Macrocystis Integrifolia and Lessonia Trabeculata (Laminariales; Phaeophyceae) Kelp Habitat Structures and Associated Macrobenthic Community Ov Northern Chile

Total Page:16

File Type:pdf, Size:1020Kb

Macrocystis Integrifolia and Lessonia Trabeculata (Laminariales; Phaeophyceae) Kelp Habitat Structures and Associated Macrobenthic Community Ov Northern Chile Helgol Mar Res DOI 10.1007/s10152-007-0096-1 ORIGINAL ARTICLE Macrocystis integrifolia and Lessonia trabeculata (Laminariales; Phaeophyceae) kelp habitat structures and associated macrobenthic community oV northern Chile Mario J. Villegas · Jürgen Laudien · Walter Sielfeld · Wolf E. Arntz Received: 6 June 2007 / Revised: 2 November 2007 / Accepted: 9 November 2007 © Springer-Verlag and AWI 2007 Abstract Macrocystis integrifolia and Lessonia trabecu- present on barren ground are shorter and have more stipes lata form vast kelp beds providing a three-dimensional habi- compared with those in the dense L. trabeculata kelp bed. tat for a diverse invertebrate and Wsh fauna oV northern Thus, the habitats provide diVerent three-dimensional struc- Chile. Habitat modiWcations caused by the El Niño Southern tures. The associated macrobenthic communities show a Oscillation (ENSO) are likely to alter the inhabiting commu- variable degree of overlapping; however, key faunal assem- nities. The aim of this study was to reveal relationships blages were distinguished for each habitat. Our study pro- between distinct habitat structures of a M. integrifolia kelp vides evidence that habitat diversity drives species diversity, bed, a dense L. trabeculata kelp bed and L. trabeculata the more homogeneous, monospeciWcally composed kelp patches colonizing a barren ground, and the associated dom- bed habitats show comparatively low diversity, mainly inant macrobenthic key species. Seasonally 15 sampling caused by the dominance of the ascidian P. chilensis and T. units (10 m2 each) of any of the three habitats were moni- tridentata in the M. integrifolia bed, and the mussel A. ater tored by SCUBA divers, which counted sporophytes and only present in the L. trabeculata bed. Species richness and macroinvertebrates living between the latter. Furthermore, diversity is highest in the heterogeneous habitat where L. samples of plants were analysed in the laboratory to measure trabeculata patches interrupt the barren ground. Our study the morphological variables: total plant length, maximal revealed morphological diVerences between M. integrifolia holdfast diameter, stipe number, number of dichotomies per and L. trabeculata kelp beds reXected in stipe number, plant stipe, frond width and total drained wet mass. Multivariate length, dichotomies per stipe, and wet mass, which inXuence analysis showed that the L. trabeculata kelp bed is denser, the composition of the associated characteristic fauna and its with a higher number of dichotomies per stipe, whereas functional relations i.e. T. niger and T. tridentata. sporophytes of M. integrifolia are longer with more stipes and wider fronds. Sporophytes of L. trabeculata patchily Keywords Habitat structure · Lessonia trabeculata · Macrobenthic community · Macrocystis integrifolia · Communicated by Sven Thatje. Predator–herbivore–kelp interactions Special Issue: Climate variability and El Niño Southern Oscillation: implications for natural coastal resources and management. S. Thatje (ed.) Introduction M. J. Villegas (&) · W. Sielfeld Departamento de Ciencias del Mar, Universidad Arturo Prat, Casilla 121, Iquique, Chile The kelp Macrocystis integrifolia Bory 1826 and Lessonia e-mail: [email protected] trabeculata Villouta & Santelices 1986 are the two charac- teristic species of Laminariales in shallow hard-bottom J. Laudien · W. E. Arntz habitats oV northern Chile. Both species have biphasic het- Alfred Wegener Institute for Polar and Marine Research, P.O. Box 120161, 27515 Bremerhaven, Germany eromorphic life cycles, with a short-lived microscopic e-mail: [email protected] gametophytic generation alternating with a long-lived mac- V W. E. Arntz roscopic perennial sporophytic generation (Ho man and e-mail: [email protected] Santelices 1997; Buschmann et al. 2004; Tala et al. 2004). 