Hatzios Thesis Formatted

Total Page:16

File Type:pdf, Size:1020Kb

Hatzios Thesis Formatted Investigations of Metabolic Pathways in Mycobacterium tuberculosis by Stavroula K Hatzios A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Carolyn R. Bertozzi, Chair Professor Matthew B. Francis Professor Tom Alber Fall 2010 Investigations of Metabolic Pathways in Mycobacterium tuberculosis © 2010 By Stavroula K Hatzios Abstract Investigations of Metabolic Pathways in Mycobacterium tuberculosis by Stavroula K Hatzios Doctor of Philosophy in Chemistry University of California, Berkeley Professor Carolyn R. Bertozzi, Chair Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis in humans, infects roughly two billion people worldwide. However, less than one percent of infected individuals are symptomatic. Most have a latent infection characterized by dormant, non- replicating bacteria that persist within a mass of immune cells in the lung called the granuloma. The granuloma provides a protective barrier between infected cells and surrounding tissue. When host immunity is compromised, the granuloma can deteriorate and reactivate the disease. In order to mount a latent infection, Mtb must survive in alveolar macrophages, the host’s primary line of defense against this intracellular pathogen. By evading typical bactericidal processes, Mtb is able to replicate and stimulate granuloma formation. The mechanisms by which Mtb persists in macrophages are ill defined; thus, elucidating the factors responsible for this hallmark of Mtb pathogenesis is an important area of research. This thesis explores three discrete metabolic pathways in Mtb that are likely to mediate its interactions with host immune cells. The first three chapters examine the sulfate assimilation pathway of Mtb and its regulation by the phosphatase CysQ. Chapter 1 provides a general overview of the transcriptional, biochemical, and molecular levels of sulfur metabolism regulation in Mtb, while Chapters 2 and 3 present a detailed analysis of how CysQ may influence sulfur transactions in the cell. Chapter 4 explores the biosynthesis of the cell wall glycolipid Polyacyltrehalose, which is exclusively synthesized by pathogenic mycobacteria and may mediate host-pathogen interactions. Finally, Chapter 5 describes a novel osmoregulatory pathway in Mtb that affects the pathogen’s response to osmotic stress and its production of the well-characterized virulence factor EspA. 1 This dissertation is dedicated to my father, who is tragically unable to witness the summit, but inspired the climb. i Investigations of Metabolic Pathways in Mycobacterium tuberculosis Table of Contents List of Figures v List of Tables vii List of Schemes vii Acknowledgements viii Chapter 1. Regulation of sulfur metabolism in Mycobacterium tuberculosis Introduction 1 Transcriptional regulation of sulfur metabolism genes 3 Biochemical regulation of sulfur metabolism 6 Molecular mechanisms of sulfur metabolism regulation 7 Summary 8 Thesis overview 8 References 8 Chapter 2. Biochemical characterization of the Mycobacterium tuberculosis CysQ Introduction 14 Results and discussion 16 Identification of CysQ homolog Rv2131c in the 16 M. tuberculosis genome Heterologous expression of Rv2131c in E. coli 16 Defining optimal conditions for PAP phosphatase activity 17 Sensitivity of Rv2131c to alkali metal cations 18 ii Electrospray ionization mass spectrometry assay 19 Steady-state kinetic assays 20 Genetic complementation of an E. coli ΔcysQ mutant 23 Conclusions 24 Materials and methods 24 References 29 Chapter 3. Exploring the role of the 3'-phosphoadenosine-5'-phosphatase CysQ in Mycobacterium tuberculosis sulfur metabolism Introduction 34 Results 35 Disruption of cysQ attenuates M. tuberculosis growth in vitro 35 CysQ does not affect the thiol composition of M. tuberculosis 36 SL1278 and Sulfolipid-1 (SL-1) biosynthesis are inhibited by the 