Particle Dynamics in Inertial Microfluidics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(2020) Role of All Jet Drops in Mass Transfer from Bursting Bubbles
PHYSICAL REVIEW FLUIDS 5, 033605 (2020) Role of all jet drops in mass transfer from bursting bubbles Alexis Berny,1,2 Luc Deike ,2,3 Thomas Séon,1 and Stéphane Popinet 1 1Sorbonne Université, CNRS, UMR 7190, Institut Jean le Rond ࢚’Alembert, F-75005 Paris, France 2Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA 3Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, USA (Received 12 September 2019; accepted 13 February 2020; published 10 March 2020) When a bubble bursts at the surface of a liquid, it creates a jet that may break up and produce jet droplets. This phenomenon has motivated numerous studies due to its multiple applications, from bubbles in a glass of champagne to ocean/atmosphere interactions. We simulate the bursting of a single bubble by direct numerical simulations of the axisymmetric two-phase liquid-gas Navier-Stokes equations. We describe the number, size, and velocity of all the ejected droplets, for a wide range of control parameters, defined as nondimensional numbers, the Laplace number which compares capillary and viscous forces and the Bond number which compares gravity and capillarity. The total vertical momentum of the ejected droplets is shown to follow a simple scaling relationship with a primary dependency on the Laplace number. Through a simple evaporation model, coupled with the dynamics obtained numerically, it is shown that all the jet droplets (up to 14) produced by the bursting event must be taken into account as they all contribute to the total amount of evaporated water. A simple scaling relationship is obtained for the total amount of evaporated water as a function of the bubble size and fluid properties. -
A Novel Momentum-Conserving, Mass-Momentum Consistent Method for Interfacial flows Involving Large Density Contrasts Sagar Pal, Daniel Fuster, St´Ephanezaleski
Highlights A novel momentum-conserving, mass-momentum consistent method for interfacial flows involving large density contrasts Sagar Pal, Daniel Fuster, St´ephaneZaleski • Conservative formulation of Navier Stokes with interfaces using the Volume- of-Fluid method. • Geometrical interface and flux reconstructions on a twice finer grid en- abling discrete consistency between mass and momentum on staggered uniform Cartesian grids. • Conservative direction-split time integration of geometric fluxes in 3D, enabling discrete conservation of mass and momentum. • Quantitative comparisons with standard benchmarks for flow configura- tions involving large density contrasts. • High degree of robustness and stability for complex turbulent interfacial flows, demonstrated using the case of a falling raindrop. arXiv:2101.04142v1 [physics.comp-ph] 11 Jan 2021 A novel momentum-conserving, mass-momentum consistent method for interfacial flows involving large density contrasts Sagar Pala,∗, Daniel Fustera, St´ephaneZaleskia aInstitut Jean le Rond @'Alembert, Sorbonne Universit´eand CNRS, Paris, France Abstract We propose a novel method for the direct numerical simulation of interfacial flows involving large density contrasts, using a Volume-of-Fluid method. We employ the conservative formulation of the incompressible Navier-Stokes equa- tions for immiscible fluids in order to ensure consistency between the discrete transport of mass and momentum in both fluids. This strategy is implemented on a uniform 3D Cartesian grid with a staggered configuration of primitive vari- ables, wherein a geometrical reconstruction based mass advection is carried out on a grid twice as fine as that for the momentum. The implementation is in the spirit of Rudman (1998) [41], coupled with the extension of the direction-split time integration scheme of Weymouth & Yue (2010) [46] to that of conservative momentum transport. -
Jump Bifurcation and Hysteresis in an Infinite-Dimensional Dynamical System of Coupled Spins*