123 Helgol Mar Res They form vast kelp beds that provide a three-dimensional stated that distinct morphotypes may alter the associated habitat structure inhabited by a diverse invertebrate and Wsh invertebrate and Wsh assemblages (Vásquez 1991). fauna (Vásquez 1992; Vásquez et al. 2001; Sielfeld et al. Our study aims to relate diVerent habitat structures of a 2002; Vega et al. 2005; Pérez 2006). The structure of these M. integrifolia kelp bed, a dense L. trabeculata kelp bed kelp beds is physically controlled by variations in upwell- and patchily distributed L. trabeculata colonizing barren ing and alternating oceanographic events such as El Niño ground with the associated benthic macroinvertebrate com- (EN) and La Niña (LN)—the warm and cold phase of the El munity, focussing on key species, which possibly modulate Niño Southern Oscillation (ENSO) (Vásquez and Vega predator–herbivore–kelp interactions, such as sea urchins 2004; Arntz et al. 2006; Vásquez et al. 2006). During El and sea stars. Niño (e.g. 1997/98) mass mortalities of kelp and benthic carnivores such as sea stars were recorded and related to the high coastal water temperatures oV Peru (16°S) (Fernández Materials and methods et al. 1999). In contrast, mass mortalities were not reported from northern Chile (24°S) during EN 1997/98, but during Study site LN 1999 due to elevated abundances of the grazing black sea urchin Tetrapygus niger (Vega et al. 2005) and over- The study was conducted in Chipana (21°S 71°W), located grazing, which resulted in areas without the former kelp, 170 km south of Iquique city (northern Chile) (Fig. 1). The called “barren ground”. The latter is dominated by sea area is a coastal upwelling site (Fuenzalida 1992; Palma urchins and calcareous crustose red algae (Vásquez 1992). et al. 2006), composed of a 4 km long sandy bay exposed to Constant sea urchin grazing may alter sporophyte mor- the northwest with some shallow rocky areas. The latter phology, and thus modulate the habitat structure available provide substrate for extended kelp beds composed mono- for macrozoobenthic and Wsh communities (Vásquez and speciWcally of either L. trabeculata or M. integrifolia. Vega 2004). Two morphotypes of L. trabeculata have been Three diVerent habitats, a M. integrifolia kelp bed, a dense described: (1) a shrub form, with the total mass distributed L. trabeculata bed, and L. trabeculata patches colonizing a among many stipes with high Xexibility and (2) an arbores- barren ground were studied (Fig. 1). cent form, where the total mass is allocated to only very few stipes with limited Xexibility (Vásquez 1992; Vásquez Habitat features and macroinvertebrate communities 1993a). The shrub form is favoured by minor grazing due to high plant abundances and a strong whiplash eVect on herbi- Seasonal sampling was carried out between spring 2005 and vores (Vásquez 1992; Vásquez and Buschmann 1997). In winter 2006, always choosing days with calm sea condi- contrast, wave action and currents selectively aVect the tions. A total of 60 independent sampling units (10 m £ 1m arborescent form, as its lower Xexibility causes a higher each, separated by ¸17 m) located along three replicated chance of dislodgement (Vásquez and Buschmann 1997). transects (Wve replicates per transect) for each habitat were For M. integrifolia diVerences in the blade morphology have assessed. Within sampling units the same SCUBA diver been related to wave exposure (Hurd et al. 1997). It has been counted all sporophytes of M. integrifolia and L. trabeculata Fig. 1 Map showing the loca- tion of the studied (open square) Macrocystis integrifolia kelp bed, the (open inverted triangle) Lessonia trabeculata kelp bed and (open triangle) L. trabecula- ta patches on the barren ground oV Chipana (northern Chile) 123 Helgol Mar Res present. Sporophytes with a single holdfast or an evident bare rock (51%), boulders (17%) and sand (31%). Sporo- fusion, which did not allow discriminate one holdfast from phyte densities also showed signiWcant diVerences (Krus- the other by underwater observation, were considered as kal–Wallis test H2,175 = 11.8, P < 0.05) between the three individual plants. Depth and substrate type were recorded as habitats. The L. trabeculata bed provided higher abundances “bare rock”, “boulder”, and “sand” dominated following (40.0 § 18.0 individuals 10 m¡2) compared to the M. integ- Godoy (2000). Furthermore, the visible macroscopic epi- rifolia bed (29.9 § 23.1 individuals 10 m¡2) and the L. tra- fauna was counted in situ from squares (1 m £ 1 m each, beculata patches (28.1 § 25.0 individuals 10 m¡2). n = 180) haphazardly placed on the substratum between Morphological variables of macroalgae signiWcantly individual sporophytes. Total values were standardized to diVered between habitats; Individual M. integrifolia and 10 m2. Additionally, a total of 36 sporophytes (9 per sam- plants of the dense L. trabeculata bed have a dissimilar pling day) were collected and analysed in the laboratory to stipe number (Kruskal–Wallis test, H2,98 =25.7, P <0.01), individually measure total plant length, maximal holdfast number of dichotomies per stipe (Kruskal–Wallis test, diameter, stipe number, number of dichotomies per stipe, H2,68 =32.5, P < 0.01), frond width (Kruskal–Wallis test frond width and total drained wet mass. H2,98 =24.3, P < 0.01) and total plant length (H2,98 = 53.6, P <0.01) (Fig. 2a–d). No signiWcant diVerence was found Statistical analysis for maximum holdfast diameter (Kruskal–Wallis test, H2,98 =0.71, P = 0.72) and wet mass (Kruskal–Wallis test Since data were not normally distributed (Kolmogorov– H2,86 =3.31, P =0.19) (Fig.2 e, f). L. trabeculata plants Smirnow and Shapiro–Wilk’s