36 disruption of cysQ Discussion 38 Materials and methods 39 References 40 Chapter 4. Biochemical characterization of the acyltransferase PapA3 and its contribution to Polyacyltrehalose biosynthesis in Mycobacterium tuberculosis Introduction 44 Results 45 Genomic analysis of the PAT biosynthetic locus 45 PapA3 is an acyltransferase that esterifies trehalose and 46 trehalose-2-palmitate Trehalose-2-palmitate and trehalose dipalmitate are 48 products of PapA3 iii Trehalose-3-palmitate is not produced by PapA3 51 PapA3 is required for PAT biosynthesis in vivo 53 PAT biosynthesis is independent of SL-1 biosynthesis 53 Discussion 54 Materials and methods 56 References 62 Chapter 5. Discovery of a novel osmoregulatory pathway in Mycobacterium tuberculosis Introduction 66 Results 67 Osmotic stress elicits a significant transcriptional response 67 from M. tuberculosis The anti-anti-sigma factor homolog Rv0516c is highly 68 induced by osmotic stress Rv0516c deletion enhances resistance to high osmolarity and 70 vancomycin PknD phosphorylation regulates Rv0516c expression under 71 osmotic stress Rv0516c influences the transcriptional response to osmotic 73 stress Expression of the virulence factor EspA is induced by 74 osmotic stress Rv0516c and PknD regulate EspA expression and secretion 74 Discussion 75 Materials and methods 78 References 82 iv List of Figures Figure 1-1 Sulfur-containing metabolites from M. tuberculosis 1 Figure 1-2 Sulfate assimilation pathway of M. tuberculosis 2 Figure 1-3 Feedback regulation of RsrA activity and SigR (σR)-mediated 5 transcription by MSH in S. coelicolor Figure 1-4 Modification of the active site cysteine of type I sulfatases by 6 formylglycine-generating enzyme (FGE) Figure 2-1 Sulfate assimilation pathways of E. coli and M. tuberculosis 14 Figure 2-2 Multiple sequence alignment of enzymes from the 16 phosphomonoesterase protein family Figure 2-3 pH, metal, and Mg2+ dependence of Rv2131c PAP 17 phosphatase activity Figure 2-4 Inhibition of Rv2131c PAP phosphatase activity by Li+, Na+, 18 and K+ Figure 2-5 Reaction progress curve for determining the linear range of 20 Rv2131c PAP phosphatase activity Figure 2-6 Sample mass spectra from the kinetic study of Rv2131c with 21 PAP as the substrate Figure 2-7 Steady-state kinetics of Rv2131c with PAP as the substrate 22 Figure 2-8 Complementation of ΔcysQ sulfite auxotrophy in E. coli 23 Figure 3-1 The sulfate assimilation pathway of M. tuberculosis 34 Figure 3-2 Disruption of cysQ attenuates M. tuberculosis growth in vitro 35 Figure 3-3 CysQ does not affect the biosynthesis of mycothiol, hydrogen 36 sulfide, or coenzyme A as determined by the monobromobimane method Figure 3-4 Loss of CysQ decreases biosynthesis of the sulfated 37 glycolipids Sulfolipid-1 and SL1278 v Figure 4-1 PAT and SL-1 share related structures and biosynthetic 44 gene clusters Figure 4-2 Purification of PapA3 from maltose-binding protein (MBP) 46 using immobilized metal affinity chromatography Figure 4-3 PapA3 is an acyltransferase that sequentially palmitoylates 47 trehalose in vitro Figure 4-4 Linear-ion trap MSn of synthetic T2P is consistent with that of 49 the product ion at m/z 615.32 in the reaction of PapA3 with trehalose Figure 4-5 Linear-ion trap MSn of the product ion at m/z 853.54 in the 50 reaction of PapA3 with trehalose Figure 4-6 Linear-ion trap MSn of the diacyl product ions from the reaction 51 of PapA3 with trehalose and T2P is consistent with 2,3-dipalmitoylation of trehalose Figure 4-7 T3P is not a substrate for PapA3 52 Figure 4-8 Linear-ion trap MSn of the monoacyl product ion from the 52 reaction of PapA3 with trehalose is consistent with that of synthetic T2P and not that of synthetic T3P Figure 4-9 PAT biosynthesis requires papA3, but not stf0, in vivo 54 Figure 4-10 Proposed PAT biosynthetic pathway 55 Figure 5-1 Rv0516c is induced by osmotic stress 69 Figure 5-2 Rv0516c enhances