Dimensionless Numbers

Total Page:16

File Type:pdf, Size:1020Kb

Dimensionless Numbers Dimensionless Numbers https://www.iist.ac.in/sites/default/files/people/numbers.html Dimensionless Numbers A. Salih Dept. of Aerospace Engineering IIST, Thiruvananthapuram The nondimensionalization of the governing equations of fluid flow is important for both theoretical and computational reasons. Nondimensional scaling provides a method for developing dimensionless groups that can provide physical insight into the importance of various terms in the system of governing equations. Computationally, dimensionless forms have the added benefit of providing numerical scaling of the system discrete equations, thus providing a physically linked technique for improving the ill-conditioning of the system of equations. Moreover, dimensionless forms also allow us to present the solution in a compact way. Some of the important dimensionless numbers used in fluid mechanics and heat transfer are given below. Nomenclature Archimedes Number: 3 Re 2 gL ρ(ρs − ρ) Ar = = Fr µ2 Atwood Number: (ρ1 − ρ2) A = (ρ1 + ρ2) Note: Used in the study of density stratified flows. Biot Number: hL conductive resistance in solid Bi = = Ks convective resistance in thermal boundary layer Bond Number: We ρgL 2 Bo = = Fr σ Brinkman Number: µU2 Br = K(Tw − T o) Note: Brinkman number is related to heat conduction from a wall to a flowing viscous fluid. It is commonly used in polymer processing. Capillary Number: We Uµ Ca = = Re σ Cauchy Number: ρU2 Ca = M2 = K 1 06.10.2017, 09:49 Dimensionless Numbers https://www.iist.ac.in/sites/default/files/people/numbers.html Centrifuge Number: We ρΩ 2L3 Ce = = Ro 2 σ Dean Number: Re De = (R ⁄ h )1/2 Note: Dean number deals with the stability of two- dimensional flows in a curved channel with mean radius R and width 2h . Deborah Number: τ relaxation time De = = tp characteristic time scale Note: Commonly used in rheology to characterize how "fluid" a material is. The smaller the De , the more the fluid the material appears. Eckert Number: U2 Ec = cp∆T Note: Eckert number represents the kinetic energy of the flow relative to the boundary layer enthalpy difference. Ec plays an important role in high speed flows for which viscous dissipation is significant. Ekman Number: µ viscous force Ek = = ρσ L2 Coriolis force E�tv �s Number: We ∆ρ gL 2 Eo = = Fr σ Euler Number: ∆p pressure force Eu = = ρU2 inertial force Fourier Number: αt rate of heat conduction Fo = = L2 rate of thermal energy stored Note: Fourier number represents the dimensionless time. It may be interpreted as the ratio of current time to time to reach steady-state. Froude Number: U2 inertial force Fr = = gL gravitational force Galileo Number: Re 2 ρ2gL 3 Ga = = Fr µ2 Graetz Number: Gz = di Pe = Ud i 2 06.10.2017, 09:49 Dimensionless Numbers https://www.iist.ac.in/sites/default/files/people/numbers.html L ν Grashof Number: gβ(T − T )L 3 buoyancy force Gr = hot ref = ν2 viscous force Hagen Number: dp ρL3 Hg = − dx µ2 Note: It is the forced flow equivalent of Grashof number. Jakob Number: cp(Tw − T sat ) Ja = hfg Note: Jakob number represents the ratio of sensible heat to latent heat absorbed (or released) during the phase change process. Knudsen Number: λ length of mean free path Kn = = L characteristic dimension Laplace Number: Re 2 ρσ L La = = We µ2 Lewis Number: α thermal diffusivity Le = = DAB mass diffusivity Mach Number: U inertial force M = = a elastic (compressibility) force Marangoni Number: dσ L∆T Ma = − dT µα Note: Marangoni number is the ratio of thermal surface tension force to the viscous force. Morton Number: We 3 gµ4 Mo = = Fr Re 4 ∆ρσ 3 Nusselt Number: hL Nu = Kf Note: Nusselt number represents the dimensionless temperature gradient at the solid surface. Ohnesorge Number: We 1/2 µ Oh = = Re (ρσ L)1/2 3 06.10.2017, 09:49 Dimensionless Numbers https://www.iist.ac.in/sites/default/files/people/numbers.html Peclet Number: UL inertia (convection) Pe = = α Diffusion Prandtl Number: ν momentum diffusivity Pr = = α thermal diffusivity Rayleigh Number: gβ(T − T )L 3 buoyancy Ra = Gr Pr = hot ref = να viscous × rate of heat diffusion Reynolds Number: ρUL inertial force Re = = µ viscous force Richardson Number: Gr gβ(Thot − T ref )L buoyancy force Ri = = = Re 2 U2 inertial force Rossby Number: U inertial force Ro = = ΩL Coriolis force Rotating Froude Number: Fr Ω2L Fr R = = Ro 2 g Schmidt Number: ν momentum diffusivity Sc = Le Pr = = DAB mass diffusivity Sherwood Number: hmL Sh = DAB Note: Sherwood number represents the dimensionless concentration gradient at the solid surface. Stanton Number: Nu h St = = Re Pr ρUc p Note: Stanton number is the modified Nusselt number. It is used in analogy between heat transfer and viscous transport in boundary layers. Stefan Number: cpdT specific heat St = = Lm latent heat Note: Stefan number is useful in the study of heat transfer during phase change. Stokes Number: 4 06.10.2017, 09:49 Dimensionless Numbers https://www.iist.ac.in/sites/default/files/people/numbers.html τUo stopping distance of a particle Stk = = dc characteristic dimension of the obstacle Note: Commonly used in particles suspended in fluid. For Stk << 1, the particle negotiates the obstacle. For Stk >> 1, the particle travels in straightline and eventually collides with obstacle. Strouhal Number (for oscillatory flow): L inertia (local) St = = Ut ref inertia (convection) Note: If tref is taken as the reciprocal of the circular frequency ω of the system, then ωL St = U Taylor Number: ρ2Ω 2L4 Ta = i µ2 3 1/4 where L = [r i(ro − ri) ] Weber Number: ρU2L inertial force We = = σ surface tension force Womersley Number: (ρω )1/2 α = ( π Re St )1/2 = L µ1/2 Note: Womersley number is used in biofluid mechanics. It is a dimensionless expression of the pulsatile flow frequency in relation to the viscous effects. Nomenclature: a → speed of sound cp → specific heat at constant pressure DAB → mass diffusivity coefficient dT → temperature difference between phases dc → characteristic dimension of the obstacle di → hydraulic diameter of the duct g → gravitational acceleration h → heat transfer coefficient h → width of the channel hfg → latent heat of condensation hm → mass transfer coefficient K → bulk modulus of elasticity K → thermal conductivity of fluid Kf → thermal conductivity of fluid Ks → thermal conductivity of solid L → characteristic length scale Lm → latent heat of melting R → radius of the channel ri → radius of the inner cylinder 5 06.10.2017, 09:49 Dimensionless Numbers https://www.iist.ac.in/sites/default/files/people/numbers.html ro → radius of the outer cylinder Thot → temperature of the hot wall Tref → reference temperature To → bulk fluid temperature Tsat → saturation temperature Tw → wall temperature T∞ → quiescent temperature of the fluid t → time tref → reference time tp → characteristic time scale U → characteristic velocity scale Uo → fluid velocity far away from the object dp/dx → pressure gradient dσ/dT → rate of change of surface tension with temperature α → thermal diffusivity of fluid β → volumetric thermal expansion coefficient ∆p → characteristic pressure difference of flow ∆T → characteristic temperature difference ∆ρ → difference in density of the two phases λ → length of mean free path µ → viscosity of fluid ν → kinematic viscosity of fluid ρ → density of fluid ρ1 → density of heavier fluid ρ2 → density of lighter fluid ρl → density of solid σ → surface tension τ → relaxation time Ω → angular velocity ω → circular frequency ωi → angular velocity of inner cylinder 6 06.10.2017, 09:49.
