Author Section
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gram-Negative Bacteria; for Instance, Coetzee Spheroplast Formation
Agric. Biol. Chem., 49 (1), 133-140, 1985 133 Fusion of Spheroplasts and Genetic Recombination of Zymomonasmobilis Hideshi Yanase, Masaru Yasui, Takayuki Miyazaki and KenzoTonomura Department of Agricultural Chemistry, College of Agriculture, University of Osaka Prefecture, Mozu-ume-machi, Sakai, Osaka 591, Japan Received July 1.8, 1984 Spheroplasts of Zymomonasmobilis (Z-6) were prepared by cultivating it in a hypertonic mediumcontaining penicillin G or glycine at 30°C for more than 6 hr. Thereversion of spheroplasts to a bacillary form was observed at frequencies of 10~2 to 10~3 whenspheroplasts were incubated on hypertonic solid agar plates overlaid with soft agar. Spheroplast fusion was attempted with polyethylene glycol 6000 by crossing two mutants lacking the ability to ferment sugars. Fusants were selected, and obtained at high frequencies. The properties of a stable fusant are discussed. Recently broad host-range plasmids have Media. For the cultivation of Zymomonasstrains, RM and T media were used. RMmediumcontained 2% been transferred into Zymomonasmobilis by glucose, 1.0% yeast extract and 0.2% KH2PO4, pH 6.0. T conjugation.1 ~4) However, transformation medium contained 10% glucose, 1% yeast extract, 1% and transduction have not yet been accom- KH2PO4, 1% (NH4)2SO4 and 0.05% MgSO4-7H2O, pH plished. Besides, cell fusion could be regarded 5.6. For the formation of spheroplasts, S mediumwas used as a useful method for strain improvement. containing 20%sucrose, 2%glucose, 1%yeast extract, There have been manyreports indicating pro- 0.2% KH2PO4 and 0.2% MgSO4à"7H2O, pH 6.0. For the toplast fusion in Gram-positive bacteria such regeneration, R mediumwas used containing 16% sor- as Bacillus^ Staphylococcus,6) Brevibacte- bitol, 2% glucose, 1% yeast extract and 0.2% KH2PO4, pH riurn1) and Streptomyces^ but only a few on Gram-negative bacteria; for instance, Coetzee Spheroplast formation. -
Comparative Analysis of Mutants in the Mycothiol Biosynthesis Pathway in Mycobacterium Smegmatis
Biochemical and Biophysical Research Communications 363 (2007) 71–76 www.elsevier.com/locate/ybbrc Comparative analysis of mutants in the mycothiol biosynthesis pathway in Mycobacterium smegmatis Mamta Rawat a, Chantale Johnson a, Vanessa Cadiz a, Yossef Av-Gay b,* a Department of Biology, California State University-Fresno, Fresno, CA 937401, USA b Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada V5Z 3J5 Received 17 August 2007 Available online 31 August 2007 Abstract The role of mycothiol in mycobacteria was examined by comparative analysis of mutants disrupted in the four known genes encoding the protein machinery needed for mycothiol biosynthesis. These mutants were sensitive to acid stress, antibiotic stress, alkylating stress, and oxidative stress indicating that mycothiol and mycothiol-dependent enzymes protect the mycobacterial cell against attack from various different types of stresses and toxic agents. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Mycothiol; Mycothiol deacetylase; Mycothiol ligase; Mycothiol synthase; Oxidative stress; Toxins; Xenobiotics Mycobacteria, like most other Gram-positive bacteria do We have previously reported that Mycobacterium not make glutathione but produce another low molecular smegmatis mutants disrupted in the four known genes weight thiol, mycothiol (MSH) (Fig. 1), 1-D-myoinosityl- [3,9–11] involved in mycothiol biosynthesis are resistant to 2-(n-acetyl-L-cysteinyl)-amido-2-deoxy-a-D-glucopyranoside. isoniazid, a front-line drug used in the treatment of tubercu- Since MSH is unique to actinomycetales [1], enzymes losis. We have also reported that M. smegmatis mutants involved in MSH biosynthesis and metabolism are poten- lacking mycothiol ligase activity and thus mycothiol are tial targets for drugs directed against pathogenic mycobac- sensitive to a wide range of antibiotics, alkylating agents, teria like Mycobacterium tuberculosis. -
Great South African Molecules: the Case for Mycothiol
