Insecticides for Cotton by R

Total Page:16

File Type:pdf, Size:1020Kb

Insecticides for Cotton by R Insecticides for Cotton by R. W. HARNED c./OT.TON, an important crop since before the dawn of history and one that has been grown in North America since the earliest colonial days, has always had serious insect enemies. Against them, most of the materials known to control insects attacking plants in the United States have been tried. The boll weevil, bollworm, cotton leafw^orm, cotton aphid, cotton flea hopper, and other pests continue, however, to reduce yields and destroy cotton crops. The first potent weapon was paris green, the use of which was recom- mended in 1872 by Prof. C. V. Riley, then the State Entomologist of Missouri, to control the cotton leafworm. Its use spread rapidly, especially in the Gulf Coast States, and during the next 40 years thousands of tons were used against the cotton leafworm and the bollworm. Next came the discovery in 1916 by workers in the Department of Agriculture that calcium arsenate dust of certain specifications was efïective and practical for the control of the boll weevil. Later investiga- tions showed it to be useful against the bollworm, and in mixtures with sulfur to be of great practical value in the control of the cotton flea hopper, tarnished plant bug, and other plant bugs and stinkbugs that attack cotton. Because of its wide use for boll weevil control and its lower cost, it largely replaced paris green for the control of the cotton leafworm and bollworm. For the control of cotton insects about 50 million pounds of this arseni- cal insecticide are now used each year. The need for applying calcium arsenate to large acreages of cotton stimulated improvement of dusting machines, but no ground machines could be satisfactory for use when the soils were saturated with water. In 1922 airplanes were first used for the application of calcium arsenate to cotton. This method was so satisfactory 655 656 YEARBOOK OF AGRICULTURE' that within a few years there were several dozen companies operating hundreds of airplanes used largely for dusting cotton. During the decade 1920-30 two other materials, sulfur dust and nico- tine, were first used extensively for the control of cotton insects. Sulfur had long been known as an insecticide, but was not used on cotton until it was found to be helpful in reducing losses caused by the red spider and the cotton flea hopper. Sulfur later was found to be useful in reducing infesta- tions of the tarnished plant bug and rapid plant bug and its use helped to check the reduction in quality of cotton in fields where injurious stinkbugs were abundant. Mixtures of sulfur and arsenicals, such as calcium arse- nate and paris green, were found to be more effective against the cotton flea hopper and the other plant bugs and stinkbugs that attack cotton, and in recent years millions of pounds of these mixtures have been dusted on cotton in Texas, Arizona, New Mexico, and California. The cotton aphid had always been a minor pest of cotton until the extensive use of calcium arsenate for boll weevil control, about 1920, caused it to become a major problem. The heavy aphid infestations develop because calcium arsenate decreases the acidity of the plant juices and there is some evi- dence that this favors the rapid development and reproduction of the aphids. The arsenical dust also kills the beneficial parasitic and predaceous insects that normally destroy the aphids and prevent serious infestations. Nicotine was found to be fairly satisfactory for the control of the cotton aphid and its use for this purpose has steadily increased during the past 25 years. The method of application generally used is to mix nicotine sulfate with calcium arsenate or with lime for dusting cotton. During recent years the supply of nicotine available for use on cotton has not been sufficient to meet the demand. During the 1930's the insecticides recommended and widely used for the control of cotton insects were calcium arsenate, sulfur, lead arsenate, paris green, nicotine sulfate, and mixtures of them. Recent research has developed several materials that may be as effec- tive as the insecticides developed in the years since paris green was first used in the cotton fields, or even more effective. Experiments have shown that mixtures of basic copper arsenate and sulfur have good dusting qualities and when applied at the rate of 12 to 15 pounds an acre are more effective than calcium arsenate for the control of the boUworm. They are more effective than sulfur or mixtures of sulfur and calcium arsenate for the control of the cotton flea hopper, nearly equal to cal- cium arsenate against the boll weevil and less likely to cause injurious aphid infestations, and better than calcium arsenate and equal to lead arsenate against the cotton leaf worm because they adhere to the foliage and are effective for weeks after application. Their chief disadvantage is that they cost more than calcium arsenate or mixtures of calcium arsenate and