Recommended publications
  • Advances in Cultivation of Gelidiales
    Advances in cultivation of Gelidiales Michael Friedlander Originally published in the Journal of Applied Phycology, Vol 20, No 5, 1–6. DOI: 10.1007/s10811-007-9285-1 # Springer Science + Business Media B.V. 2007 Abstract Currently, Gelidium and Pterocladia (Gelidiales) Introduction are collected or harvested only from the sea. Despite several attempts to develop a cultivation technology for Gelidium, As far as I know there is no current commercial cultivation no successful methodology has yet been developed. Initial of Gelidiales. Despite several attempts to develop a steps towards developmental efforts in Portugal, Spain, cultivation technology for Gelidium and Pterocladia, so far South Africa and Israel have been published. More no successful methodology has been developed. Because of developments have probably been performed but have not the proprietary nature of commercial cultivation, a success- been published. Two different technological concepts have ful technology may have been developed but has remained been tested for Gelidium cultivation: (1) the attachment of unpublished. Gelidium and Pterocladia (or Pterocladiella) Gelidium fragments to concrete cylinders floating in the are currently only collected or harvested, as opposed to sea, and (2) free-floating pond cultivation technology. other useful seaweeds for which cultivation technology has These vegetative cultivation technologies might be partially been developed. The reasons for this situation are discussed optimized by controlling physical, chemical and biological in this review, including all important variables affecting growth factors. The pond cultivation technology is the Gelidium and Pterocladia growth. This review will rely much more controllable option. The effects of all factors are mostly on Gelidium studies since most of the relevant discussed in detail in this review.
    [Show full text]
  • Estudio De Impacto Ambiental Proyecto Infraestructura Complementaria
    PROYECTO N° 148-035 MINERA LOS PELAMBRES ESTUDIO DE IMPACTO AMBIENTAL PROYECTO INFRAESTRUCTURA COMPLEMENTARIA LÍNEA DE BASE. SECCIÓN IIId Jaime Illanes y Asociados Antonio Bellet 444, Providencia. Santiago Teléfono: +56 02 2550 8900 www.jaimeillanes.cl ESTUDIO DE IMPACTO AMBIENTAL PROYECTO INFRAESTRUCTURA COMPLEMENTARIA LÍNEA DE BASE SECCIÓN IIId ÍNDICE DE CONTENIDO 7.1.4.3 Caracterización Biológica (Oceanografía biológica) ....................................... 1 7.1.4.3.1 Comunidades Plantónicas .......................................................................... 1 7.1.4.3.2 Comunidades Intermareales ..................................................................... 84 7.1.4.3.3 Comunidades Submareales .................................................................... 201 7.1.4.3.4 Síntesis general de los resultados de la caracterización biológica .......... 335 7.1.4.4 Evolución de los Ecosistemas Marinos sin considerar la ejecución del Proyecto ..................................................................................................... 339 7.1.4.5 Referencias Bibliográficas .......................................................................... 339 7.1.4.5.1 Medio Físico del Medio Marino ............................................................... 339 7.1.4.5.2 Medio Químico del Medio Marino ........................................................... 340 7.1.4.5.3 Medio Biológico del Medio Marino .......................................................... 342 ÍNDICE DE TABLAS Tabla EMB-1: Comparación estacional
    [Show full text]
  • Capitulo 7 Comunidades Bentonicas Submareal