Recommended publications
  • (2020) Role of All Jet Drops in Mass Transfer from Bursting Bubbles
    PHYSICAL REVIEW FLUIDS 5, 033605 (2020) Role of all jet drops in mass transfer from bursting bubbles Alexis Berny,1,2 Luc Deike ,2,3 Thomas Séon,1 and Stéphane Popinet 1 1Sorbonne Université, CNRS, UMR 7190, Institut Jean le Rond ࢚’Alembert, F-75005 Paris, France 2Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA 3Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, USA (Received 12 September 2019; accepted 13 February 2020; published 10 March 2020) When a bubble bursts at the surface of a liquid, it creates a jet that may break up and produce jet droplets. This phenomenon has motivated numerous studies due to its multiple applications, from bubbles in a glass of champagne to ocean/atmosphere interactions. We simulate the bursting of a single bubble by direct numerical simulations of the axisymmetric two-phase liquid-gas Navier-Stokes equations. We describe the number, size, and velocity of all the ejected droplets, for a wide range of control parameters, defined as nondimensional numbers, the Laplace number which compares capillary and viscous forces and the Bond number which compares gravity and capillarity. The total vertical momentum of the ejected droplets is shown to follow a simple scaling relationship with a primary dependency on the Laplace number. Through a simple evaporation model, coupled with the dynamics obtained numerically, it is shown that all the jet droplets (up to 14) produced by the bursting event must be taken into account as they all contribute to the total amount of evaporated water. A simple scaling relationship is obtained for the total amount of evaporated water as a function of the bubble size and fluid properties.
    [Show full text]
  • A Novel Momentum-Conserving, Mass-Momentum Consistent Method for Interfacial flows Involving Large Density Contrasts Sagar Pal, Daniel Fuster, St´Ephanezaleski
    Highlights A novel momentum-conserving, mass-momentum consistent method for interfacial flows involving large density contrasts Sagar Pal, Daniel Fuster, St´ephaneZaleski • Conservative formulation of Navier Stokes with interfaces using the Volume- of-Fluid method. • Geometrical interface and flux reconstructions on a twice finer grid en- abling discrete consistency between mass and momentum on staggered uniform Cartesian grids. • Conservative direction-split time integration of geometric fluxes in 3D, enabling discrete conservation of mass and momentum. • Quantitative comparisons with standard benchmarks for flow configura- tions involving large density contrasts. • High degree of robustness and stability for complex turbulent interfacial flows, demonstrated using the case of a falling raindrop. arXiv:2101.04142v1 [physics.comp-ph] 11 Jan 2021 A novel momentum-conserving, mass-momentum consistent method for interfacial flows involving large density contrasts Sagar Pala,∗, Daniel Fustera, St´ephaneZaleskia aInstitut Jean le Rond @'Alembert, Sorbonne Universit´eand CNRS, Paris, France Abstract We propose a novel method for the direct numerical simulation of interfacial flows involving large density contrasts, using a Volume-of-Fluid method. We employ the conservative formulation of the incompressible Navier-Stokes equa- tions for immiscible fluids in order to ensure consistency between the discrete transport of mass and momentum in both fluids. This strategy is implemented on a uniform 3D Cartesian grid with a staggered configuration of primitive vari- ables, wherein a geometrical reconstruction based mass advection is carried out on a grid twice as fine as that for the momentum. The implementation is in the spirit of Rudman (1998) [41], coupled with the extension of the direction-split time integration scheme of Weymouth & Yue (2010) [46] to that of conservative momentum transport.
