Impacts of Climate Change on River Basin Hydrology and Collaborative Adaptation Planning Efforts for the Nooksack River
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Climate Driven Retreat of Mount Baker Glaciers and Changing Water Resources
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/286029360 Climate Driven Retreat of Mount Baker Glaciers and Changing Water Resources Book · November 2015 CITATIONS READS 5 29 1 author: Mauri Pelto Nichols College 86 PUBLICATIONS 848 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: North Cascade Glacier Climate Project View project Characterization of glacier-dammed lakes through space and time View project All content following this page was uploaded by Mauri Pelto on 07 January 2017. The user has requested enhancement of the downloaded file. Chapter 1 Introduction to Mount Baker and the Nooksack River Watershed 1.1 Mount Baker Glaciers and the Nooksack River Watershed A stratovolcano, Mount Baker is the highest mountain in the North Cascade Range subrange at 3286 m. Mount Baker has the largest contiguous network of glaciers in the range with 12 signifi cant glaciers covering 38.6 km 2 and ranging in elevation from 1320 to 3250 m (Figs. 1.1 and 1.2 ). The Nooksack tribe refers to the mountains as Komo Kulshan, the great white (smoking) watcher. Kulshan watches over the Nooksack River Watershed, and its fl anks are principal water sources for all three branches of this river as well as the Baker River. The Nooksack River consists of the North, South, and Middle Fork which combine near Deming to create the main stem Nooksack River. The Nooksack River empties into Birch Bay near Bellingham, Washington. The Baker River drains into the Skagit River at Concrete, WA. -
Nooksack River Watershed Glacier Monitoring Summary Report 2015
NOOKSACK RIVER WATERSHED GLACIER MONITORING SUMMARY REPORT 2015 Prepared For: Nooksack Indian Tribe Contributors: Jezra Beaulieu Water Resources Specialist Oliver Grah Water Resources Program Manager December 2015 This project has been funded wholly or in part by the United States Environmental Protection Agency under Assistance Agreements BG-97011803 and PA-J31201-2, Bureau of Indian Affairs, Northwest Indian Fisheries Commission, and the North Pacific Landscape Conservation Commission to the Nooksack Indian Tribe. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. Contents 1. INTRODUCTION ..................................................................................................................................... 2 2. STUDY AREA .......................................................................................................................................... 4 2.1 Nooksack River Watersheds ............................................................................................................... 4 2.2 The Glaciers of Mount Baker .............................................................................................................. 6 3. METHODS .............................................................................................................................................. 9 3.1 Ablation Measurements .................................................................................................................. -
Seattle Area Stairways, Pg 27
WWW.MOUNTAINEERS.ORG JANUARY/FEBRUARY 2013 • VOLUME 107 • NO. 1 MountaineerE X P L O R E • L E A R N • C O N S E R V E CONDITIONING CLOSE TO HOME Inside: Glacier study report, pg. 8 Train locally for distant ice: pg. 21 Banff premiers Mountaineer’s film, pg. 23 Seattle area stairways, pg 27 Get outside! See our mini-guide to upcoming courses, pg. 12 inside Jan/Feb 2013 » Volume 107 » Number 1 6 Program centers Enriching the community by helping people Bringing skills and learning close to home explore, conserve, learn about, and enjoy the lands and waters of the Pacific Northwest. 7 Step into the fresh-air gym Your conditioning equipment is just outside your door 19 12 Get outside with The Mountaineers A mini-guide to winter and spring courses 19 Chad Kellogg pays a visit Renowned climber talks about conditioning 23 Mountaineer’s film taking off “K2: Siren of the Himalayas” gets Banff premier 8 conservation currents North Cascades Glacier Climate Project 10 reachING OUT 22 Teaching kids about the outdoors where they live 22 cliffnotes Joshua Tree just the thing for winter and spring 27 bookMARkS Stairway Walks: first guidebook of its kind in Seattle 28 GOING global A chance to see new places at a good value 30 mountaineers business directory 23 Learn about services provided by Mountaineers 32 branchING OUT See what’s going on from branch to branch 47 last worD Jim Whittaker on “Achievements” the Mountaineer uses . DIscOVER THE MOUntaINEERS If you are thinking of joining—or have joined and aren’t sure where to start—why not attend an information meeting? Check the Branching Out section of the magazine (page 32) for times and locations for each of our seven branches. -