    ÍNDICE GLOBAL ÍNDICE FIGURAS ............................................................................................................... 1 ÍNDICE TABLAS ................................................................................................................. 2 7. COMUNIDADES BENTÓNICAS DEL SUBMAREAL ROCOSO ............................................... 4 7.1. OBJETIVO GENERAL ................................................................................................... 4 7.1.1 Objetivos Específicos ............................................................................................... 4 7.2. METODOLOGÍA ........................................................................................................... 5 7.2.1. Área de estudio ..................................................................................................... 5 7.2.2. Obtención de las muestras ...................................................................................... 6 7.3. INTERPRETACIÓN DE RESULTADOS ......................................................................... 10 7.3.1. Características generales del sustrato ..................................................................... 10 7.3.2. Descripción de las comunidades presentes .............................................................. 10 7.3.3. Caracterización de los transectos estudiados ........................................................... 16 7.3.4. Índices Comunitarios ..........................................................................................
    [Show full text]
  • 1 Expedition Report: Jason Islands 1
    Expedition Report: Jason Islands 1. Logistics 1.1 Vessel: Golden Fleece , Capt. Dion Poncet 1.2 Expedition dates: 23 Oct 2008 – 4 Nov 2008 1.3 Expedition participants: Karen Neely [email protected] Paul Brickle [email protected] Wetjens Dimmlich [email protected] Judith Brown jbrown@smsg -falklands.org Vlad Laptikhovsky [email protected] Dion Poncet [email protected] Steve Cartwright [email protected] Sarah Crofts [email protected] Vernon Steen [email protected] Claire Goodwin [email protected] Jen Jones [email protected] 2. Scientific rationale and objectives The inshore marine systems and resources of the Falkland Islands make up one of the nation’s most diverse, unique, and valuable assets. From its historical reputation as a safe harbour to its present dependence on fishing and wildlife-based revenues, this archipelago is defined by the sea and its resources. Though perhaps best known ecologically for its bird life, the islands hold numerous organisms and environments that are all closely linked. Of the ten bird species of global conservation concern that breed within the Falklands, eight are seabirds and two are closely associated with offshore islands that contain seabird colonies. These species rely on the marine productivity of the waters around the Falkland Islands and in turn cycle nutrients among the soils, plants, and invertebrates of coastal areas. Knowledge and management of the marine environments are thus important for the knowledge and management of all Falklands ecosystems. Surprisingly, very little of the Islands’ immense coastline has been the subject of scientifically sound investigation, and identification of shallow marine species and habitat types is still in its infancy.
    [Show full text]
  • Distribution Patterns of Tetrapygus Niger (Echinodermata: Echinoidea) Off the Central Chilean Coast
    MARINE ECOLOGY PROGRESS SERIES Published November 4 Mar. Ecol. Prog. Ser. Distribution patterns of Tetrapygus niger (Echinodermata: Echinoidea) off the central Chilean coast Sebastian R. Rodriguez, F. Patricio Ojeda* Departamento de Ecologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile ABSTRACT: We investigated spatial distnbution and temporal occurrence patterns of Tetrapygus niger in the subtidal zone off the central Chilean coast from March to November 1990. The shallowest por- tion of the subtidal zone and the shallowest edge of the kelp forest of Lessonia trabeculata appeared to be important recruitment zones for this species We found a s~gnificantnumber of recruits along the bed border, and a marked decrease of urchn abundance toward the center of the kelp Data obtained in September and November outside the kelp bed showed juvenile urchins [i.e.<24 mm test diameter (TD)]strongly associated with crevices. Size-frequency distributions at 2 m depth for those months also showed a large trough of intermediate-sized individuals (i.e. 15 to 30 mm TD). Temporal analysls of size-frequency distributions of individuals collected outs~dethe kelp showed a relatively slow shift of modes between March and September and a malor modal shift from September to November. Density values of urchins found in November were relatively low; however, the individuals appeared aggre- gated. INTRODUCTION MATERIALS AND METHODS Sea urchins are one of the most common components Sea urchins were collected at Punta de Tralca (33' of near-shore marine ecosystem worldwide, often play- 35' S, 71" 42' W) off the central Chilean coast.