sensitivity to osmotic stress and vancomycin 71 Figure 5-3 Rv0516c is an anti-anti-sigma factor homolog whose expression 72 under osmotic stress is mediated by PknD phosphorylation Figure 5-4 Rv0516c deletion enhances transcription of some of the most 73 highly induced genes in the osmotic stress regulon of M. tuberculosis Figure 5-5 Osmotic stress, Rv0516c, and PknD regulate expression of 74 the virulence factor EspA Figure 5-6 Model of the Rv0516c osmoregulatory pathway 76 vi List of Tables Table 1-1 Sulfur metabolism genes from M. tuberculosis induced by 4 various conditions of environmental stress Table 2-1 Michaelis-Menten parameters for Rv2131c 22 Table 4-1 Substrate specificity of PapA3 48 Table 5-1 Genes showing greatest upregulation in M. tuberculosis strain 68 CDC1551 upon exposure to osmotic stress List of Schemes Scheme 4-1 Synthesis of 3-O-palmitoyl-α,α-D-trehalose 57 vii Acknowledgements I have many people to thank for their guidance, support, and encouragement these last five years. My advisor, Dr. Carolyn Bertozzi, has been a stalwart supporter of my career since I joined the lab. She gave me the scientific freedom to explore offbeat ideas, even those truly peripheral to the group’s research, and provided the resources to help guide me down the rabbit hole. Those research experiences have done so much to bolster my confidence as a scientist. I think most people, myself included, confront feelings of insecurity during graduate school, often questioning whether or not they can excel in their chosen field. Carolyn has always made me feel like I can excel as a scientist, and for that I am truly grateful. I admire her positive attitude, her exceptional ability to communicate complex ideas, and knack for mitigating seemingly epic research disasters into minor misfortunes. She has been a tremendous role model, and I have learned so much during my time in her lab. I would like to thank the members of the Bertozzi group, past and present, for their enduring scientific and emotional support over the years. I would especially like to thank the denizens of room 817, Mike Boyce, Jessica Seeliger, and Gaby de Almeida, for always offering a sympathetic ear during episodes of grad school catharsis and for providing such a positive work environment, not to mention a hip soundtrack for the daily grind.
Recommended publications
  • A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium Smegmatis Is Involved in De Novo Cysteine Biosynthesis
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2020 A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis Saroj Kumar Mahato University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Cell Biology Commons, Molecular Biology Commons, and the Pathogenic Microbiology Commons Citation Mahato, S. K. (2020). A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis. Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3639 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Cell and Molecular Biology by Saroj Kumar Mahato Purbanchal University Bachelor of Science in Biotechnology, 2016 May 2020 University of Arkansas This thesis is approved for recommendation to the Graduate Council. ___________________________________ Young Min Kwon, Ph.D. Thesis Director ___________________________________ ___________________________________ Suresh Thallapuranam, Ph.D. Inés Pinto, Ph.D. Committee Member Committee Member ABSTRACT Mycobacteria include serious pathogens of humans and animals. Mycolicibacterium smegmatis is a non-pathogenic model that is widely used to study core mycobacterial metabolism. This thesis explores mycobacterial pathways of cysteine biosynthesis by generating and study of genetic mutants of M. smegmatis. Published in vitro biochemical studies had revealed three independent routes to cysteine synthesis in mycobacteria involving separate homologs of cysteine synthase, namely CysK1, CysK2, and CysM.