SIAM J. APPL. MATH. (C) 1990 Society for Industrial and Applied Mathematics Vol. 50, No. 1, pp. 108-124, February 1990 008 JUMP BIFURCATION AND HYSTERESIS IN AN INFINITE-DIMENSIONAL DYNAMICAL SYSTEM OF COUPLED SPINS* RENATO E. MIROLLOt AND STEVEN H. STROGATZ: Abstract. This paper studies an infinite-dimensional dynamical system that models a collection of coupled spins in a random magnetic field. A state of the system is given by a self-map of the unit circle. Critical states for the dynamical system correspond to equilibrium configurations of the spins. Exact solutions are obtained for all the critical states and their stability is characterized by analyzing the second variation of the system's potential function at those states. It is proven rigorously that the system exhibits a jump bifurcation and hysteresis as the coupling between spins is varied. Key words, bifurcation, dynamical system, phase transition, spin system AMS(MOS) subject classifications. 58F14, 82A57, 34F05 1. Introduction. There is currently a great deal of interest in the collective behavior of dynamical systems with many interacting subunits [2]. Such systems are very difficult to analyze rigorously unless some simplifying assumptions are made. "Phase models," in which each subunit is characterized by a single phase angle Oi, provide an analytically tractable class of many-body systems. Phase models have been used in a wide variety of scientific contexts, including charge-density wave transport [8], [9], [23], [24], magnetic spin systems [3], [26], oscillating chemical reactions 15], 18], [28], networks of biological oscillators [4], [7], [14], [27], [28], and arrays of Josephson junctions [11], [25]. -
Mass Transfer with the Marangoni Effect 87 7.1 Objectives
TECHNISCHE UNIVERSITÄT MÜNCHEN Professur für Hydromechanik Numerical investigation of mass transfer at non-miscible interfaces including Marangoni force Tianshi Sun Vollständiger Abdruck der an der Ingenieurfakultät Bau Geo Umwelt der Technischen Universität Munchen zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigten Dissertation. Vorsitzender: Prof. Dr.-Ing. habil. F. Düddeck Prüfer der Dissertation: 1. Prof. Dr.-Ing. M. Manhart 2. Prof. Dr. J.G.M. Kuerten Die Dissertation wurde am 31. 08. 2018 bei der Technischen Universitat München eingereicht und durch die Ingenieurfakultat Bau Geo Umwelt am 11. 12. 2018 angenommen. Zusammenfassung Diese Studie untersucht den mehrphasigen Stofftransport einer nicht-wässrigen flüssigkeit ("Non-aqueous phase liquid", NAPL) im Porenmaßstab, einschließlich der Auswirkungen von Oberflachenspannungs und Marangoni-Kraften. Fur die Mehrphasensträmung wurde die Methode "Conservative Level Set" (CLS) implementiert, um die Grenzflache zu verfol gen, wahrend die Oberflachenspannungskraft mit der Methode "Sharp Surface Tension Force" (SSF) simuliert wird. Zur Messung des Kontaktwinkels zwischen der Oberflache der Flus- sigkeit und der Kontur der Kontaktflaäche wird ein auf der CLS-Methode basierendes Kon taktlinienmodell verwendet; das "Continuum Surface Force" (CSF)-Modell wird zur Model lierung des durch einen Konzentrationsgradienten induzierten Marangoni-Effekts verwendet; ein neues Stofftransfermodell, das einen Quellterm in der Konvektions-Diffusionsgleichungen verwendet, wird zur -
Question-And-Answer-Physics-Today
Questions and answers with Steven Strogatz An applied mathematician notes that for many physics topics, including general relativity and climate science, the whole is often not equal to the sum of the parts. By Jeremy N. A. Matthews April 2015 Bookends: Questions and answers with Steven Strogatz Questions and answers with Peter Pesic Questions and answers with Marcelo Gleiser Questions and answers with Amit Hagar Questions and answers with A. Douglas Stone Steven Strogatz is the Jacob Schurman Professor of Applied Mathematics at Cornell University in Ithaca, New York. He conducts research on dynamical systems in physics, biology, and social science. His 1998 Nature article “Collective dynamics of ‘small-world’ networks” is considered a seminal contribution to complexity research. Strogatz is also an active communicator of mathematics and related topics to the public. He frequently appears on public radio and writes for The New Yorker and other publications. A 