    [Show full text]
  • Populations of a New Morphotype of Corrugate Lessonia Bory in the Beagle Channel, Sub-Antarctic Magellanic Ecoregion: a Possible Case of On-Going Speciation
    cryptogamie Algologie 2020 ● 41 ● 11 DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno DAVID Président du Muséum national d’Histoire naturelle RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF : Line LE GALL Muséum national d’Histoire naturelle ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Audrina NEVEU ([email protected]) MISE EN PAGE / PAGE LAYOUT : Audrina NEVEU RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS Ecoevolutionary dynamics of algae in a changing world Stacy KRUEGER-HADFIELD Department of Biology, University of Alabama, 1300 University Blvd, Birmingham, AL 35294 (United States) Jana KULICHOVA Department of Botany, Charles University, Prague (Czech Repubwlic) Cecilia TOTTI Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy) Phylogenetic systematics, species delimitation & genetics of speciation Sylvain FAUGERON UMI3614 Evolutionary Biology and Ecology of Algae, Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Av. Bernardo O’Higgins 340, Santiago (Chile) Marie-Laure GUILLEMIN Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia (Chile) Diana SARNO Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy) Comparative evolutionary genomics of algae Nicolas BLOUIN Department of Molecular Biology, University of Wyoming, Dept. 3944, 1000 E University Ave, Laramie, WY 82071 (United States) Heroen VERBRUGGEN School of BioSciences,
    [Show full text]
  • The Nautilus
    THE NAUTILUS Volume 120, Numberl May 30, 2006 ISSN 0028-1344 A quarterly devoted to malacology. EDITOR-IN-CHIEF Dr. Douglas S. Jones Dr. Angel Valdes Florida Museum of Natural History Department of Malacology Dr. Jose H. Leal University of Florida Natural Histoiy Museum The Bailey-Matthews Shell Museum Gainesville, FL 32611-2035 of Los Angeles County 3075 Sanibel-Captiva Road 900 Exposition Boulevard Sanibel, FL 33957 Dr. Harry G. Lee Los Angeles, CA 90007 MANAGING EDITOR 1801 Barrs Street, Suite 500 Dr. Geerat Vermeij Jacksonville, FL 32204 J. Linda Kramer Department of Geology Shell Museum The Bailey-Matthews Dr. Charles Lydeard University of California at Davis 3075 Sanibel-Captiva Road Biodiversity and Systematics Davis, CA 95616 Sanibel, FL 33957 Department of Biological Sciences Dr. G. Thomas Watters University of Alabama EDITOR EMERITUS Aquatic Ecology Laboratory Tuscaloosa, AL 35487 Dr. M. G. Harasewych 1314 Kinnear Road Department of Invertebrate Zoology Bruce A. Marshall Columbus, OH 43212-1194 National Museum of Museum of New Zealand Dr. John B. Wise Natural History Te Papa Tongarewa Department oi Biology Smithsonian Institution P.O. Box 467 College of Charleston Washington, DC 20560 Wellington, NEW ZEALAND Charleston, SC 29424 CONSULTING EDITORS Dr. James H. McLean SUBSCRIPTION INFORMATION Dr. Riidiger Bieler Department of Malacology Department of Invertebrates Natural History Museum The subscription rate per volume is Field Museum of of Los Angeles County US $43.00 for individuals, US $72.00 Natural History 900 Exposition Boulevard for institutions. Postage outside the Chicago, IL 60605 Los Angeles, CA 90007 United States is an additional US $5.00 for surface and US $15.00 for Dr.