    [Show full text]
  • Chapter 4 Solutal Marangoni Convection: Mass Transfer
    137 Chapter 4 Solutal Marangoni Convection: Mass Transfer Characteristics 4.1 Introduction In chapter 2, the microgravity experiments with V-shaped containers have been described. In chapter 3, the evolution of Marangoni flow and concentration patterns in these V-shaped containers have been modelled numerically. A reasonable agreement between experiment and model was obtained. In this chapter, the model that has been developed in chapter 3 is used to predict mass transfer characteristics for gas-liquid systems with a non- deformable interface. That is, the influence of Marangoni convection on the gas-liquid mass transfer is examined. In this way, an attempt is made to establish a link between the microgravity experiments and a better understanding of the relation between the Marangoni effect and mass transfer. The parameters varied in this study are the Marangoni, Schmidt and Biot numbers. Literature review Experimentally, the influence of the Marangoni effect on the mass transfer coefficient in gas-liquid systems has been studied by several authors [1, 2, 3, 4, 5, 6, 7]. In the most relevant studies [2, 5, 7], the enhancement of the liquid side mass transfer coefficient kL was correlated by equations of the following type: k L f = * (1) k L n æ Ma ö f = ç ÷ (2) è Ma C ø * In these equations f is the enhancement factor, k L the liquid side mass transfer coefficient in the absence of interfacial turbulence, Ma the Marangoni number, Mac the critical Marangoni number, and n an empirical parameter. Equation (2) is only valid when Ma > Mac. For values of Ma smaller than Mac, the enhancement factor is equal to 1.
    [Show full text]
  • Use of a Fictitious Marangoni Number for Natural
    a Use of a fictitious Marangoni number for natural convection simulation Francisco J. Arias∗ and Geoffrey T. Parks Department of Engineering, University of Cambridge Trumpington Street, Cambridge, CB2 1PZ, United Kingdom In this paper, a method based on the use of a fictitious Marangoni number is proposed for the simulation of natural thermocapillary convection as an alternative to the traditional effective diffusivity approach. The fundamental difference between these two methods is that the new method adopts convective mass flows in simulating natural convection. Heat transfer in the natural convection simulation is calculated through the mass transport. Therefore, empirical Nusselt num- bers correlations required in the effective diffusivity method are eliminated. This represents a clear advantage in the context of design studies where flexibility in varying the geometry unconstrained by the availability of appropriate correlations is highly desirable. The new method is demonstrated using a simple geometrical model. An analytical expression of the fictitious Marangoni number associated with convection between vertical plates is derived and a computational fluid dynamics (CFD) simulation is performed to study the efficacy of the proposed method. The results show that the new method can approximate real natural convection quite accurately and can be used to simulate the convective flow in complex, obstructed or finned structures where the specific Nusselt correlation is not known. aKeywords. Natural convection, Effective thermal conductivity, Marangoni convection, Compu- tational Fluid Dynamics (CFD) I. INTRODUCTION ship for the specific geometry, such as finned structures; however, these correlations are often not available. This Natural convection in enclosed cavities is of great im- then motivates us to find an alternative approach that portance in many engineering and scientific applications does not require knowledge of Nusselt number correla- such as energy transfer, boilers, nuclear reactor systems, tions.
    [Show full text]
  • Static Mixing Spacers for Spiral Wound Modules
    Desalination and Water Purification Research and Development Program Report No. 161 Static Mixing Spacers for Spiral Wound Modules U.S. Department of the Interior Bureau of Reclamation Technical Service Center Denver, Colorado November 2012 Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) November 2012 Final 2010-2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Static Mixing Spacers for Spiral Wound Modules Agreement No.R10AP81213 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Glenn Lipscomb 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Chemical Engineering Task Identification Number University of Toledo Task IV: Expanding Scientific 3048 Nitschke Hall (MS 305) Understanding of Desalination Processes 1610 N Westwood Ave Subtask: Increase of rates of mass transfer Toledo, OH 43607 to membrane or to heat transfer surfaces.
