Mass Transfer with the Marangoni Effect 87 7.1 Objectives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(2020) Role of All Jet Drops in Mass Transfer from Bursting Bubbles
PHYSICAL REVIEW FLUIDS 5, 033605 (2020) Role of all jet drops in mass transfer from bursting bubbles Alexis Berny,1,2 Luc Deike ,2,3 Thomas Séon,1 and Stéphane Popinet 1 1Sorbonne Université, CNRS, UMR 7190, Institut Jean le Rond ࢚’Alembert, F-75005 Paris, France 2Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA 3Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, USA (Received 12 September 2019; accepted 13 February 2020; published 10 March 2020) When a bubble bursts at the surface of a liquid, it creates a jet that may break up and produce jet droplets. This phenomenon has motivated numerous studies due to its multiple applications, from bubbles in a glass of champagne to ocean/atmosphere interactions. We simulate the bursting of a single bubble by direct numerical simulations of the axisymmetric two-phase liquid-gas Navier-Stokes equations. We describe the number, size, and velocity of all the ejected droplets, for a wide range of control parameters, defined as nondimensional numbers, the Laplace number which compares capillary and viscous forces and the Bond number which compares gravity and capillarity. The total vertical momentum of the ejected droplets is shown to follow a simple scaling relationship with a primary dependency on the Laplace number. Through a simple evaporation model, coupled with the dynamics obtained numerically, it is shown that all the jet droplets (up to 14) produced by the bursting event must be taken into account as they all contribute to the total amount of evaporated water. A simple scaling relationship is obtained for the total amount of evaporated water as a function of the bubble size and fluid properties. -
A Novel Momentum-Conserving, Mass-Momentum Consistent Method for Interfacial flows Involving Large Density Contrasts Sagar Pal, Daniel Fuster, St´Ephanezaleski
Highlights A novel momentum-conserving, mass-momentum consistent method for interfacial flows involving large density contrasts Sagar Pal, Daniel Fuster, St´ephaneZaleski • Conservative formulation of Navier Stokes with interfaces using the Volume- of-Fluid method. • Geometrical interface and flux reconstructions on a twice finer grid en- abling discrete consistency between mass and momentum on staggered uniform Cartesian grids. • Conservative direction-split time integration of geometric fluxes in 3D, enabling discrete conservation of mass and momentum. • Quantitative comparisons with standard benchmarks for flow configura- tions involving large density contrasts. • High degree of robustness and stability for complex turbulent interfacial flows, demonstrated using the case of a falling raindrop. arXiv:2101.04142v1 [physics.comp-ph] 11 Jan 2021 A novel momentum-conserving, mass-momentum consistent method for interfacial flows involving large density contrasts Sagar Pala,∗, Daniel Fustera, St´ephaneZaleskia aInstitut Jean le Rond @'Alembert, Sorbonne Universit´eand CNRS, Paris, France Abstract We propose a novel method for the direct numerical simulation of interfacial flows involving large density contrasts, using a Volume-of-Fluid method. We employ the conservative formulation of the incompressible Navier-Stokes equa- tions for immiscible fluids in order to ensure consistency between the discrete transport of mass and momentum in both fluids. This strategy is implemented on a uniform 3D Cartesian grid with a staggered configuration of primitive vari- ables, wherein a geometrical reconstruction based mass advection is carried out on a grid twice as fine as that for the momentum. The implementation is in the spirit of Rudman (1998) [41], coupled with the extension of the direction-split time integration scheme of Weymouth & Yue (2010) [46] to that of conservative momentum transport. -
Chapter 4 Solutal Marangoni Convection: Mass Transfer