REVIEW ARTICLE C.M. Nkambule, 67 S. Afr. J. Chem., 2017, 70, 67–81, <http://journals.sabinet.co.za/sajchem/>. Great South African Molecules: The Case For Mycothiol Comfort M. Nkambule Department of Chemistry, Tshwane University of Technology, Pretoria, 0001, South Africa. Received 13 September 2016, revised 15 March 2017, accepted 17 March 2017. ABSTRACT South Africa has one of the oldest chemical societies in the world and has a long history of natural products, synthetic, and medici- nal chemistry yet the visibility of molecules discovered or synthesized in South Africa is very low. Is this because South African scientists are incapable of discovering influential and celebrated molecules, or is there inadequate publicity of such discoveries? Perspective profiles on the discovery and scope of research on ‘Great South African Molecules’ should be a good start to redress this state of affairs. One such molecule deserving publicity is the antioxidant mycothiol which is produced by mycobacteria. This is a molecule of interest not only because of its medicinal potential in the fight against tuberculosis, but also from synthetic methodology and enzyme inhibition studies. This review aims to illuminate the scope of research in mycothiol chemistry for the purpose of promoting multidisciplinary investigations related to this South African molecule. KEYWORDS Mycothiol, Mycobacterium tuberculosis, great molecules, chemistry Nobel Prize. Table of Contents 1. What is a Great Molecule?· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 2. Is Mycothiol a Great Molecule? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 71 2.1. Is Mycothiol a South African Molecule? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 71 3. Why is Mycothiol a Molecule of Great Potential? · · · · · · · · · · · · · · · · · · · · · · · · · · · 72 3.1. Mycothiol’s Significance to the TB Problem· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 72 3.2. -
Distinct Single-Cell Morphological Dynamics Under Beta-Lactam Antibiotics
Molecular Cell Article Distinct Single-Cell Morphological Dynamics under Beta-Lactam Antibiotics Zhizhong Yao,1,3 Daniel Kahne,1,4,* and Roy Kishony2,3,* 1Department of Chemistry and Chemical Biology 2School of Engineering and Applied Sciences Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA 3Department of Systems Biology 4Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA *Correspondence: [email protected] (D.K.), [email protected] (R.K.) http://dx.doi.org/10.1016/j.molcel.2012.09.016 SUMMARY in cell division, elongation, and shape maintenance (Spratt, 1975). It has been proposed that inhibition of crosslink forma- The bacterial cell wall is conserved in prokaryotes, tion by beta-lactams combined with misregulated cell-wall stabilizing cells against osmotic stress. Beta- degradation by PG hydrolases results in the accumulation of lactams inhibit cell-wall synthesis and induce lysis PG defects, which ultimately leads to cell lysis (Chung et al., through a bulge-mediated mechanism; however, 2009). little is known about the formation dynamics and The physical process of PG defect formation and subsequent stability of these bulges. To capture processes of lysis is poorly understood. Previous literature suggested a bulge-mediated process (Chung et al., 2009; Huang et al., different timescales, we developed an imaging 2008), and the reported rates of lysis have been loosely charac- platform combining automated image analysis with terized as slow and fast (de Pedro et al., 2002). However, in the live-cell microscopy at high time resolution. Beta- absence of systematic characterization of bulge-formation lactam killing of Escherichia coli cells proceeded dynamics and their variability across individual cells, it is unclear through four stages: elongation, bulge formation, whether lysis occurs uniformly within isogenic cell populations, bulge stagnation, and lysis. -
Contact Allergy to Aluminium Siemund, Ingrid
Contact allergy to aluminium Siemund, Ingrid 2017 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Siemund, I. (2017). Contact allergy to aluminium. Lund University: Faculty of Medicine. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 INGRID SIEMUND INGRID Contact allergy to aluminium Contact allergy to aluminium INGRID SIEMUND | DEPARTMENT OF OCCUPATIONAL AND ENVIRONMENTAL DERMATOLOGY | SKÅNE UNIVERSITY HOSPITAL, LUND UNIVERSITY 9 Department of Occupational and 789176 Environmental Dermatology Lund University, Faculty of Medicine 2017:113 Doctoral Dissertation Series 2017:113 194959 ISBN 978-91-7619-495-9 ISSN 1652-8220 Contact allergy to aluminium 1 2 Contact allergy to aluminium Ingrid Siemund DOCTORAL DISSERTATION by due permission of the Faculty of Medicine, Lund University, Sweden. -
List of Union Reference Dates A
Active substance name (INN) EU DLP BfArM / BAH DLP yearly PSUR 6-month-PSUR yearly PSUR bis DLP (List of Union PSUR Submission Reference Dates and Frequency (List of Union Frequency of Reference Dates and submission of Periodic Frequency of submission of Safety Update Reports, Periodic Safety Update 30 Nov. 2012) Reports, 30 Nov. -