    [Show full text]
  • Turbulent Boundary Layers 7 - 1 David Apsley 7.2.3 Radiation
    7. HEAT TRANSFER SPRING 2009 7.1 Definitions 7.2 Modes of heat transfer 7.3 The Prandtl number 7.4 Dimensionless numbers in free and forced convection 7.5 The energy equation 7.6 Laminar boundary layers with isothermal walls 7.7 Temperature profile in a turbulent boundary layer 7.8 Heat-transfer coefficients 7.9 Temperature integral results 7.10 Engineering heat-transfer calculations 7.11 References Examples 7.1 Definitions Heat transfer is energy in transit due to a temperature difference. The heat flux qh is the rate of heat transfer per unit area. 7.2 Modes of Heat Transfer 7.2.1 Conduction Heat transfer due to molecular activity in the absence of a bulk motion. Fourier ’s Law = − ∇ qh kh T (1) kh is the conductivity of heat . –1 –1 –1 –1 At 20 ºC, kh(water) = 0.604 W m K ; kh(air) = 0.0257 W m K . 7.2.2 Advection Heat transfer due to bulk motion of fluid. = − qh c p (T Te )u (2) cp is the specific heat capacity (at constant pressure). Te is a reference (usually the external or free-stream) temperature. –1 –1 –1 –1 At 20 ºC, cp(water) = 4182 J kg K ; cp(air) = 1007 J kg K . Turbulent Boundary Layers 7 - 1 David Apsley 7.2.3 Radiation Heat transfer by emission of electromagnetic radiation. Stefan-Boltzmann Law = 4 qh Ts (3) (= 5.670 ×10 -8 W m–2 K–4) is the Stefan-Boltzmann constant . is the emissivity ( = 1 for a perfect black body) 7.2.4 Free and Forced Convection For fluids, conduction and advection are usually combined as convection , which may be either: forced convection – flow driven by external means; free (or natural ) convection – flow driven by buoyancy.
    [Show full text]
  • Experimental Heat Transfer and Friction Factor of Fe3o4 Magnetic Nanofluids Flow in a Tube Under Laminar Flow at High Prandtl Numbers
    International Journal of Heat and Technology Vol. 38, No. 2, June, 2020, pp. 301-313 Journal homepage: http://iieta.org/journals/ijht Experimental Heat Transfer and Friction Factor of Fe3O4 Magnetic Nanofluids Flow in a Tube under Laminar Flow at High Prandtl Numbers Lingala Syam Sundar1*, Hailu Misganaw Abebaw2, Manoj K. Singh3, António M.B. Pereira1, António C.M. Sousa1 1 Centre for Mechanical Technology and Automation (TEMA–UA), Department of Mechanical Engineering, University of Aveiro, Aveiro 3810-131, Portugal 2 Department of Mechanical Engineering, University of Gondar, Gondar, Ethiopia 3 Department of Physics – School of Engineering and Technology (SOET), Central University of Haryana, Haryana 123031, India Corresponding Author Email: [email protected] https://doi.org/10.18280/ijht.380204 ABSTRACT Received: 15 February 2020 The work is focused on the estimation of convective heat transfer and friction factor of Accepted: 23 April 2020 vacuum pump oil/Fe3O4 magnetic nanofluids flow in a tube under laminar flow at high Prandtl numbers experimentally. The thermophysical properties also studied Keywords: experimentally at different particle concentrations and temperatures. The Fe3O4 heat transfer enhancement, friction factor, nanoparticles were synthesized using the chemical reaction method and characterized using laminar flow, high Prandtl number, magnetic X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM) techniques. nanofluid The experiments were conducted at mass flow rate from 0.04 kg/s to 0.208 kg/s, volume concentration from 0.05% to 0.5%, Prandtl numbers from 440 to 2534 and Graetz numbers from 500 to 3000. The results reveal that, the thermal conductivity and viscosity enhancements are 9% and 1.75-times for 0.5 vol.