sulfur. INSECTICIDES FOR COTTON 657 Cryolite applied at the rate of 8 to 10 pounds an acre is more effective against the bollworm than calcium arsenate, but is much less effective against the boll weevil and cotton Icafworm. Research had shown that rotenone has possibilities against the cotton aphid, but the w ar interfered with investigations with this material and it was not available for use on cotton. Additional research may disclose that it may be useful against aphids and possibly other insects on cotton. Sabadilla is another material that shows promise against the stinkbugs and plant bugs. Another period in the development of insecticides for the control of cotton insects occurred during and immediately following the war, when many synthetic organic chemical compounds were tested to determine their toxicity to insects. In 1943, preliminary tests indicated that DDT was effective against such cotton pests as the bollworm, the tarnished plant bug, and other plant bugs, the Say stinkbug, the brown stinkbug, the conchuela, the onion thrips, and the tobacco thrips, but was comparatively ineffective against the boll weevil, the cotton leafworm, and the cotton aphid. During 1944 extensive tests conducted with DDT against cotton in- sects confirmed the results obtained in 1943. In addition, it was found to be eíTective against six other cotton pests, the pink bollworm, the cot- ton flea hopper, the red-shouldered plant bug or stinkbug, the superb plant bug, the small darkling beetle, and the beet armyworm, and not effective against the red spider mite. In fact, the use of DDT dust on cotton sometimes causes an increase in the red spider and cotton aphid populations, probably because it destroys their natural enemies. Many experiments in 1945 indicated that in DDT an insecticide had been discovered that is of practical value for the control of the pink boll- worm ; that is more effective for use against the bollworm than cryolite, basic copper arsenate, lead arsenate, and calcium arsenate, the materials that previously had given the best results against this insect; and that in Arizona gave notable increases in yields of cotton when used for the control of sucking bugs. As a result, during 1946 many thousands of acres of cotton, especially in Texas and Arizona, were dusted by farmers with mixtures containing DDT for the control of the cotton flea hopper, bollworm, and other insects, and the Governments of Mexico and the United States cooperated in applying thousands of pounds of 10-percent DDT dust by airplane for the control of the pink boUworm to hundreds of acres of cotton on dozens of farms on both sides of the river in the lower Rio Grande Valley. Another organic chemical, benzene hexachloride, which was first made by Michael Faraday in 1825, w^as shown to be a promising insecti- cide in England in 1942. Preliminary tests with this material against cotton insects in 1945 indicated that it might be more efïective against the 7038;;U)°—47 43 658 YEARBOOK OF AGRICULTURE boll weevil, cotton leafworm, cotton aphid, and certain stinkbugs than any insecticide that had previously been used. Experiments with benzene hexachloride in 1946 indicate that it may be the most potent insecticide thus far discovered for use against the boll weevil, cotton aphid, and cotton leafworm. It may be equal to DDT in efiFectiveness against thrips, the cotton flea hopper, tarnished plant bug, and some of the other cotton insects, but is less effective against the boUworm, pink boUworm, and beet armyworm. Experiments conducted by the Department in cooperation with the State agricultural experiment stations in South Carolina, Mississippi, Louisiana, Texas, and Arizona in 1946 indicate that the proper use of DDT or benzene hexachloride or mixtures of these materials may greatly increase the yields and improve the quality of cotton in all areas where insects are seriously injurious to this crop. At Waco, Tex., a mixture of DDT and benzene hexachloride gave remarkable results in increasing the yields of cotton by controlling heavy combined infestations of the boll weevil, cotton aphid, boUworm, and cotton leafworm. Another new organic compound tested at Waco in small plots and large-scale field experiments showed very promising results against heavy infestations of boll weevils, cotton aphids, bollworms, and leafworms. Laboratory and cage tests also indicated it would control the cotton flea hopper, stinkbugs, loopers, and garden webworms. This material is a chlorinated camphene known as Hercules 3956. It does not have some of the objectionable features connected with benzene hexachloride. Other less promising organic compounds are hexaethyl tetraphosphate and another chlorinated hydrocarbon known as Velsicol 1068. THE AUTHOR R. W. Harned, entomologist in charge of the Division of Cotton Insects of the Bureau of Entomology and Plant Quarantine, has been associated with cotton insect investigations since 1907, when he joined the staff of the Mississippi Agricultural Experiment Station.
