The Cryosphere, 12, 1273–1291, 2018 https://doi.org/10.5194/tc-12-1273-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016 Helmut Rott1,2, Wael Abdel Jaber3, Jan Wuite1, Stefan Scheiblauer1, Dana Floricioiu3, Jan Melchior van Wessem4, Thomas Nagler1, Nuno Miranda5, and Michiel R. van den Broeke4 1ENVEO IT GmbH, Innsbruck, Austria 2Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria 3Institute for Remote Sensing Technology, German Aerospace Center, Oberpfaffenhofen, Germany 4Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, the Netherlands 5European Space Agency/ESRIN, Frascati, Italy Correspondence: (
[email protected]) Received: 20 November 2017 – Discussion started: 28 November 2017 Revised: 7 March 2018 – Accepted: 11 March 2018 – Published: 11 April 2018 Abstract. We analysed volume change and mass balance −2.32 ± 0.25 Gt a−1. The mass balance in region C during of outlet glaciers on the northern Antarctic Peninsula over the two periods was slightly negative, at −0.54 ± 0.38 Gt a−1 the periods 2011 to 2013 and 2013 to 2016, using high- and −0.58 ± 0.25 Gt a−1. The main share in the overall mass resolution topographic data from the bistatic interferometric losses of the region was contributed by two glaciers: Drygal- radar satellite mission TanDEM-X. Complementary to the ski Glacier contributing 61 % to the mass deficit of region geodetic method that applies DEM differencing, we com- A, and Hektoria and Green glaciers accounting for 67 % to puted the net mass balance of the main outlet glaciers using the mass deficit of region B.