    [Show full text]
  • A Two-Layer Turbulence Model for Simulating Indoor Airflow Part I
    Energy and Buildings 33 +2001) 613±625 A two-layer turbulence model for simulating indoor air¯ow Part I. Model development Weiran Xu, Qingyan Chen* Department of Architecture, Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA 02139, USA Received 2 August 2000; accepted 7 October 2000 Abstract Energy ef®cient buildings should provide a thermally comfortable and healthy indoor environment. Most indoor air¯ows involve combined forced and natural convection +mixed convection). In order to simulate the ¯ows accurately and ef®ciently, this paper proposes a two-layer turbulence model for predicting forced, natural and mixed convection. The model combines a near-wall one-equation model [J. Fluid Eng. 115 +1993) 196] and a near-wall natural convection model [Int. J. Heat Mass Transfer 41 +1998) 3161] with the aid of direct numerical simulation +DNS) data [Int. J. Heat Fluid Flow 18 +1997) 88]. # 2001 Published by Elsevier Science B.V. Keywords: Two-layer turbulence model; Low-Reynolds-number +LRN); k±e Model +KEM) 1. Introduction This paper presents a new two-layer turbulence model that performs two tasks: 1.1. Objectives 1. It can accurately predict flows under various conditions, i.e. from purely forced to purely natural convection. This Energy ef®cient buildings should provide a thermally model allows building ventilation designers to use one comfortable and healthy indoor environment. The comfort single model to calculate flows instead of selecting and health parameters in indoor environment include the different turbulence models empirically from many distributions of velocity, air temperature, relative humidity, available models. and contaminant concentrations. These parameters can be 2.
    [Show full text]
  • Chapter 5 Dimensional Analysis and Similarity
    Chapter 5 Dimensional Analysis and Similarity Motivation. In this chapter we discuss the planning, presentation, and interpretation of experimental data. We shall try to convince you that such data are best presented in dimensionless form. Experiments which might result in tables of output, or even mul- tiple volumes of tables, might be reduced to a single set of curves—or even a single curve—when suitably nondimensionalized. The technique for doing this is dimensional analysis. Chapter 3 presented gross control-volume balances of mass, momentum, and en- ergy which led to estimates of global parameters: mass flow, force, torque, total heat transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif- ferential equations of fluid flow and some particular solutions. These two chapters cov- ered analytical techniques, which are limited to fairly simple geometries and well- defined boundary conditions. Probably one-third of fluid-flow problems can be attacked in this analytical or theoretical manner. The other two-thirds of all fluid problems are too complex, both geometrically and physically, to be solved analytically. They must be tested by experiment. Their behav- ior is reported as experimental data. Such data are much more useful if they are ex- pressed in compact, economic form. Graphs are especially useful, since tabulated data cannot be absorbed, nor can the trends and rates of change be observed, by most en- gineering eyes. These are the motivations for dimensional analysis. The technique is traditional in fluid mechanics and is useful in all engineering and physical sciences, with notable uses also seen in the biological and social sciences.
    [Show full text]
  • An Investigation Into the Effects of Viscoelasticity on Cavitation Bubble Dynamics with Applications to Biomedicine
    An Investigation into the Effects of Viscoelasticity on Cavitation Bubble Dynamics with Applications to Biomedicine Michael Jason Walters School of Mathematics Cardiff University A thesis submitted for the degree of Doctor of Philosophy 9th April 2015 Summary In this thesis, the dynamics of microbubbles in viscoelastic fluids are investigated nu- merically. By neglecting the bulk viscosity of the fluid, the viscoelastic effects can be introduced through a boundary condition at the bubble surface thus alleviating the need to calculate stresses within the fluid. Assuming the surrounding fluid is incompressible and irrotational, the Rayleigh-Plesset equation is solved to give the motion of a spherically symmetric bubble. For a freely oscillating spherical bubble, the fluid viscosity is shown to dampen oscillations for both a linear Jeffreys and an Oldroyd-B fluid. This model is also modified to consider a spherical encapsulated microbubble (EMB). The fluid rheology affects an EMB in a similar manner to a cavitation bubble, albeit on a smaller scale. To model a cavity near a rigid wall, a new, non-singular formulation of the boundary element method is presented. The non-singular formulation is shown to be significantly more stable than the standard formulation. It is found that the fluid rheology often inhibits the formation of a liquid jet but that the dynamics are governed by a compe- tition between viscous, elastic and inertial forces as well as surface tension. Interesting behaviour such as cusping is observed in some cases. The non-singular boundary element method is also extended to model the bubble tran- sitioning to a toroidal form.