06 M. Pelto and C. Brown. Mass Balance Loss of Mount Baker, Washington, Glaciers 1990-2010
68th EASTERN SNOW CONFERENCE McGill University, Montreal, Quebec, Canada 2011 Mass Balance Loss of Mount Baker, Washington, glaciers 1990−2010 MAURI PELTO1 AND COURTENAY BROWN2 ABSTRACT Mount Baker, North Cascades, WA, has a current glaciated area of 38.6 km2. From 1984-2010 the North Cascade Glacier Climate Project has monitored the annual balance (ba), accumulation area ratio (AAR), terminus behavior and longitudinal profiles of Mount Baker glaciers. The ba has been assessed on Rainbow Glacier 1984-2010, and from 1990-2010 on Sholes and Easton Glacier, averaging -0.52 m.w.e a-1(ma-1) on Rainbow, Easton and Sholes Glacier from 1990-2010. Terminus observations 1984-2009 on nine principal Mount Baker glaciers indicate retreat ranged from 240 m to 520 m, mean 370 m, or 14 ma-1. The AAR is the percentage of a glacier in the accumulation zone at the end of the melt season. AAR observations on Rainbow, Sholes and Easton Glacier 1990-2010 indicate a mean AAR of 0.55, and a steady state AAR of 0.65. Plotting the annual AAR and ba provides an AAR-ba relationship for the three glaciers yielding a mean ba of -0.55 ma-1 for the 1990-2010 period, 0.03 m/a higher than the measured mean annual balance. A comparison of ba and AAR on these three glaciers yields a relationship that is used in combination with AAR observations made on all Mount Baker glaciers during seven years to assess Mount Baker glacier mass balance. The mean ba based on the AAR-ba relationship for the entire mountain for the 1990-2010 period is assessed at -0.57 ma-1. -
Summer-Fall 2013
THE WILD CASCADES THE JOURNAL OF THE NORTH CASCADES CONSERVATION COUNCIL SUMMER/FALL 2013 visit www.northcascades.org • ncascadesconservation.blogspot.com THE WILD CASCADES • Summer/Fall 2013 1 THe North CascadeS Conservation CounciL was THE WILD CASCADES Summer/Fall 2013 formed in 1957 “To protect and preserve the North Cascades’ scenic, In This Issue scientific, recreational, educational, and wilderness values.” Continuing 3 President’s report — Karl Forsgaard this mission, NCCC keeps government 4 Alpine Lakes Wilderness Bill gets House hearing, DelBene tours officials, environmental organiza- Middle Fork tions, and the general public informed Updates about issues affecting the Greater 5 Pollution Control Hearings Board agrees: flow should not be North Cascades Ecosystem. Action is reduced at Similkameen Falls pursued through administrative, legal, 6 NCCC Actions, June–September 2013 and public participation channels to 8 State enacts HB1632, a bad ATV law — Karl Forsgaard protect the lands, waters, plants and Fisher reintroduction announced wildlife. 9 NCCC co-founder and board chairman Patrick Goldsworthy dies Over the past half century NCCC NCCC challenges motocross decision has led or participated in campaigns Native vegetation service projects continue long NCCC tradition to create the North Cascades National 10 The Sustainable Roads Project — Ed Henderson Park Complex, Glacier Peak Wilder- 11 What are logging roads made of? — Rick McGuire ness, and other units of the National 12 State funds Yakima Plan “early action items” — Karl Forsgaard Wilderness System from the W.O. 15 State purchase of Teanaway lands raises disturbing questions Douglas Wilderness north to the — Rick McGuire Alpine Lakes Wilderness, the Henry M. 17 NCCC, coalition address concerns around proposed Skykomish Jackson Wilderness, the Chelan-Saw- Geothermal Consent to Lease tooth Wilderness, the Wild Sky Wil- 18 North Cascade Glacier Climate Project 2013: 30th annual field derness and others. -
Lcnra Eis Decision Expected in June