    [Show full text]
  • Comparative Analysis of Mutants in the Mycothiol Biosynthesis Pathway in Mycobacterium Smegmatis
    Biochemical and Biophysical Research Communications 363 (2007) 71–76 www.elsevier.com/locate/ybbrc Comparative analysis of mutants in the mycothiol biosynthesis pathway in Mycobacterium smegmatis Mamta Rawat a, Chantale Johnson a, Vanessa Cadiz a, Yossef Av-Gay b,* a Department of Biology, California State University-Fresno, Fresno, CA 937401, USA b Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada V5Z 3J5 Received 17 August 2007 Available online 31 August 2007 Abstract The role of mycothiol in mycobacteria was examined by comparative analysis of mutants disrupted in the four known genes encoding the protein machinery needed for mycothiol biosynthesis. These mutants were sensitive to acid stress, antibiotic stress, alkylating stress, and oxidative stress indicating that mycothiol and mycothiol-dependent enzymes protect the mycobacterial cell against attack from various different types of stresses and toxic agents. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Mycothiol; Mycothiol deacetylase; Mycothiol ligase; Mycothiol synthase; Oxidative stress; Toxins; Xenobiotics Mycobacteria, like most other Gram-positive bacteria do We have previously reported that Mycobacterium not make glutathione but produce another low molecular smegmatis mutants disrupted in the four known genes weight thiol, mycothiol (MSH) (Fig. 1), 1-D-myoinosityl- [3,9–11] involved in mycothiol biosynthesis are resistant to 2-(n-acetyl-L-cysteinyl)-amido-2-deoxy-a-D-glucopyranoside. isoniazid, a front-line drug used in the treatment of tubercu- Since MSH is unique to actinomycetales [1], enzymes losis. We have also reported that M. smegmatis mutants involved in MSH biosynthesis and metabolism are poten- lacking mycothiol ligase activity and thus mycothiol are tial targets for drugs directed against pathogenic mycobac- sensitive to a wide range of antibiotics, alkylating agents, teria like Mycobacterium tuberculosis.
    [Show full text]
  • A New Michaelis Complex Leads to Efficient Transition State Charge Offset
    Evolutionary repurposing of a sulfatase: A new Michaelis complex leads to efficient transition state charge offset Charlotte M. Mitona,1, Stefanie Jonasa,2, Gerhard Fischera,3, Fernanda Duarteb,3,4, Mark F. Mohameda, Bert van Looa,5, Bálint Kintsesa,6, Shina C. L. Kamerlinb, Nobuhiko Tokurikia,c, Marko Hyvönena, and Florian Hollfeldera,7 aDepartment of Biochemistry, University of Cambridge, CB2 1GA Cambridge, United Kingdom; bDepartment of Chemistry, Biomedicinskt Centrum (BMC), Uppsala University, 751 23 Uppsala, Sweden; and cMichael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada Edited by Daniel Herschlag, Stanford University, Stanford, CA, and accepted by Editorial Board Member Michael A. Marletta May 31, 2018 (received for review January 31, 2018) The recruitment and evolutionary optimization of promiscuous catalytic residues but also occurs at the periphery of the catalytic enzymes is key to the rapid adaptation of organisms to changing machinery, even in positions as remote as the second and third environments. Our understanding of the precise mechanisms shells of the active site (23). In studies examining detailed evo- underlying enzyme repurposing is, however, limited: What are lutionary transitions, function-altering mutations led to the dis- the active-site features that enable the molecular recognition of placement of a catalytic metal ion or the repositioning of a multiple substrates with contrasting catalytic requirements? To nucleophile (24–26). In further cases, the position of the catalytic gain insights into the molecular determinants of adaptation in residues remained unaltered, but other structural features, for promiscuous enzymes, we performed the laboratory evolution of an arylsulfatase to improve its initially weak phenylphosphonate Significance hydrolase activity.