    [Show full text]
  • 1.2 Porous Media Flow
    Research Collection Doctoral Thesis Experimental and numerical investigation of porous media flow with regard to the emulsion process Author(s): Benedikt Hövekamp, Tobias Publication Date: 2002 Permanent Link: https://doi.org/10.3929/ethz-a-004511272 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 14836 Experimental and Numerical Investigation of Porous Media Flow with regard to the Emulsion Process A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH¨ for the degree of Doctor of Technical Sciences presented by Tobias Benedikt Hov¨ ekamp Dipl.-Ing. born June 18, 1970 citizen of Germany accepted on the recommendation of Prof. Dr.-Ing. E. Windhab, examiner Prof. Dr. K. Feigl, co-examiner. 2002 c 2002 Tobias Hov¨ ekamp Laboratory of Food Process Engineering (ETH Zurich)¨ All rights reserved. Experimental and Numerical Investigation of Porous Media Flow with regard to the Emulsion Process ISBN: 3-905609-17-7 LMVT Volume: 16 Published and distributed by: Laboratory of Food Process Engineering Swiss Federal Institute of Technology (ETH) Zurich¨ ETH Zentrum, LFO CH-8092 Zurich Switzerland http://www.vt.ilw.agrl.ethz.ch Printed in Switzerland by: bokos druck GmbH Badenerstrasse 123a CH-8004 Zurich¨ Rien n’est plus fort qu’une idee´ dont l’heure est venue Victor Hugo To Barbara Danksagung Die vorliegende Dissertation wurde erst durch die Mithilfe und Unterstutzung¨ vieler Men- schen moglich.¨ Gerne mochte¨ ich mich an dieser Stelle bei allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben.
    [Show full text]
  • Entropy Generation in Mhd Flow of Viscoelastic Nanofluids with Homogeneous-Heterogeneous Reaction, Partial Slip and Nonlinear Thermal Radiation
    Journal of Thermal Engineering, Vol. 6, No. 3, pp. 327-345, April, 2020 Yildiz Technical University Press, Istanbul, Turkey ENTROPY GENERATION IN MHD FLOW OF VISCOELASTIC NANOFLUIDS WITH HOMOGENEOUS-HETEROGENEOUS REACTION, PARTIAL SLIP AND NONLINEAR THERMAL RADIATION M. Almakki1, H. Mondal2*, P. Sibanda3 ABSTRACT We investigate the combined effects of homogeneous and heterogeneous reactions in the boundary layer flow of a viscoelastic nanofluid over a stretching sheet with nonlinear thermal radiation. The incompressible fluid is electrically conducting with an applied a transverse magnetic field. The conservation equations are solved using the spectral quasi-linearization method. This analysis is carried out in order to enhance the system performance, with the source of entropy generation and the impact of Bejan number on viscoelastic nanofluid due to a partial slip in homogeneous and heterogeneous reactions flow using the spectral quasi-linearization method. Various fluid parameters of interest such as entropy generation, Bejan number, fluid velocity, shear stress heat and mass transfer rates are studied quantitatively, and their behaviors are depicted graphically. A comparison of the entropy generation due to the heat transfer and the fluid friction is made with the help of the Bejan number. Among the findings reported in this study is that the entropy generation has a significant impact in controlling the rate of heat transfer in the boundary layer region. Keywords: Nanofluids, Viscoelastic Fluid, Homogeneous—Heterogeneous Reactions, Nonlinear Thermal Radiation. INTRODUCTION In recent years, nanofluids have attracted a considerable amount of interest due to their novel properties that make them potentially useful in a number of industrial applications including transportation, power generation, micro manufacturing, thermal therapy for cancer treatment, chemical and metallurgical sectors, heating, cooling, ventilation, and air-conditioning.
    [Show full text]