The Wild Cascades THE JOURNAL OF THE NORTH CASCADES CONSERVATION COUNCIL SPRING 1995 LCNRA EIS DECISION EXPECTED IN JUNE The Wild Cascades-Spring 1995 The North Cascades Conservation Council was formed in 1957 "To In This Issue protect and preserve the North Cas cades' scenic, scientific, recreational, educational, and wilderness values."* The President's Report Continuing this mission, NCCC 3 keeps government officials, environ mental organizations, and the gen News Update eral public informed about issues 4 affecting the Greater North Cas cades Ecosystem. Action is pursued through legislative, legal, and pub 11 International Park: A Plot? lic participation channels to protect - Kevin Herrick the lands, waters, plants and wild life. Mountain Loop Highway 13 Over the past third of a century the - Rick McGuire NCCC has led or participated in cam paigns to create the North Cascades Land Trusts National Park Complex, Glacier 14 - Phil Zalesky and Carolyn McConnell Peak Wilderness, and other units of the National Wilderness System North Cascades Glaciers Retreat from the W.O. Douglas Wilderness 17 north to the Alpine Lakes Wilder -' Mauri S. Pelto ness, the Heniy M. Jackson Wilder Letters ness, the Chelan-Sawtooth Wilder 23 ness and others. Among its most dra - Letters to NCCC and Response matic victories has been working with British Columbia allies to block the raising of Ross Dam, which would have drowned Big Beaver Valley. • Membership • The NCCC is supported by member dues and private donations. These support pub lication of The Wild Cascades and lobbying activities. (NCCC is a non-tax-deductible 501(c)4 organization.) Membership dues for one year are: $10 - low income/student; $20 Cover: Luna Cirque and the Pickets - regular; $25 - family; $50.00 - Contribut - Walt Sellers Photo ing; $100 - patron; $1000 - sustaining. -
1 Glacier Change in the North Cascades, Washington: 1900-2009
Glacier Change in the North Cascades, Washington: 1900-2009 by Kristina Amanda Dick A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geography Thesis Committee: Andrew G. Fountain, Chair Heejun Chang Martin Lafrenz Portland State University 2013 1 Abstract Glaciers respond to local climate changes making them important indicators of regional climate change. The North Cascades region of Washington is the most glaciated region in the lower-48 states with approximately 25% of all glaciers and 40% of the total ice-covered area. While there are many on- going investigations of specific glaciers, little research has addressed the entire glacier cover of the region. A reference inventory of glaciers was derived from a comparison of two different inventories dating to about 1958. The different inventories agree within 93% of total number of glaciers and 94% of total ice- covered area. To quantify glacier change over the past century aerial photographs, topographic maps, and geologic maps were used. In ~1900 total area was about 533.89 ± 22.77 km 2 and by 2009 the area was reduced by -56% ± 3% to 236.20 ± 12.60 km 2. Most of that change occurred in the first half of the 20 th century, between 1900 and 1958, -245.59 ± 25.97 km2 (-46% ± 5%) was lost, followed by a period of stability/growth in mid-century (-1% ± 3% from 1958- 1990) then decline since the 1990s (-9% ± 3% from 1990-2009). The century- scale loss is associated with increasing regional temperatures warming in winter and summer; precipitation shows no trend. -
Glaciers Mount Baker Washington
10/26/2016 Area of Study 1 10/26/2016 Mt. Baker Glaciers • Bastile Glacier • No Name Glacier • Boulder Glacier • Park Glacier • Coleman Glacier • Rainbow Glacier • Roosevelt Glacier • Deming Glacier • Sholes Glacier • Easton Glacier • Squak Glacier • Hadley Glacier • Talum Glaciers • Mazama Glacier • Thunder Glacier Coleman Glacier is the largest of the glaciers. Boulder the most dramatic over the years. All retreated rapidly during early 1900’s. Advanced from 1950‐1975. Increasingly retreating since 1980. Objective • Quantify and classify a landscape • Use National Land Cover Data • 2 different time periods • Pin point areas of interest by clipping and reclassification • Note changes in the areas • Calculate area of difference 2 10/26/2016 Data • USGS Earth Explorer • Land Cover from 1992 (Jan 01, 1986) & 2006 (Nov 02, 2005) • 30m pixel size; Level 1; resampled to Nearest Neighbor; TIFF format • Cropped Data using Data Management Tools > Raster > Raster Processing > Clip • Calculated top/bottom y and left/right x coordinates from ArcMap status bar. • Did this for both years. 1992 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 2006 3 10/26/2016 Reclassifying • ArcGIS to reclassify • Note changes in classification systems • Properties > Symbology > Color map – Simplifying • Spatial Analyst Tool > Reclass > Reclassify – Perennial Ice a value – All others no data • Did the same process just doing the inverse Reclassifying • Also used ERDAS Imagine to reclassify the land cover data • Then used the swipe feature to compare and validate • Attempted to do layer stack, -
How Unusual Was 2015 in the 1984–2015 Period of the North Cascade Glacier Annual Mass Balance?
