SURVEY and SUMMARY Matching Trna Modifications In
Published online 30 January 2019 Nucleic Acids Research, 2019, Vol. 47, No. 5 2143–2159 doi: 10.1093/nar/gkz011 SURVEY AND SUMMARY Matching tRNA modifications in humans to their known and predicted enzymes Downloaded from https://academic.oup.com/nar/article-abstract/47/5/2143/5304329 by Vrije Universiteit Amsterdam user on 12 March 2019 Valerie´ de Crecy-Lagard´ 1,2,*, Pietro Boccaletto3, Carl G. Mangleburg1, Puneet Sharma4,5, Todd M. Lowe 6,*, Sebastian A. Leidel 4,5,7,* and Janusz M. Bujnicki 3,8,* 1Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA, 2Cancer and Genetic Institute, University of Florida, Gainesville, FL 32611, USA, 3Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, 4Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany, 5Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany, 6Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA, 7Research Group for RNA Biochemistry, Institute of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland and 8Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan,´ Poland Received September 05, 2018; Revised December 28, 2018; Editorial Decision January 03, 2019; Accepted January 10, 2019 ABSTRACT cases in detail and propose candidates whenever possible. Finally, tissue-specific expression analy- tRNA are post-transcriptionally modified by chemi- sis shows that modification genes are highly ex- cal modifications that affect all aspects of tRNA bi- pressed in proliferative tissues like testis and trans- ology.
[Show full text]