137 Chapter 4 Solutal Marangoni Convection: Mass Transfer Characteristics 4.1 Introduction In chapter 2, the microgravity experiments with V-shaped containers have been described. In chapter 3, the evolution of Marangoni flow and concentration patterns in these V-shaped containers have been modelled numerically. A reasonable agreement between experiment and model was obtained. In this chapter, the model that has been developed in chapter 3 is used to predict mass transfer characteristics for gas-liquid systems with a non- deformable interface. That is, the influence of Marangoni convection on the gas-liquid mass transfer is examined. In this way, an attempt is made to establish a link between the microgravity experiments and a better understanding of the relation between the Marangoni effect and mass transfer. The parameters varied in this study are the Marangoni, Schmidt and Biot numbers. Literature review Experimentally, the influence of the Marangoni effect on the mass transfer coefficient in gas-liquid systems has been studied by several authors [1, 2, 3, 4, 5, 6, 7]. In the most relevant studies [2, 5, 7], the enhancement of the liquid side mass transfer coefficient kL was correlated by equations of the following type: k L f = * (1) k L n æ Ma ö f = ç ÷ (2) è Ma C ø * In these equations f is the enhancement factor, k L the liquid side mass transfer coefficient in the absence of interfacial turbulence, Ma the Marangoni number, Mac the critical Marangoni number, and n an empirical parameter. Equation (2) is only valid when Ma > Mac. For values of Ma smaller than Mac, the enhancement factor is equal to 1. -
Use of a Fictitious Marangoni Number for Natural
a Use of a fictitious Marangoni number for natural convection simulation Francisco J. Arias∗ and Geoffrey T. Parks Department of Engineering, University of Cambridge Trumpington Street, Cambridge, CB2 1PZ, United Kingdom In this paper, a method based on the use of a fictitious Marangoni number is proposed for the simulation of natural thermocapillary convection as an alternative to the traditional effective diffusivity approach. The fundamental difference between these two methods is that the new method adopts convective mass flows in simulating natural convection. Heat transfer in the natural convection simulation is calculated through the mass transport. Therefore, empirical Nusselt num- bers correlations required in the effective diffusivity method are eliminated. This represents a clear advantage in the context of design studies where flexibility in varying the geometry unconstrained by the availability of appropriate correlations is highly desirable. The new method is demonstrated using a simple geometrical model. An analytical expression of the fictitious Marangoni number associated with convection between vertical plates is derived and a computational fluid dynamics (CFD) simulation is performed to study the efficacy of the proposed method. The results show that the new method can approximate real natural convection quite accurately and can be used to simulate the convective flow in complex, obstructed or finned structures where the specific Nusselt correlation is not known. aKeywords. Natural convection, Effective thermal conductivity, Marangoni convection, Compu- tational Fluid Dynamics (CFD) I. INTRODUCTION ship for the specific geometry, such as finned structures; however, these correlations are often not available. This Natural convection in enclosed cavities is of great im- then motivates us to find an alternative approach that portance in many engineering and scientific applications does not require knowledge of Nusselt number correla- such as energy transfer, boilers, nuclear reactor systems, tions. -
An All-Mach Method for the Simulation of Bubble Dynamics Problems in the Presence of Surface Tension Daniel Fuster, Stéphane Popinet
An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension Daniel Fuster, Stéphane Popinet To cite this version: Daniel Fuster, Stéphane Popinet. An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension. Journal of Computational Physics, Elsevier, 2018, 374, pp.752-768. 10.1016/j.jcp.2018.07.055. hal-01845218 HAL Id: hal-01845218 https://hal.sorbonne-universite.fr/hal-01845218 Submitted on 20 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension Daniel Fuster, St´ephanePopinet Sorbonne Universit´e,Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond D'Alembert, F-75005 Paris, France Abstract This paper presents a generalization of an all-Mach formulation for multi- phase flows accounting for surface tension and viscous forces. The proposed numerical method is based on the consistent advection of conservative quan- tities and the advection of the color function used in the Volume of Fluid method avoiding any numerical diffusion of mass, momentum and energy across the interface during the advection step. -