Effects of Antibiotics on the Bactericidal Activity of Human Serum
Journal of Antimicrobial Chemotherapy (1982)9,141-148 Effects of antibiotics on the bactericidal activity of human serum Downloaded from https://academic.oup.com/jac/article/9/2/141/712569 by guest on 28 September 2021 Anna Fietta, Patrizia Mangiarotti and Giuliana Gialdroni Grassi Istituto Forlanini, University ofPavia, Italy The interaction between several antibiotics and either normal human serum or EGTA-chelated Mg-treated serum has been tested. Synergism has been observed with rifampicin, tetracycline and doxycycline, but not with minocycline, amino- glycosides (kanamycin, tobramycin, gentamicin, sisomicin and amikacin), chloramphenicol, fosfomycin and erythromycin. It has been demonstrated that Escherichia coli K12 strains bearing plasmids, conferring resistance to tetra- cycline, were killed in the presence of serum. Evidence has been presented that this synergistic action depends on com- plement and can be abolished by serum treatment with ethyleneglycol-tetraacetic acid. Introduction Interference of antimicrobial agents on several reactions involved in the host defence system has been demonstrated by many authors. It has been suggested that resistance to serum bactericidal activity can be an important factor in determining virulence of some Gram-negative bacteria (Durack & Beeson, 1977; Elgefors & Oiling, 1978; Howard & Glynn, 1971; McCabe et al., 1978; Medearis & Kenny, 1968; Oiling et al, 1973; Roantree & Rantz, 1960; Rowley, 1954), and serum bactericidal activity is an important mechanism of defence against bacterial invasion and spread (Agnella, 1978; McCabe et al, 1978; Roantree & Rantz, 1960; Johnston & Strand, 1977). Many Gram-negative Enterobacteriaceae causing bacteraemia are resistant to the bactericidal action of serum (Rowley & Wardlaw, 1958; Vosti & Randall, 1970). Conversion of serum-resistant Escherichia coli to serum-susceptible has been observed after treatment with diphenylamine (Feingold, 1969). -
PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. -
Actinomyces Naeslundii: an Uncommon Cause of Endocarditis
Hindawi Publishing Corporation Case Reports in Infectious Diseases Volume 2015, Article ID 602462, 4 pages http://dx.doi.org/10.1155/2015/602462 Case Report Actinomyces naeslundii: An Uncommon Cause of Endocarditis Christopher D. Cortes,1 Carl Urban,1,2 and Glenn Turett1 1 The Dr. James J. Rahal, Jr. Division of Infectious Diseases, NewYork-Presbyterian Queens, Flushing, NY 11355, USA 2Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA Correspondence should be addressed to Carl Urban; [email protected] and Glenn Turett; [email protected] Received 21 September 2015; Accepted 16 November 2015 Academic Editor: Sandeep Dogra Copyright © 2015 Christopher D. Cortes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Actinomyces rarely causes endocarditis with 25 well-described cases reported in the literature in the past 75 years. We present a case of prosthetic valve endocarditis (PVE) caused by Actinomyces naeslundii.Toourknowledge,thisisthefirstreportintheliterature of endocarditis due to this organism and the second report of PVE caused by Actinomyces. 1. Introduction holosystolic decrescendo murmur. Abnormal laboratory tests included a WBC count of 16.5 K/L (reference range: 4.8– Actinomyces naeslundii is a Gram positive anaerobic bacillary 10.8 K/L) with 88.5% neutrophils and C-reactive protein commensal of the human oral cavity. Septicemia with this (CRP) 7.02 mg/L (reference range: 0.03–0.49 mg/dL). Only organism is uncommon and poses an increased risk of one set of blood cultures was drawn prior to empirically subacute and chronic granulomatous inflammation, which starting vancomycin and ceftriaxone (the patient had a can affect all organ systems via hematogenous spread [1]. -
Use of Polyphenolic Compounds in Dermatologic Oncology Adilson Costa, Emory University Michael Yi Bonner, Emory University Jack Arbiser, Emory University