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Investigations Into Intracellular Thiols of Biological Importance
    Investigations into Intracellular Thiols of Biological Importance by Christine Elizabeth Hand A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemistry Waterloo, Ontario, Canada, 2007 © Christine Elizabeth Hand 2007 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract The presence of thiols in living systems is critical for the maintenance of cellular redox homeostasis, the maintenance of protein thiol-disulfide ratios and the protection of cells from reactive oxygen species. In addition to the well studied tripeptide glutathione (γ-Glu-Cys-Gly), a number of compounds have been identified that contribute to these essential cellular roles. Many of these molecules are of great clinical interest due to their essential role in the biochemistry of a number of deadly pathogens, as well as their possible role as therapeutic agents in the treatment of a number of diseases. A series of studies were undertaken using theoretical, chemical and biochemical approaches on a selection of thiols, ergothioneine, the ovothiols and mycothiol, to further our understanding of these necessary biological components. Ergothioneine is present at significant physiological levels in humans and other mammals; however, a definitive role for this thiol has yet to be determined. It has been implicated in radical scavenging in vivo and shows promise as a therapeutic agent against disease states caused by oxidative damage.
    [Show full text]
  • Exploring the Microbiome of the Mediterranean Sponge Aplysina Aerophoba by Single-Cell and Metagenomics
    Exploring the microbiome of the Mediterranean sponge Aplysina aerophoba by single-cell and metagenomics Untersuchungen am Mikrobiom des Mittelmeerschwamms Aplysina aerophoba mittels Einzelzell- und Metagenomik Doctoral thesis for a doctoral degree at the Graduate School of Life Sciences Julius-Maximilians-Universität Würzburg Section: Integrative Biology Submitted by Beate Magdalena Slaby from München Würzburg, March 2017 Submitted on: ……………………………………………………… Members of the Promotionskomitee Chairperson: Prof. Dr. Thomas Müller Primary Supervisor: Prof. Dr. Ute Hentschel Humeida Supervisor (Second): Prof. Dr. Thomas Dandekar Supervisor (Third): Prof. Dr. Frédéric Partensky Date of public defense: ……………………………………………………… Date of receipt of certificates: ……………………………………………………… ii Affidavit I hereby confirm that my thesis entitled ‘Exploring the microbiome of the Mediterranean sponge Aplysina aerophoba by single-cell and metagenomics’ is the result of my own work. I did not receive any help or support from commercial consultants. All sources and / or materials applied are listed and specified in the thesis. Furthermore, I confirm that this thesis has not yet been submitted as part of another examination process neither in identical nor in similar form. Place, Date Signature iii Acknowledgements I received financial support for this thesis project by a grant of the German Excellence Initiative to the Graduate School of Life Sciences of the University of Würzburg through a PhD fellowship, and from the SponGES project that has received funding from the European Union’s Horizon 2020 research and innovation program. I would like to thank: Dr. Ute Hentschel Humeida for her support and encouragement, and for providing so many extraordinary opportunities. Dr. Thomas Dandekar and Dr. Frédéric Partensky for the supervision and a number of very helpful discussions.