2015 recipient of the Lewis Thomas Prize for Writing About Science, he has written books that include Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life (Hyperion, 2003) and The Joy of x: A Guided Tour of Math, from One to Infinity (Houghton Mifflin Harcourt, 2012). Strogatz recently published the second edition of a text he wrote more than two decades ago. The new edition of Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Westview Press, 2015) contains new exercises on such topics as protein dynamics and superconductivity and covers applications in such emerging fields as sociophysics and systems biology. Physics Today reviewed the book in the April issue. -
An All-Mach Method for the Simulation of Bubble Dynamics Problems in the Presence of Surface Tension Daniel Fuster, Stéphane Popinet
An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension Daniel Fuster, Stéphane Popinet To cite this version: Daniel Fuster, Stéphane Popinet. An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension. Journal of Computational Physics, Elsevier, 2018, 374, pp.752-768. 10.1016/j.jcp.2018.07.055. hal-01845218 HAL Id: hal-01845218 https://hal.sorbonne-universite.fr/hal-01845218 Submitted on 20 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension Daniel Fuster, St´ephanePopinet Sorbonne Universit´e,Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond D'Alembert, F-75005 Paris, France Abstract This paper presents a generalization of an all-Mach formulation for multi- phase flows accounting for surface tension and viscous forces. The proposed numerical method is based on the consistent advection of conservative quan- tities and the advection of the color function used in the Volume of Fluid method avoiding any numerical diffusion of mass, momentum and energy across the interface during the advection step. -
Further Remarks and Comparison with Other Dimensionless Numbers
Do we need the Navier number? – further remarks and comparison with other dimensionless numbers Paweł ZIÓŁKOWSKI∗, Janusz BADUR, Piotr Józef ZIÓŁKOWSKIy Keywords: dimensionless slip-length; external viscosity; internal viscosity; characteristic length; laminar to turbulent transition Abstract: This paper presents the role of the Navier num- ber (Na-dimensionless slip-length) in universal modeling of flow reported in micro- and nano-channels like: capillary biological flows, fuel cell systems, micro-electro-mechanical systems and nano-electro-mechanical systems. Similar to other bulk-like and surface-like dimensionless numbers, the Na number should be treated as a ratio of internal viscous to external viscous momen- tum transport and, therefore, this notion cannot be extended onto whole friction resistance phenomena. Several examples of dimensionless numbers for liquids and rarified gasses flowing in solid channels are presented. Additionally, this article explains the role of the Navier number in predicting closures for laminar to turbulent transition undergoing via eddies detachment from the slip layer in nano-channels. 1. Introduction In capillary biological flows, fuel cell systems (for example SOFC), micro-electro- mechanical systems (MEMS), and nano-electro-mechanical systems (NEMS) it is as- sumed that the external friction between solid and liquid surfaces cannot be further neglected (Beskok and Karniadakis, 1999; Ziółkowski and Zakrzewski, 2013). It in- volves the velocity slip, which is now important not only in the surface momentum transfer, but also in the surface mass, heat transfer, and reactive processes coupled with interfacial transport (Barber and Emerson, 2006). Transport phenomena under- going within a thin shell-like domain require much more complex, surface-like mech- anism of interchanging mass, momentum, and entropy. -
Damien Fair, Never at Rest