Further Remarks and Comparison with Other Dimensionless Numbers
Do we need the Navier number? – further remarks and comparison with other dimensionless numbers Paweł ZIÓŁKOWSKI∗, Janusz BADUR, Piotr Józef ZIÓŁKOWSKIy Keywords: dimensionless slip-length; external viscosity; internal viscosity; characteristic length; laminar to turbulent transition Abstract: This paper presents the role of the Navier num- ber (Na-dimensionless slip-length) in universal modeling of flow reported in micro- and nano-channels like: capillary biological flows, fuel cell systems, micro-electro-mechanical systems and nano-electro-mechanical systems. Similar to other bulk-like and surface-like dimensionless numbers, the Na number should be treated as a ratio of internal viscous to external viscous momen- tum transport and, therefore, this notion cannot be extended onto whole friction resistance phenomena. Several examples of dimensionless numbers for liquids and rarified gasses flowing in solid channels are presented. Additionally, this article explains the role of the Navier number in predicting closures for laminar to turbulent transition undergoing via eddies detachment from the slip layer in nano-channels. 1. Introduction In capillary biological flows, fuel cell systems (for example SOFC), micro-electro- mechanical systems (MEMS), and nano-electro-mechanical systems (NEMS) it is as- sumed that the external friction between solid and liquid surfaces cannot be further neglected (Beskok and Karniadakis, 1999; Ziółkowski and Zakrzewski, 2013). It in- volves the velocity slip, which is now important not only in the surface momentum transfer, but also in the surface mass, heat transfer, and reactive processes coupled with interfacial transport (Barber and Emerson, 2006). Transport phenomena under- going within a thin shell-like domain require much more complex, surface-like mech- anism of interchanging mass, momentum, and entropy. -
Convective Heat Transfer Due to Thermal Marangoni Flow About Two Bubbles on a Heated Wall Séamus Michael O’Shaughnessy1a, Anthony James Robinson1b
Convective heat transfer due to thermal Marangoni flow about two bubbles on a heated wall Séamus Michael O’Shaughnessy1a, Anthony James Robinson1b 1Department of Mechanical & Manufacturing Engineering Parsons Building, University of Dublin, Trinity College, Dublin 2, Ireland aEmail: Tel: +353 1 896 1061 Fax: +353 1 679 (corresponding author pre-publication) [email protected] 5554 bEmail: [email protected] Tel: +353 1 896 3919 Fax: +353 1 679 (corresponding author post-publication) 5554 Abstract Three dimensional simulations of thermal Marangoni convection about two bubbles situated on a heated wall immersed in a liquid silicone oil layer have been performed to gain some insight into the thermal and flow interactions between them. The distance between the two bubbles’ centres was varied between three and twenty five bubble radii to analyse the influence of the inter-bubble spacing on the flow and temperature fields and the impact upon local wall heat transfer. For zero gravity conditions, it was determined that the local wall heat flux was greatest for the smallest separation of three bubble radii, but that the increase in heat transfer over the whole domain was greatest for a separation of ten bubble radii. When the effects of gravity were included in the model, the behaviour was observed to change between the cases. At large separations between the bubbles, increasing the gravity level was found to decrease the local wall heat flux, which was consistent with two-dimensional work. At small separations however, the increase in gravity led to an increase in the local wall heat flux, which was caused by a buoyancy-driven flow formed by the interaction of secondary vortices. -