Use of Polyphenolic Compounds in Dermatologic Oncology Adilson Costa, Emory University Michael Yi Bonner, Emory University Jack Arbiser, Emory University Journal Title: American Journal of Clinical Dermatology Volume: Volume 17, Number 4 Publisher: Adis | 2016-08-01, Pages 369-385 Type of Work: Article | Post-print: After Peer Review Publisher DOI: 10.1007/s40257-016-0193-5 Permanent URL: https://pid.emory.edu/ark:/25593/s99z6 Final published version: http://dx.doi.org/10.1007/s40257-016-0193-5 Copyright information: © 2016, Springer International Publishing Switzerland (outside the USA). Accessed September 26, 2021 2:39 AM EDT HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Am J Clin Manuscript Author Dermatol. Author Manuscript Author manuscript; available in PMC 2018 April 16. Published in final edited form as: Am J Clin Dermatol. 2016 August ; 17(4): 369–385. doi:10.1007/s40257-016-0193-5. Use of Polyphenolic Compounds in Dermatologic Oncology Adilson Costa1, Michael Yi Bonner1, and Jack L. Arbiser1 1Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA 30322, USA Abstract Polyphenols are a widely used class of compounds in dermatology. While phenol itself, the most basic member of the phenol family, is chemically synthesized, most polyphenolic compounds are found in plants and form part of their defense mechanism against decomposition. Polyphenolic compounds, which include phenolic acids, flavonoids, stilbenes, and lignans, play an integral role in preventing the attack on plants by bacteria and fungi, as well as serving as cross-links in plant polymers. There is also mounting evidence that polyphenolic compounds play an important role in human health as well. -
Fatal Subdural Empyema Caused by Streptococcus Constellatus and Actinomyces Viscosus in a Childdcase Report
Journal of Microbiology, Immunology and Infection (2011) 44, 394e396 available at www.sciencedirect.com journal homepage: www.e-jmii.com CASE REPORT Fatal subdural empyema caused by Streptococcus constellatus and Actinomyces viscosus in a childdCase report Asma Bouziri a,*, Ammar Khaldi a, Hane`ne Smaoui b, Khaled Menif a, Nejla Ben Jaballah a a Pediatric Intensive Care Unit, Children’s Hospital of Tunis, Place Bab Saadoun, Tunis, Tunisia b Department of Microbiology, Children’s Hospital of Tunis, Tunis, Tunisia Received 4 August 2009; received in revised form 21 January 2010; accepted 21 March 2010 KEYWORDS Group milleri streptococci that colonize the mouth and the upper airways are generally Actinomyces viscosus; considered to be commensal. In combination with anaerobics, they are rarely responsible Empyema; for brain abscesses in patients with certain predisposing factors. Mortality in such cases Streptococcus is high and complications are frequent. We present a case of fatal subdural empyema constellatus; caused by Streptococcus constellatus and Actinomyces viscosus in a previously healthy Subdural 7-year-old girl. Copyright ª 2011, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. All rights reserved. Introduction intestinal, and urogenital tract.1 After translocation into otherwise sterile sites, they may cause purulent infections Group milleri streptococci (GMS) comprise a heterogeneous and abscess formation mostly among seriously compro- group of streptococci, including the species intermedius, mised patients. Actinomyces -
Unexpected Diversity During Community Succession in the Apple Flower Microbiome
RESEARCH ARTICLE Unexpected Diversity during Community Succession in the Apple Flower Microbiome Ashley Shade,a Patricia S. McManus,b Jo Handelsmana Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USAa; Department of Plant Pathology, University of Wisconsin— Madison, Madison, Wisconsin, USAb ABSTRACT Despite its importance to the host, the flower microbiome is poorly understood. We report a culture-independent, community-level assessment of apple flower microbial diversity and dynamics. We collected flowers from six apple trees at five time points, starting before flowers opened and ending at petal fall. We applied streptomycin to half of the trees when flowers opened. Assessment of microbial diversity using tag pyrosequencing of 16S rRNA genes revealed that the apple flower communi- ties were rich and diverse and dominated by members of TM7 and Deinococcus-Thermus, phyla about which relatively little is known. From thousands of taxa, we identified six successional groups with coherent dynamics whose abundances peaked at dif- ferent times before and after bud opening. We designated the groups Pioneer, Early, Mid, Late, Climax, and Generalist commu- nities. The successional pattern was attributed to a set of prevalent taxa that were persistent and gradually changing in abun- dance. These taxa had significant associations with other community members, as demonstrated with a cooccurrence network based on local similarity analysis. We also detected a set of less-abundant, transient taxa that contributed to general tree-to-tree variability but not to the successional pattern. Communities on trees sprayed with streptomycin had slightly lower phylogenetic diversity than those on unsprayed trees but did not differ in structure or succession.