    [Show full text]
  • Macrocystis Integrifolia and Lessonia Trabeculata (Laminariales; Phaeophyceae) Kelp Habitat Structures and Associated Macrobenthic Community Ov Northern Chile
    Helgol Mar Res (2008) 62 (Suppl 1):S33–S43 DOI 10.1007/s10152-007-0096-1 ORIGINAL ARTICLE Macrocystis integrifolia and Lessonia trabeculata (Laminariales; Phaeophyceae) kelp habitat structures and associated macrobenthic community oV northern Chile Mario J. Villegas · Jürgen Laudien · Walter Sielfeld · Wolf E. Arntz Received: 6 June 2007 / Revised: 2 November 2007 / Accepted: 9 November 2007 / Published online: 20 December 2007 © Springer-Verlag and AWI 2007 Abstract Macrocystis integrifolia and Lessonia trabecu- present on barren ground are shorter and have more stipes lata form vast kelp beds providing a three-dimensional habi- compared with those in the dense L. trabeculata kelp bed. tat for a diverse invertebrate and Wsh fauna oV northern Thus, the habitats provide diVerent three-dimensional struc- Chile. Habitat modiWcations caused by the El Niño Southern tures. The associated macrobenthic communities show a Oscillation (ENSO) are likely to alter the inhabiting commu- variable degree of overlapping; however, key faunal assem- nities. The aim of this study was to reveal relationships blages were distinguished for each habitat. Our study pro- between distinct habitat structures of a M. integrifolia kelp vides evidence that habitat diversity drives species diversity, bed, a dense L. trabeculata kelp bed and L. trabeculata the more homogeneous, monospeciWcally composed kelp patches colonizing a barren ground, and the associated dom- bed habitats show comparatively low diversity, mainly inant macrobenthic key species. Seasonally 15 sampling caused by the dominance of the ascidian P. chilensis and T. units (10 m2 each) of any of the three habitats were moni- tridentata in the M. integrifolia bed, and the mussel A.
    [Show full text]
  • Lista Taxonómica De Invertebrados Bentónicos
    Bol Inst Mar Perú / Vol 35 / No 2 / Julio-Diciembre 2020 ISSN 0458-7766 LISTA TAXONÓMICA DE INVERTEBRADOS BENTÓNICOS MARINOS DE AREQUIPA, PERÚ TAXONOMIC LIST OF BENTHIC MARINE INVERTEBRATES OF AREQUIPA, PERU Deysi Valdivia-Chavez1 José Santamaría2 Sarita Campos-León1 Patricia Carbajal2 Edward Barriga1 Sara Clemente2 Zuccetti Galecio2 Albertina Kameya2 RESUMEN Valdivia-Chavez D, Santamaría J, Campos-León S, Carbajal P, Barriga E, Clemente S, Galecio Z, Kameya A. 2020. Lista taxonómica de invertebrados bentónicos marinos de Arequipa, Perú. Bol Inst Mar Perú. 35(2): 378- 395.- Se presenta un listado de 174 especies de invertebrados bentónicos, recolectados en el litoral de la Región Arequipa entre el 2014 y 2019. Especies que corresponden a 4 Phyla, 11 Clases, 104 Familias y 128 Géneros. La lista está conformada por 22 anélidos, 57 artrópodos, 81 moluscos y 14 equinodermos, cuya nomenclatura y clasificación están acorde a los cambios recientes de la World Register of Marine Species (WoRMS). Palabras clave: lista taxonómica; invertebrados bentónicos; Arequipa ABSTRACT Valdivia-Chavez D, Santamaría J, Campos-León S, Carbajal P, Barriga E, Clemente S, Galecio Z, Kameya A. 2020. Taxonomic list of benthic marine invertebrates of Arequipa, Peru. Bol Inst Mar Peru. 35(2): 378-395.- We present a list of 174 species of benthic invertebrates, collected along the Arequipean coast between 2014 and 2019. These species correspond to 4 Phyla, 11 Classes, 104 Families, and 128 Genera. The list is made up of 22 annelids, 57 arthropods, 81 mollusks, and 14 echinoderms, whose nomenclature and classification are consistent with recent changes in the World Register of Marine Species (WoRMS).