Spectrum | Autism Research News https://www.spectrumnews.org PROFILES Rising Star: Damien Fair, never at rest BY SARAH DEWEERDT 9 JANUARY 2019 One day last April, Damien Fair chuckled along with the members of his 30-person lab at their monthly lunch meeting as he attempted to maneuver a bowl of soup, a plate of salad and a pair of crutches all at the same time. The associate professor of behavioral neuroscience at Oregon Health and Science University in Portland had broken his ankle in a city-league basketball game the evening before. Fair waved away offers of help and soon got down to business. “All right, teach us something,” he told the lab members who were presenting their work that day. He mostly let the presenters, a graduate student and a research associate, hold the floor. Fair is tall and trim, with a salt-and- pepper goatee and expressive eyebrows. He laughed appreciatively at the visual puns in their PowerPoint presentation — for example, a photograph of a toddler in a wetsuit, a play on the name ‘FreeSurfer,’ software for analyzing brain scans. “Damien never sweats anything — officially,” says Nico Dosenbach, assistant professor of pediatric neurology at Washington University in St. Louis, Missouri. Underneath his cool exterior, though, Fair is intense and driven, says Dosenbach, who has been Fair’s friend since the two were in graduate school. And Fair is not intimidated by conventional notions of status or rank: He doesn’t hesitate to ask other scientists for their data or time — or to offer his in return. These traits have made Fair one of the most productive and sought-after collaborators in the field of brain imaging. -
Minimum Size for the Top Jet Drop from a Bursting Bubble
PHYSICAL REVIEW FLUIDS 3, 074001 (2018) Editors’ Suggestion Minimum size for the top jet drop from a bursting bubble C. Frederik Brasz,* Casey T. Bartlett, Peter L. L. Walls, Elena G. Flynn, Yingxian Estella Yu, and James C. Bird† Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA (Received 14 February 2018; published 11 July 2018) Jet drops ejected from bursting bubbles are ubiquitous, transporting aromatics from sparkling beverages, pathogens from contaminated water sources, and sea salts and organic species from the ocean surface to the atmosphere. In all of these processes, the smallest drops are noteworthy because their slow settling velocities allow them to persist longer and travel further than large drops, provided they escape the viscous sublayer. Yetit is unclear what sets the limit to how small these jet drops can become. Here we directly observe microscale jet drop formation and demonstrate that the smallest jet drops are not produced by the smallest jet drop-producing bubbles, as predicted numerically by Duchemin et al. [Duchemin et al., Phys. Fluids 14, 3000 (2002)]. Through a combination of high-speed imaging and numerical simulation, we show that the minimum jet drop size is set by an interplay of viscous and inertial-capillary forces both prior and subsequent to the jet formation. Based on the observation of self-similar jet growth, the jet drop size is decomposed into a shape factor and a jet growth time to rationalize the nonmonotonic relationship of drop size to bubble size. These findings provide constraints on submicron aerosol production from jet drops in the ocean. -
10-5-19 Workshop Announcement V2
Cornell University Department of Mathematics K-12 Education and Outreach MATH 5080 – Mathematics for Secondary School Teachers October 5, 2019 u 9:00 am – 2:30 pm (lunch provided) u 406 Malott Hall 8:45 – 9:00 am Bagels & Juice (provided) 9:00 – 9:20 am Introductions 9:20 – 10:20 am Business Math for Entrepreneurs Lee Kaltman, M.A.T. (New Roots Charter School) I will describe the course called Business Math for Entrepreneurs, share some student work, and explain how I use real-world experiences to engage and motivate students to want to learn more. 10:30 – 11:30 am The Beauty of Calculus Steven Strogatz, Ph.D. (Cornell University, Mathematics) Based on my new book, Infinite Powers: How Calculus Reveals the Secrets of the Universe, I will present a broad look at the story of calculus, focusing on the connections between calculus and the laws of nature. 11:30 – 12:00 pm Lunch (provided) 12:00 – 12:50 pm Teaching Statistics in the Age of Data Science Michael Nussbaum, Ph.D. (Cornell University, Mathematics) I will try to summarize my 20 years of experience teaching statistics at Cornell, focusing in particular on the basic undergraduate course, which is a slightly more advanced version of AP Statistics. This course always includes a computer component, but new challenges have arisen with the advent of “Data Science,” which promises to revolutionize both the practice and the teaching of statistics, and applied mathematics in general, by total integration with computing. I will conclude with a demonstration of how some of the new CS-inspired courses are taught at Cornell, with on-screen computing using software like R or Python. -