water Article How Unusual Was 2015 in the 1984–2015 Period of the North Cascade Glacier Annual Mass Balance? Mauri S. Pelto ID Environmental Science, Nichols College, Dudley, MA 01571, USA; [email protected]; Tel.: +1-508-213-2168 Received: 8 March 2018; Accepted: 20 April 2018; Published: 24 April 2018 Abstract: In 1983, the North Cascade Glacier Climate Project (NCGCP) began the annual monitoring of the mass balance on 10 glaciers throughout the range, in order to identify their response to climate change. Annual mass balance (Ba) measurements have continued on seven original glaciers, with an additional two glaciers being added in 1990. The measurements were discontinued on two glaciers that had disappeared and one was that had separated into several sections. This comparatively long record from nine glaciers in one region, using the same methods, offers some useful comparative data in order to place the impact of the regional climate warmth of 2015 in perspective. The mean annual balance of the NCGCP glaciers is reported to the World Glacier Monitoring Service (WGMS), with two glaciers, Columbia and Rainbow Glacier, being reference glaciers. The mean Ba of the NCGCP glaciers from 1984 to 2015, was −0.54 m w.e.a−1 (water equivalent per year), ranging from −0.44 to −0.67 m w.e.a−1 for individual glaciers. In 2015, the mean Ba of nine North Cascade glaciers was −3.10 m w.e., the most negative result in the 32-year record. The correlation coefficient of Ba was above 0.80 between all North Cascade glaciers, indicating that the response was regional and not controlled by local factors. -
Climate Driven Retreat of Mount Baker Glaciers and Changing Water Resources
SPRINGER BRIEFS IN CLIMATE STUDIES Mauri Pelto Climate Driven Retreat of Mount Baker Glaciers and Changing Water Resources 123 SpringerBriefs in Climate Studies More information about this series at http://www.springer.com/series/11581 Mauri Pelto Climate Driven Retreat of Mount Baker Glaciers and Changing Water Resources Mauri Pelto Environmental Science Nichols College Dudley , MA , USA ISSN 2213-784X ISSN 2213-7858 (electronic) SpringerBriefs in Climate Studies ISBN 978-3-319-22604-0 ISBN 978-3-319-22605-7 (eBook) DOI 10.1007/978-3-319-22605-7 Library of Congress Control Number: 2015946562 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
2009 Accumulation Area Ratios and Little Ice Age Equilibrium Line Altitude Depression of Mount Baker Glaciers, Washington State, Usa
2009 ACCUMULATION AREA RATIOS AND LITTLE ICE AGE EQUILIBRIUM LINE ALTITUDE DEPRESSION OF MOUNT BAKER GLACIERS, WASHINGTON STATE, USA by Courtenay Brown B.Sc. (Environmental Science), University of Ottawa, 2008 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Earth Sciences Faculty of Science © Courtenay Brown 2011 Simon Fraser University Fall 2011 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for "Fair Dealing." Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. APPROVAL Name: Courtenay Brown Degree: Master of Science Title of Thesis: 2009 Accumulation Area Ratios and Little Ice Age Equilibrium Line Altitude Depression of Mount Baker glaciers, Washington State, USA Examining Committee: Chair: Dr. Dan Gibson Graduate Program Chair, Department of Earth Sciences _____________________________________________________________ Dr. John J. Clague Senior Supervisor Professor, Department of Earth Sciences _____________________________________________________________ Dr. Brian Menounos Supervisor Associate Professor, University of Northern British Columbia _____________________________________________________________ Dr. Jon L. Riedel Supervisor Geologist, North Cascades National Park _____________________________________________________________ -
Glacier Change in the North Cascades, Washington: 1900-2009
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 6-6-2013 Glacier Change in the North Cascades, Washington: 1900-2009 Kristina Amanda Dick Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Climate Commons, and the Glaciology Commons Let us know how access to this document benefits ou.y Recommended Citation Dick, Kristina Amanda, "Glacier Change in the North Cascades, Washington: 1900-2009" (2013). Dissertations and Theses. Paper 1062. https://doi.org/10.15760/etd.1062 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Glacier Change in the North Cascades, Washington: 1900-2009 by Kristina Amanda Dick A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geography Thesis Committee: Andrew G. Fountain, Chair Heejun Chang Martin Lafrenz Portland State University 2013 1 Abstract Glaciers respond to local climate changes making them important indicators of regional climate change. The North Cascades region of Washington is the most glaciated region in the lower-48 states with approximately 25% of all glaciers and 40% of the total ice-covered area. While there are many on- going investigations of specific glaciers, little research has addressed the entire glacier cover of the region. A reference inventory of glaciers was derived from a comparison of two different inventories dating to about 1958. The different inventories agree within 93% of total number of glaciers and 94% of total ice- covered area.