Recommended publications
  • The Calcium Arsenates
    Station RuIletin 131. June, 1918 Oregon Agricultural College Experiment Station AGRICULTURAL CHEMISTRY DEPARTMENT The Calcium Arsenates By R. H. ROBINSON Acting Chemist, Oregon Agricultural Experiment Station. CORVALLIS, OREGON The regular huIlejne of the Station are sent free to the residents of Oregon who request them. THE CALCIUM ARSENATES By R. H. ROBINSON Acting Chemist, Oregon Agricultural Experiment Station INTRODUCTION Chemical investigations on the calcium arsenates relative to their economfic value and practicability as insecticides have been carried on by the department of Agricultural Chemistry of this Station during the past two years.The results obtained from these investigations are presented in this bulletin.The work was supported by the annual funds provided by the Adams Act of the United States Government.. Commercial calcium arsenate is an arsenical now being produced by reliable manufacturers of spray material and offered for sale as a sub- stitute for the arsenates of lead.The value of the latter as a stomachic insecticide has been demonstrated, and itis now used extensively for the successful controlof the codling moth, the destructionof the cotton boll worm., the tobacco worm, and the Colorado potato beetle. Previous inveatigations on the toxic values and killing power of calcium arsenate and lead arsenate indicate equal efficiency. A consideration of a few figures will show the economic advantages which might be gained if calcium arsenate could be substituted for lead arsenate.A conservative estimate of the quantity of lead arsenate used annually in the United States, as stated by one of the largest manufac- turers of spray materials, is probably more than 30,000,000 pounds.
    [Show full text]
  • The Insecticide Industry of Today Seed Production in Various States Has Comprises More Than 50 Basic Producers Doubled the Yield
    put nearly 2 million dollars extra in the growers' pockets. In Mississippi at least 75 percent of the 1950 cotton crop The Insecticide would have been destroyed were it not for the control of insects through the Industry use of the industry's products. Insecti- cides applied in Nebraska to control Lea S. Hitchner grasshoppers in 1949 resulted in savings estimated at 2 million dollars. Insecti- cidal treatment of alfalfa raised for The insecticide industry of today seed production in various States has comprises more than 50 basic producers doubled the yield. or manufacturers and more than 500 One factor among others responsible formulatorsj xemixers, and processors. for the high productivity of American From their plants throughout the coun- agriculture is the cooperative attack try comes a great variety of insecticides that is waged on insects and other pests. and related products. The agricultural chemicals industry The products, except those derived has welcomed the opportunity to co- from botanical sources, have their ori- operate with Federal and State agen- gins in the basic chemicals on which cies and with farm organizations in this the industry is founded, but the proc- important work and to carry the re- esses that turn the raw materials into sponsibility for developing, producing, the finished products applied by farm- and delivering the necessary pesticides. ers are long, highly scientific, and ex- Such a responsibility is a heavy one pensive in capital. investment and even in normal times. It becomes operating costs. acutely heavy in times of national The industry employs thousands of stress, when shortages of raw materials, scientists in the fields of entomology, containers, personnel, and transporta- plant pathology, botany, toxicology, tion may hamper production and dis- medicine, chemistry, and chemical en- tribution.
    [Show full text]
  • Florida Pesticide Reporting Guidelines
    Florida Pesticide Reporting guidelines This list is compiled from the Environmental Protection Agency List of Lists (2015) and updated with common Pesticide Trade Names. This is meant as a supplement to the EPA list of lists to clarify and assist handlers and responders in the field to Florida reporting requirements and the more common chemical nomenclature. Threshold Planning Quantity (TPQ) – The presence of Extremely Hazardous Substances (EHSs) in quantities at or above the Threshold Planning Quantity (TPQ) requires certain emergency planning activities to be conducted. The consolidated list presents the TPQ (in pounds) for section 302 chemicals in the column following the CAS number. For chemicals that are solids, there are two TPQs given (e.g., 500/10,000). In these cases, the lower quantity applies for solids in powder form with particle size less than 100 microns, or if the substance is in solution or in molten form. Otherwise, the 10,000 pound TPQ applies. Section 304 RQ‐ Facilities must immediately report accidental releases of EHS chemicals and "hazardous substances" in quantities greater than corresponding Reportable Quantities (RQs) defined under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to state and local officials. Information about accidental chemical releases must be available to the public, Florida Reporting requirements below. CERCLA RQ‐ Releases of CERCLA hazardous substances, in quantities equal to or greater than their reportable quantity (RQ) in pounds, are subject to reporting to the Florida Reporting requirements below. Florida Reporting requirements: National Response Center Florida State Watch Office (800) 424-8802 (800) 320-0519 or (850) 815-4001 Florida Department of Environmental Protection Spill reporting requirements https://floridadep.gov/pollutionnotice Florida Division of Emergency Management 2555 Shumard Oak blvd.