    [Show full text]
  • Amici Molluscarum 2008 (16) Sociedad Malacológica De Chile
    - Amici Molluscarum 2008 (16) Sociedad Malacológica de Chile AMICI MOLLUSCARUM Sociedad Malacológica de Chile Año 2008 Número 16 Año XVI Perry, 1811 Perry, Pomacea Pomacea Editorial Pág. 3 - Registro de Pomacea sp. (Gastropoda: Ampullaridae) en Chile. Sergio Letelier y Sergio Soto-Acuña 6-13 -Significancia taxonómica del complejo epipodial en especies sudamericanas del género Tegula Lesson, 1835 (Mollusca: Vetigastropoda). Gonzalo A. Collado 14-19 -Rol de las poblaciones de Diplodon (Diplodon) chilensis Gray 1828 en la Laguna Chica de San Pedro de la Paz. Carmen Fuentealba y Oscar Henríquez. 20-25 Notas, Reuniones Científicas, Congresos y Talleres 26 -34 -Homenaje de SMACH y ALMAMICI a Cecilia Osorio, MOLLUSCARUM José Stuardo, y Melbourne R. Carriker 29 - 31 Ficha Taxonómica 1: - RobsonellaSociedad fontaniana Malacológica. Sergio A. Carrasco. de Chile 35 Ficha Taxonómica 2 : -Benthoctopus longibrachus . Christian Ibáñez, M.Cecilia Pardo-Gandarillas Diana Párraga. 36 - Amici Molluscarum 2008 (16) Sociedad Malacológica de Chile Amici Molluscarum es un boletín de publicación anual, editado por la Sociedad Malacológica de Chile (SMACH), con el patrocinio del Museo Nacional de Historia Natural de Chile (MNHNCL), que tiene el propósito de comunicar notas, conferencias y artículos científicos en el área de la Malacología. ______________________________________________________________________ Presidencia Sergio Letelier (MNHNCL) Vicepresidencia Laura G. Huaquin (UNIVERSIDAD DE CHILE) Tesorería Esteban Saavedra (SOCIEDAD MALACOLOGICA DE CHILE)
    [Show full text]
  • Polysaccharide Content and Growth Rate of Lessonia
    POLYSACCHARIDE CONTENT AND GROWTH RATE OF LESSONIA VARIEGATA J. AGARDH: INVESTIGATING ITS POTENTIAL AS A COMMERCIAL SPECIES. By Lynaire Jane Abbott A Thesis Submitted to the Victoria University of Wellington In Partial Fulfilment of the Requirements for the Degree of Master of Science in Marine Biology Victoria University of Wellington 2011 Abstract The endemic brown alga Lessonia variegata has recently been shown to be four separate lineages. To determine differences between the four morphologically similar lineages, the economically valuable polysaccharides alginate and fucoidan were extracted and yields from each of the lineages were compared. In order to determine seasonal patterns in the yield of alginate and fucoidan, and the growth rate within L.variegata, polysaccharides were extracted and the growth rate measured on a monthly basis from March 2010 until February 2011 on plants from the Wellington lineage. The alginate and fucoidan yields were obtained via stepwise extraction with dilute acid and sodium carbonate as per the previously published methods of Usov et al. (1985). The growth rate of L. variegata from the Wellington lineage was assayed using the hole punch technique first described by Parke (1948). The yield of alginate within the Wellington lineage of L. variegata fluctuated seasonally with the highest percent occurring in spring and summer 2010. The yield of fucoidan in the Wellington lineage was at its highest in mid-autumn and late spring 2010. Two different growth rates were detected for the Wellington lineage of L. variegata. There was a period of significantly high growth from late winter 2010 until late summer 2011.The Wellington lineage had the lowest yield of alginate and the highest yield of fucoidan compared to the Northern lineage, the Kaikoura lineage and the Southern lineage.
    [Show full text]
  • Índice Global
    ÍNDICE GLOBAL ÍNDICE FIGURAS ............................................................................................................... 1 ÍNDICE TABLAS ................................................................................................................. 2 7. COMUNIDADES BENTÓNICAS DEL SUBMAREAL ROCOSO ............................................... 4 7.1. OBJETIVO GENERAL ................................................................................................... 4 7.2. METODOLOGÍA ........................................................................................................... 5 7.2.1. Área de estudio ..................................................................................................... 5 7.2.2. Obtención de las muestras ...................................................................................... 6 7.3.1. Características generales del sustrato ..................................................................... 10 7.3.2. Descripción de las comunidades presentes .............................................................. 10 7.3.3. Caracterización de los transectos estudiados ........................................................... 16 7.3.4. Índices Comunitarios ........................................................................................... 37 7.3.5. Índices ecológicos para la ictiofauna ...................................................................... 42 7.3.6. Análisis de clasificación de los transectos ...............................................................
    [Show full text]