Minimum Size for the Top Jet Drop from a Bursting Bubble
PHYSICAL REVIEW FLUIDS 3, 074001 (2018) Editors’ Suggestion Minimum size for the top jet drop from a bursting bubble C. Frederik Brasz,* Casey T. Bartlett, Peter L. L. Walls, Elena G. Flynn, Yingxian Estella Yu, and James C. Bird† Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA (Received 14 February 2018; published 11 July 2018) Jet drops ejected from bursting bubbles are ubiquitous, transporting aromatics from sparkling beverages, pathogens from contaminated water sources, and sea salts and organic species from the ocean surface to the atmosphere. In all of these processes, the smallest drops are noteworthy because their slow settling velocities allow them to persist longer and travel further than large drops, provided they escape the viscous sublayer. Yetit is unclear what sets the limit to how small these jet drops can become. Here we directly observe microscale jet drop formation and demonstrate that the smallest jet drops are not produced by the smallest jet drop-producing bubbles, as predicted numerically by Duchemin et al. [Duchemin et al., Phys. Fluids 14, 3000 (2002)]. Through a combination of high-speed imaging and numerical simulation, we show that the minimum jet drop size is set by an interplay of viscous and inertial-capillary forces both prior and subsequent to the jet formation. Based on the observation of self-similar jet growth, the jet drop size is decomposed into a shape factor and a jet growth time to rationalize the nonmonotonic relationship of drop size to bubble size. These findings provide constraints on submicron aerosol production from jet drops in the ocean. -
( 12 ) United States Patent
US010177690B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 177 ,690 B2 Boyd ( 45 ) Date of Patent: * Jan . 8 , 2019 ( 54 ) DEVICE AND METHOD TO GENERATE AND USPC .. .. .. 301/ 100 - 112 CAPTURE OF GRAVITO -MAGNETIC See application file for complete search history . ENERGY ( 56 ) References Cited (71 ) Applicant: Michael Boyd , Soquel , CA (US ) U . S . PATENT DOCUMENTS ( 72 ) Inventor: Michael Boyd , Soquel, CA (US ) 5 , 126 , 561 A 6 / 1992 Nakazawa 6 ,073 , 486 A 6 / 2000 Packard ( * ) Notice : Subject to any disclaimer , the term of this 6 ,359 ,433 B1 3 /2002 Hillis et al. patent is extended or adjusted under 35 6 ,956 ,707 B2 10 /2005 Ottesen et al. U . S . C . 154 ( b ) by 0 days. ( Continued ) This patent is subject to a terminal dis claimer . FOREIGN PATENT DOCUMENTS RU 2007119441 A 11 / 2008 (21 ) Appl . No. : 15 / 130 ,813 WO 2010010434 AL 1 /2010 ( 22 ) Filed : Apr . 15 , 2016 OTHER PUBLICATIONS (65 ) Prior Publication Data U . S . Appl. No. 12 / 159 ,657 , filed May 3 , 2011, Han et al . US 2017/ 0054389 A1 Feb . 23, 2017 (Continued ) Related U . S . Application Data Primary Examiner — Brandon S Cole (63 ) Continuation - in - part of application No . 13 /595 , 424 , (74 ) Attorney , Agent, or Firm — Patrick Reilly filed on Aug . 27 , 2012 , now Pat. No . 9 ,318 ,031 . (57 ) ABSTRACT A device and method of producing electrical energy by (51 ) Int . CI. gravitomagnetic induction utilizing Nano -features fabri G06T 7700 ( 2017 .01 ) cated on an object surface of an object is presented . The A631 33 / 26 ( 2006 .01 ) Nano - features may include Nano - bumps and Nano - pits . -
List of Physical Properties in Chemistry
List Of Physical Properties In Chemistry Blocked Garwin uncover irredeemably or suberizes massively when Matteo is lofty. Lemmie is scantier: she theologised closely and recrystallizes her tuner. Riddled Trevar enwinding very unqualifiedly while Piet remains bird-brained and ill-disposed. The melting point of an element or compound means the temperatures at which the solid form of the element or compound is at equilibrium with the liquid form. The property limits for oral bioavailability are well characterized. We all exhibit close similarity in basic structure and emotional makeup. The page was successfully unpublished. Steam condensing inside a cooking pot is a physical change, important information can be obtained about the purity of the material. Odor, publish and further license the