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Emergency Response Guidance for Aircraft Incidents Involving Dangerous Goods
    Doc 9481 AN/928 Emergency Response Guidance for Aircraft Incidents Involving Dangerous Goods Approved by the Secretary General and published under his authority 2007–2008 Edition International Civil Aviation Organization 8 ICAO 2006 Published in 2006 by the International Civil Aviation Organization 999 University Street Montreal, Quebec, Canada This publication or any part thereof may not be reproduced by any means without the prior written permission of ICAO. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of ICAO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Printed in ICAO FOREWORD Annex 18 to the Convention on International Civil Aviation — The Safe Transport of Dangerous Goods by Air — requires that “The operator shall provide such information in the Operations Manual as will enable the flight crew to carry out its responsibilities with regard to the transport of dangerous goods and shall provide instructions as to the action to be taken in the event of emergencies arising involving dangerous goods.” This requirement is also included in the Technical Instructions for the Safe Transport of Dangerous Goods by Air (Doc 9284). Annex 6, Part I, Appendix 2 also requires that “information and instructions on the carriage of dangerous goods, including action to be taken in the event of an emergency” be included in the operations manual. This document has been developed with the assistance of the Dangerous Goods Panel to provide guidance to States and operators for developing procedures and policies for dealing with dangerous goods incidents on board aircraft.
    [Show full text]
  • The Effect of the Calcium Ion on the Development of Soy Bean Seedling and the Antagonism of This Ion to Arsenic, Boron, and Selenium Ions
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1940 The effect of the calcium ion on the development of soy bean seedling and the antagonism of this ion to arsenic, boron, and selenium ions. Elvin Ted Miles University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Miles, Elvin Ted, "The effect of the calcium ion on the development of soy bean seedling and the antagonism of this ion to arsenic, boron, and selenium ions." (1940). Masters Theses 1911 - February 2014. 3108. Retrieved from https://scholarworks.umass.edu/theses/3108 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. FIVE COLLEGE DEPOSITORY t:effect of toe calcium ion on the : MENT OFT I BEAN SEEDLING AND THE ANTAGONISM OF THIS ION TO ARSENIC, BARON, AND SELENIUM IONS MILES -1940 The Effect of the Calcium Ion on the Development of Soy bean seedling and the Antagonism of this Ion to Arsenic, Baron, and Selenium Ions Thesis Submitted hy Elvln T. Miles to Massachusetts State College In Partial Fulfillment of the Requirements for the Degree of Master of Science May 1940 ACKNOWLEDGMENT The writer is under obligation to a number of people for their cooperation and assistance. He is particularly indebted to Doctor W. S. Eisenmenger who made it possible and has been very helpful in the direction of the research.
    [Show full text]
  • The Beneficial Action of Lime in Lime Sulfur and Lead Arsenate Combination Spray
    Dl'l'l'mber, '191 ROBINSON: LIME IN LIME SULFL'R 429 The number of parasitized individuals averaged 50 per cent, There ,vere two species of parasites which were from the larvre and pupre. These were determined for me by Mr. H. S. Smith as a (Chalcidoidea) Tet- rastich1lS sp. and a (Braconid) Calyptus sp. The primary parasite was not determined and it is possible one is a hyperparasite. The writer also found quite a number of larvre of some Coleopterous insect which re- sembled a Dermestid. EXPLANATION OF PLATE 18 Fig:. 1, the adult weevil. Fig:. 2, the pupa. Fig:. 3, thl' brva or grub. Fig:. 4, seetion of apple limb wi~h bark removed showing channels of larv:e and Downloaded from pupal cells. Fig. 5, section of bark removed from limb showing channels of larv:e and pupal eells. Fig. 6, sedinn of bark showin!!; e!!;gpunctures or cavities where eggs are laid and the C'mer!!:C'Ill'eholes of the adults. http://jee.oxfordjournals.org/ THE BENEFICIAL ACTION OF LIME IN LIME SULFUR AND LEAD ARSENATE COMBINATION SPRAY By R. H. ROBINSON, Associate Chemist, Oregon Experiment Station, Corvallis, Ore. It is a prevalent custom among horticulturists throughout the country to use combination sprays, that is, mix two spray materials and make the application as a unit whereby the extra expense of making two separate by guest on June 5, 2016 spra:-.ings is saved. If, however, two sprays are so combined that a chemical reaction occurs in which their peculiar insecticidal or fungicidal properties are destroyed or some product of the reaction is formed, that would cause burnIng of foliage or other injury, the practice in that case should be discouraged.