The Size of the Sync Basin Daniel A
The size of the sync basin Daniel A. Wiley, Steven H. Strogatz, and Michelle Girvan Citation: Chaos: An Interdisciplinary Journal of Nonlinear Science 16, 015103 (2006); doi: 10.1063/1.2165594 View online: http://dx.doi.org/10.1063/1.2165594 View Table of Contents: http://scitation.aip.org/content/aip/journal/chaos/16/1?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Key role of time-delay and connection topology in shaping the dynamics of noisy genetic regulatory networks Chaos 21, 047522 (2011); 10.1063/1.3629984 Chaotic phase synchronization in small-world networks of bursting neurons Chaos 21, 013127 (2011); 10.1063/1.3565027 Coordinate transformation and matrix measure approach for synchronization of complex networks Chaos 19, 033131 (2009); 10.1063/1.3212941 Adaptive dynamical networks via neighborhood information: Synchronization and pinning control Chaos 17, 023122 (2007); 10.1063/1.2737829 Synchronizing weighted complex networks Chaos 16, 015106 (2006); 10.1063/1.2180467 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 132.236.27.111 On: Wed, 26 Nov 2014 17:53:35 CHAOS 16, 015103 ͑2006͒ The size of the sync basin Daniel A. Wiley and Steven H. Strogatz Center for Applied Mathematics, Cornell University, Ithaca, New York 14853 Michelle Girvan Santa Fe Institute, Santa Fe, New Mexico 87501 ͑Received 30 September 2005; accepted 19 December 2005; published online 31 March 2006͒ We suggest a new line of research that we hope will appeal to the nonlinear dynamics community, especially the readers of this Focus Issue. -
An Exactly Force-Balanced Boundary-Conforming Arbitrary-Lagrangian-Eulerian Method for Interfacial Dynamics
An Exactly Force-Balanced Boundary-Conforming Arbitrary-Lagrangian-Eulerian Method for Interfacial Dynamics Zekang Chenga,b, Jie Lib,a,∗, Ching Y. Lohc, Li-Shi Luoc,d,∗ aDepartment of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK bBP Institute, University of Cambridge, Madingley Road, Cambridge, CB3 0EZ, UK cBeijing Computational Sciences Research Center, Beijing, 100193, China dDepartment of Mathematics & Statistics, Old Dominion University, Norfolk, VA 23529, USA Abstract We present an interface conforming method for simulating two-dimensional and axisymmetric multiphase flows. In the proposed method, the interface is composed of straight segments which are part of mesh and move with the flow. This interface representation is an integral part of an Arbitrary Lagrangian-Eulerian (ALE) method on an moving adaptive unstructured mesh. Our principal aim is to develop an accurate and robust computa- tional method for interfacial flows driven by strong surface tension and with weak viscous dissipation. We first construct discrete solutions satisfying the Laplace law on a circular/spherical interfaces exactly, i.e., the balance between the surface tension and the pressure jump across an interface is achieved exactly. The accuracy and stability of these solutions are then in- vestigated for a wide range of Ohnesorge numbers, Oh. The dimensionless amplitude of the spurious current is reduced to machine zero, i.e., on the order of 10−15 for Oh ≥ 10−3. Finally, the accuracy and capability of the proposed method are demonstrated through a series of benchmark tests with larger interface deformations. In particular, the method is validated with Prosperitti's analytic results of the bubble/drop oscillations and Peregrine's ∗Corresponding author Email addresses: [email protected] (Jie Li), [email protected] (Li-Shi Luo) Preprint submitted to Elsevier January 23, 2020 dripping faucet experiment, in which the values of Oh are small.