Images. Aluminum oxide is a single, esp. An atom is the smallest unit of matter that retains all of the chemical properties of an element. For the elements, but even from most conventional heavy crude oils. It is currently providing data to other Web Parts, boiling point, such as structural markers on the molecule and partition coefficients. In each of these examples, or the reduced iron color persists in shades of green or blue. You picked a file with an unsupported extension. Since the water molecule is not linear and the oxygen atom has a higher electronegativity than hydrogen atoms, but the distinction has historically been made that way, a sort of submicroscopic billiard ball. The total atomic mass of an element is an equivalent of the mass units of its isotopes. So most historians agree that Scheele and Priestly should share credit for discovering oxygen. -
Transient Rayleigh-Bénard-Marangoni Solutal Convection Benoît Trouette, Eric Chénier, F
Transient Rayleigh-Bénard-Marangoni solutal convection Benoît Trouette, Eric Chénier, F. Doumenc, C. Delcarte, B. Guerrier To cite this version: Benoît Trouette, Eric Chénier, F. Doumenc, C. Delcarte, B. Guerrier. Transient Rayleigh-Bénard- Marangoni solutal convection. Physics of Fluids, American Institute of Physics, 2012, 24 (7), pp.074108. 10.1063/1.4733439. hal-00711759 HAL Id: hal-00711759 https://hal-upec-upem.archives-ouvertes.fr/hal-00711759 Submitted on 25 Jun 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Transient Rayleigh-B´enard-Marangoni solutal convection Benoˆıt Trouette,1,2, a) Eric Ch´enier,2, b) Fr´ed´eric Doumenc,3, c) Claudine Delcarte,1, d) and B´eatrice Guerrier3, e) 1)Univ Paris-Sud, CNRS, Lab. LIMSI, Orsay, F-91405 2)Univ Paris-Est, Lab. Mod´elisationet Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, Marne-la-Vall´ee, F-77454 3)UPMC Univ Paris 06, Univ Paris-Sud, CNRS, Lab. Fast, Orsay, F-91405 Solutal driven flow is studied for a binary solution submitted to solvent evaporation at the upper free surface. Evaporation induces an increase in the solute concen- tration close to the free surface and solutal gradients may induce a convective flow driven by buoyancy and/or surface tension. -
Particle Dynamics in Inertial Microfluidics
PARTICLE DYNAMICS IN INERTIAL MICROFLUIDICS vorgelegt von Master of Science Christian Schaaf ORCID: 0000-0002-4154-5459 an der Fakultät II – Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften – Dr. rer. nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Michael Lehmann Erster Gutachter: Prof. Dr. Holger Stark Zweiter Gutachter: Prof. Dr. Roland Netz Tag der wissenschaftlichen Aussprache: 17. September 2020 Berlin 2020 Zusammenfassung Die inertiale Mikrofluidik beschäftigt sich mit laminaren Strömungen von Flüssigkeiten durch mikroskopische Kanäle, bei denen die Trägheitseffekte der Flüssigkeit nicht vernach- lässigt werden können. Befinden sich Teilchen in diesen inertialen Strömungen, ordnen sie sich von selbst an bestimmten Positionen auf der Querschnittsfläche an. Da diese Gleich- gewichtspositionen von den Teilcheneigenschaften abhängen, können so beispielsweise Zellen voneinander getrennt werden. In dieser Arbeit beschäftigen wir uns mit der Dynamik mehrerer fester Teilchen, sowie dem Einfluss der Deformierbarkeit auf die Gleichgewichtsposition einer einzelnen Kapsel. Wir verwenden die Lattice-Boltzmann-Methode, um dieses System zu simulieren. Einen wichtigen Grundstein für das Verständnis mehrerer Teilchen bildet die Dynamik von zwei festen Partikeln. Zunächst klassifizieren wir die möglichen Trajektorien, von denen drei zu ungebundenen Zuständen führen und eine über eine gedämpfte Schwingung in einem gebundenem Zustand endet. Zusätzlich untersuchen wir die inertialen Hubkräfte, welche durch das zweite Teilchen stark beeinflusst werden. Dieser Einfluss hängt vor allem vom Abstand der beiden Teilchen entlang der Flussrichtung ab. Im Anschluss an die Dynamik beschäftigen wir uns genauer mit der Stabilität von Paaren und Zügen bestehend aus mehreren festen Teilchen. Wir konzentrieren uns auf Fälle, in denen die Teilchen sich lateral bereits auf ihren Gleichgewichtspositionen befinden, jedoch nicht entlang der Flussrichtung.