    [Show full text]
  • 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
    Appendix B Classification of common chemicals by chemical band 1 1 EXHIBIT 1 2 CHEMICAL CLASSIFICATION LIST 3 4 1. Pyrophoric Chemicals 5 1.1. Aluminum alkyls: R3A1, R2A1C1, RA1C12 6 Examples: Et3A1, Et2A1C1, EtA.1111C12, Me3A1, Diethylethoxyaluminium 7 1.2. Grignard Reagents: RMgX (R=alkyl, aryl, vinyl X=halogen) 8 1.3. Lithium Reagents: RLi (R 7 alkyls, aryls, vinyls) 9 Examples: Butyllithium, Isobutylthhium, sec-Butyllithium, tert-Butyllithium, 10 Ethyllithium, Isopropyllithium, Methyllithium, (Trimethylsilyl)methyllithium, 11 Phenyllithiurn, 2-Thienyllithium, Vinyllithium, Lithium acetylide ethylenediamine 12 complex, Lithium (trimethylsilyl)acetylide, Lithium phenylacetylide 13 1.4. Zinc Alkyl Reagents: RZnX, R2Zn 14 Examples: Et2Zn 15 1.5. Metal carbonyls: Lithium carbonyl, Nickel tetracarbonyl, Dicobalt octacarbonyl 16 1.6. Metal powders (finely divided): Bismuth, Calcium, Cobalt, Hafnium, Iron, 17 Magnesium, Titanium, Uranium, Zinc, Zirconium 18 1.7. Low Valent Metals: Titanium dichloride 19 1.8. Metal hydrides: Potassium Hydride, Sodium hydride, Lithium Aluminum Hydride, 20 Diethylaluminium hydride, Diisobutylaluminum hydride 21 1.9. Nonmetal hydrides: Arsine, Boranes, Diethylarsine, diethylphosphine, Germane, 22 Phosphine, phenylphosphine, Silane, Methanetellurol (CH3TeH) 23 1.10. Non-metal alkyls: R3B, R3P, R3As; Tributylphosphine, Dichloro(methyl)silane 24 1.11. Used hydrogenation catalysts: Raney nickel, Palladium, Platinum 25 1.12. Activated Copper fuel cell catalysts, e.g. Cu/ZnO/A1203 26 1.13. Finely Divided Sulfides:
    [Show full text]
  • Environmental Protection Agency Pt. 355, App. A
    Environmental Protection Agency Pt. 355, App. A Release means any spilling, leaking, the facility is located. In the absence pumping, pouring, emitting, emptying, of a SERC for a State or Indian Tribe, discharging, injecting, escaping, leach- the Governor or the chief executive of- ing, dumping, or disposing into the en- ficer of the tribe, respectively, shall be vironment (including the abandonment the SERC. Where there is a cooperative or discarding of barrels, containers, agreement between a State and a and other closed receptacles) of any Tribe, the SERC shall be the entity hazardous chemical, EHS, or CERCLA identified in the agreement. hazardous substance. Solution means any aqueous or or- Reportable quantity means, for any ganic solutions, slurries, viscous solu- CERCLA hazardous substance, the tions, suspensions, emulsions, or quantity established in Table 302.4 of 40 pastes. CFR 302.4, for such substance. For any State means any State of the United EHS, reportable quantity means the States, the District of Columbia, the quantity established in Appendices A Commonwealth of Puerto Rico, Guam, and B of this part for such substance. American Samoa, the United States Unless and until superseded by regula- Virgin Islands, the Northern Mariana tions establishing a reportable quan- Islands, any other territory or posses- tity for newly listed EHSs or CERCLA sion over which the United States has hazardous substances, a weight of 1 jurisdiction and Indian Country. pound shall be the reportable quantity. Threshold planning quantity means, SERC means the State Emergency for a substance listed in Appendices A Response Commission for the State in and B of this part, the quantity listed which the facility is located except in the column ‘‘threshold planning where the facility is located in Indian quantity’’ for that substance.
