rafael Radi*,†,‡ † ‡ § Departamento de Bioquímica, Centro de Investigaciones Biomedicaś (CEINBIO), Facultad de Medicina, and Laboratorio de Fisicoquímica Biologica,́ Facultad de Ciencias, Universidad de la Republica,́ 11800 Montevideo, Uruguay ∥ Departamento de Química Inorganica,́ Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2160 Buenos Aires, Argentina ABSTRACT: Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs.
    [Show full text]
  • 5. RPA161724558016.Pdf
    93 | P a g e International Standard Serial Number (ISSN): 2319-8141 International Journal of Universal Pharmacy and Bio Sciences 6(6): November-December 2017 INTERNATIONAL JOURNAL OF UNIVERSAL PHARMACY AND BIO SCIENCES IMPACT FACTOR 4.018*** ICV 6.16*** Pharmaceutical Sciences REVIEW ARTICLE …………!!! “GENETICS OF MYCOBACTERIA AND ITS TRENDS IN TUBERCULOSIS: A SYSTEMATIC REVIEW” Mr. Shaikh Zuber Peermohammed*, Dr. Bhise Satish Balkrishna, Sinhgad Technical Education Society‘s (STES – SINHGAD INSTITUTE) Smt. Kashibai Navale College of Pharmacy, Kondhwa, Pune – 411048 (MS) Affiliated to Savitribai Phule Pune University (Formerly known as University of Pune.). KEYWORDS: ABSTRACT Tuberculosis has reemerged as a serious threat to human health because M.tuberculosis, of the increasing prevalence of drugresistant strains and synergetic Lipoarabinomannan, infection with HIV, prompting an urgent need for new and more efficient Mycothiol (MSH), One- treatments. Mycobacterium tuberculosis (M.tb.), an intracellular Hybrid System Vector, pathogen, is exquisitely adapted for human parasitization. Mycobacterial Ubiquitination. infection has been a major cause of death throughout human history and For Correspondence: still results in the death of about two million people globally each year. Mr. Shaikh Zuber This enduring pathogenicity suggests that Mycobacterium may use Peermohammed* unique pathogenic mechanisms during its infection process. M.tb. Address: Department of confronts a more hostile environment during infection, including Pharmacology (Doctoral restricted access to nutrients and reduced oxygen tension. Therefore, Section), Sinhgad M.tb. must possess genetic mechanisms to facilitate integrated responses Technical Education to multiple stresses encountered within the phagosome, and also to Society‘s Smt. Kashibai trigger some yet-to-be-identified switches during infection process.
    [Show full text]
  • Nanaomycin I and J: New Nanaomycins Generated by Mycothiol-Mediated Compounds from “Streptomyces Rosa Subsp
    Journal of Bioscience and Bioengineering VOL. 127 No. 5, 549e553, 2019 www.elsevier.com/locate/jbiosc Nanaomycin I and J: New nanaomycins generated by mycothiol-mediated compounds from “Streptomyces rosa subsp. notoensis” OS-3966 Hirotaka Matsuo,1,2 Yoshihiko Noguchi,1,2 Akira Také,3 Jun Nakanishi,4 Katsumi Shigemura,5 Toshiaki Sunazuka,1,2 Yoko Takahashi,1 Satoshi Omura,1 and Takuji Nakashima1,2,* Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan,1 Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan,2 Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan,3 World Premier International (WPI) Research Center Initiative, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan,4 and Department of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Kobe Chuo-ku, Hyogo 650-0017, Japan5 Received 13 June 2018; accepted 14 October 2018 Available online 29 November 2018 Two new nanaomycin analogs, nanaomycin I and J, were isolated from a cultured broth of an actinomycete strain, “Streptomyces rosa subsp. notoensis” OS-3966. In our previous study, we have confirmed the occurrence of nanaomycin I D (m/z [ 482 [M D H] ) that lacks a pseudo-disaccharide from the mycothiol of nanaomycin H under same culture condition. In this study, to confirm the structure of nanaomycin I, the strain “S. rosa subsp. notoensis” OS-3966 was re- D cultured and the target compound with m/z [ 482 [M D H] was isolated.
    [Show full text]