    [Show full text]
  • S. Nagel Et Al., Microarray Analysis of the Global Gene Expression Profile Following Hypothermia and Transient Focal Cerebral Ischemia Neuroscience 2012
    S. Nagel et al., Microarray analysis of the global gene expression profile following hypothermia and transient focal cerebral ischemia Neuroscience 2012 Supplementary Table 1 Gene Symbol Entrez Gene Name Affymetrix SNP ID Fold Change PEBP1 phosphatidylethanolamine binding protein 1 E05646cds_s_at 36,571 KIFC1 kinesin family member C1 AF035951_at 29,307 SERP1 stress-associated endoplasmic reticulum protein 1 AF100470_at 23,16 FDXR ferredoxin reductase D63761_g_at 22,504 SYNPO synaptopodin AB013130_at 21,174 ID1 inhibitor of DNA binding 1, dominant negative helix-loop-helix protein L23148_g_at 16,233 GTF2F2 general transcription factor IIF, polypeptide 2, 30kDa L01267_at 15,592 PPP2R2C protein phosphatase 2, regulatory subunit B, gamma D38261_at 15,356 RASGRP1 RAS guanyl releasing protein 1 (calcium and DAG-regulated) AF081196_at 15,142 UBB -- D16554_at 14,996 SLC37A4 solute carrier family 37 (glucose-6-phosphate transporter), member 4 AF080468_g_at 14,757 LIMK2 LIM domain kinase 2 D31874_at 14,254 PPP1R15A protein phosphatase 1, regulatory (inhibitor) subunit 15A AF020618_g_at 13,988 HPCAL4 hippocalcin like 4 D13125_at 13,128 FAIM2 Fas apoptotic inhibitory molecule 2 AF044201_at 12,77 GJA5 gap junction protein, alpha 5, 40kDa AF022136_at 12,751 SLC2A3 solute carrier family 2 (facilitated glucose transporter), member 3 D13962_g_at 12,245 TRIM23 tripartite motif containing 23 L04760_at 12,122 PIP4K2C phosphatidylinositol-5-phosphate 4-kinase, type II, gamma AF030558_at 11,698 SBK1 SH3-binding domain kinase 1 AB010154_at 11,523 PLEKHA1 pleckstrin
    [Show full text]
  • N-Acetylgalactosamine-6-Sulfate Sulfatase in Man. Absence of the Enzyme in Morquio Disease
    N-acetylgalactosamine-6-sulfate sulfatase in man. Absence of the enzyme in Morquio disease. J Singh, … , P Niebes, D Tavella J Clin Invest. 1976;57(4):1036-1040. https://doi.org/10.1172/JCI108345. Research Article Human N-acetylgalactosamine-6-sulfate sulfatase (6-sulfatase) activity is measured by using as a substrate a sulfated tetrasaccharide obtained by digesting purified chondroitin-6-sulfate (C-6-S) with testicular hyaluronidase. The amount of inorganic sulfate released is measured turbidimetrically. The enzyme from human kidney has a pH optimum of 4.8; its activity is augmented by low levels of NaCl and inhibited by phosphate and high levels of NaCl. Free glucuronate, acetylgalactosamine, inorganic sulfate, polymeric C-6-S, or tetrasaccharide obtained from chondroitin-4-sulfate do not affect the enzyme activity. The method may be used for the diagnosis of Morquio disease since extracts of Morquio fibroblasts are devoid of 6-sulfatase activity. Find the latest version: https://jci.me/108345/pdf N-Acetylgalactosamine-6-Sulfate Sulfatase in Man ABSENCE OF THE ENZYME IN MORQUIO DISEASE JAGAT SINGH, NICOLA Di FERRANTE, PAUL NIEBES, and DANIELA TAVELLA From the Departments of Biochemistry and Medicine, and the Division of Orthopedic Surgery of the Department of Surgery, Baylor College of Medicine, Houston, Texas 77025 and Zyma, S.A., Nyon, Switzerland A B S T R A C T Human N-acetylgalactosamine-6-sulfate measurement, and the need to ascertain whether the sulfatase (6-sulfatase) activity is measured by using as sulfate released was in position 4 or 6 of the galactos- a substrate a sulfated tetrasaccharide obtained by di- amine moieties make the method (1) rather laborious gesting purified chondroitin-6-sulfate (C-6-S) with tes- and not ideal for the routine assay of the enzyme ac- ticular hyaluronidase.
    [Show full text]
  • Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT)
    International Journal of Molecular Sciences Review Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT) Abu Iftiaf Md Salah Ud-Din 1, Alexandra Tikhomirova 1 and Anna Roujeinikova 1,2,* 1 Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; [email protected] (A.I.M.S.U.-D.); [email protected] (A.T.) 2 Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia * Correspondence: [email protected]; Tel.: +61-3-9902-9194; Fax: +61-3-9902-9222 Academic Editor: Claudiu T. Supuran Received: 30 May 2016; Accepted: 20 June 2016; Published: 28 June 2016 Abstract: General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections.