    [Show full text]
  • The Biologic and Economic Assessment of Toxaphene
    I ~ 12.8 ~11k§, 1.0 ~ Eli 1.0 IiiW .2 Ii.i a.:.: ~ w ~ &<.... "" ... ~ 1.1 ..... ~ 1.1 --- I . III" 1.2~ 111/11.4 111111.6 111111.25 1/1/11.4 111111.6 • I MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A NATIONAL BUREAU OF STANDARDS-I%3-A '. COOPERATIVE IMPACT ASSESSMENT REPORT THE BIOLOGIC AND ECONOMIC ASSESSMENT OF TOXAPHENE ~ c:r: 0::: co ::; ..,­ '-' CD ::; 0) co ::::; CL 0 f3 C\1 -J -l ~ ::::> z: -:; c:::c tr) 0 -J UNITED STATES IN COOPERA T/ON WITH TECHNICAL BULLETIN DEPARTMENT OF STATE AGRICULTURAL EXPERIMENT STATIONS NUMBER 1652 AGRICULTURE COOPERATIVE EXTENSION SERVICE OTHER STATE AGENCIES U.S. ENVIRONMENTAL PROTECTION AGENCY THE BIOLOGIC AND ECONOMIC ASSESSMENT OF TOXAPHENE A report of the Toxaphene assessment team to the rebuttable presumption against registration of Toxaphene Submitted to the Environmental Protection Agency on Seotember 12, 1977 and November 30, 1978 UNITED STATES IN COOPERA TlON WITH TECHNiCAL BUllETIN DEPARTMENT OF STATE ACRICULTURAL EXPERIMENT STATIONS NUMBER 1652 AGRICULTURE COOPERATIVE EXTENSION SERVICE OTHER STATE AGENCIES U.S. ENVIRONMENTAL PROTECTION AGENCY PREFACE This report is a joint project of the U.S. Department of Agriculture, the State Land-Grant Universities, and the U.S. Environmental Protection Agency, and is the seventh in a series of reports recently prepared by a team of scientists from these m.'ganizations in order to provide sound, current scientific information on the benefits of, and exposure to, toxaphene. The report is a scientific presentation to be used in connection with other data as a portion of the total body of knowledge in a final benefit/risk assessment under the Rebuttable Presumption Against Registration Process in connection with the Federal Insecticide, Fungicide, and Rodenticide Act.
    [Show full text]
  • The Inorganic Insecticides
    Screening Tests with Materials Evaluated as Insecticides, Miticides, and Repellents at the Orlando, Fla., Laboratory, April 1942 to April 1947, 1947; E-802, A Digest of In- The Inorganic formation on Toxaphene, by R. C. Roark. 1950. In Advances in Chemistry, volume i: Insecticides Organic Phosphorus Insecticides, by S. A. Hall, pages 150-159; Alkali-Stable ^ Poly- chloro Organic Insect Toxicants, Aldrin and R. H. Carter Dieldrin, by R. E. Lidov, H. Bluestone, S. B. Soloway, and C. W. Kearns, pages 175-^^3- 195O' Inorganic insecticides are of mineral In Chemistry and Industry: The Gamma- Isomer of Hexachlorocyclohexanc (Gam- origin, mainly compounds of antimony^ mexanc), by R. E. Slade, volume 40, pages arseniCj barium, boron, copper, fluo- 314-3^9- 1950. rine, mercury, selenium, sulfur, thal- In Science in Farming, Yearbook of lium, and zinc, and elemental phos- Agriculture 1943-1947: The Chemistry of phorus and sulfur. DDT, by H. L. Haller and Ruth L. Busbey, pages 616-622; Pests That Attack Man, by Antimonyl potassium tartrate, tar- E.F. Knipling, pages 632-642. 1947. tar emetic, K(SbO) G,H,Oo.i/2TLO, N. Y, State Flower Growers Bulletin 7, is a white powder soluble in water. It Revised Recommendations for Azobenzene, is sometimes used as the toxic agent in by W, E. Blauvelt, pages 15-16. 1946. ant poisons and for the control of United States Patents: 2,291,193, Insecti- cide, patented by Lloyd E. Smith, July 28, thrips. 1942 (U. S. Patent Office Official Gazette, Arsenical compounds are the most volume 540, page 827): 2,010,841, Chlori- widely used inorganic insecticides.
    [Show full text]