    [Show full text]
  • Suzanne Pfeffer
    July 2010 ASBMB PreSidentiAl PriMer: Suzanne Pfeffer American Society for Biochemistry and Molecular Biology AAdjuvdjuvAAntnt IImmunothermmunotherAApypy ususIIngng KKrnrn70007000 KRN7000 (α-Galactosyl Ceramide) Avanti Number 867000 Supplier: Funakoshi Co. Ltd. Hepatic metastasis is a major clinical problem in cancer treatment. We examined antitumor ac- tivity of alpha-galactosylceramide (KRN7000) on mice with spontaneous liver metastases of re- ticulum cell sarcoma M5076 tumor cells (spontaneous metastasis model). In this model, all mice that were s.c. challenged with one million tumor cells developed a solid s.c. mass by day 7 and died of hepatic metastases. In the current study, we administered 100 microg/kg of KRN7000 to the model mice on days 7, 11, and 15. This treatment suppressed the growth of established liver metastases and resulted in the prolongation of survival time. Fluorescence-activated cell sorter analysis of phenotypes of spleen cells, hepatic lymphocytes, and regional lymph node cells around the s.c. tumor revealed that CD3+NK1.1+ (NKT) cells increased in hepatic lym- phocytes of the KRN7000-treated mice. Cytotoxic activity and IFN-gamma production of hepatic lymphocytes were augmented in comparison with those of spleen cells and regional LN cells. At the same time, interleukin (IL)-12 production of hepatic lymphocytes was markedly enhanced. Neutralization of IL-12 using a blocking monoclonal antibody diminished the prolonged survival time. These results showed that the in vivo antitumor effects of KRN7000 on spontaneous liver metastases were dependent on the endogenous IL-12 production, where NKT cells in the liver are suggested to be involved. Adjuvant immunotherapy using KRN7000 could be a promising modality for the prevention of postoperative liver metastases.
    [Show full text]
  • NIH Conflict of Interest Regs Revised
    OCTOBEROCTOBER 2005 www.asbmb.org Constituent Society of FASEB AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY NIH Conflict of Interest Regs Revised SEE PAGE 30 FOR NEW CLARA BENSON TRAVEL FELLOWSHIP AWARD Held in conjunction with EB2006 Custom Antibodies Your Way! Choose the protocol that is right for you! QwikScreen ™: 65 day, 2 rabbit protocol - 4 immunizations, 3 bleeds/rabbit (~100ml serum), customer supplied peptide/protein - Options: Peptide synthesis, immunograde Conjugation to carrier u ELISA u u Animal extensionsMS analysis $685 Standard: 80 day, 2 rabbit protocol - 5 immunizations, 5 bleeds/rabbit (~ 200ml ser Options: um), ELISA, customer supplied peptide/pr Peptide synthesis MS Check™ peptide sequence confirmation u HPLC purified peptide Affinity purification otein - Pinnacle: $975 u HPLC and MS analysis u Complete Affinity Purified Protocol- Animal extensions 2 rabbit pr 5 bleeds/rabbitotocol, (~ 200mlepitope serum), design, peptide PhD technical synthesis support, (up to 20mer),5 immunizations, HPLC purified to ~85%, 5+mg peptide to customer, ELISA, evaluation period, affinity purification, and morMS Check™ peptide sequence confirmationNo Hidden Charges! e… - Discounts for Multiple Protocols$1795 , Includes peptide sequencing by CID MS/MS– u Guaranteed Peptide Let our enthusiasm for scienceExpert workTechnical for SupportFidelity! P: 508.303.8222 www.21stcenturybio.com Toll-free: 877.217.8238 F: 508.303.8333 you! E: [email protected] www.asbmb.org AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY OCTOBER
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]