Mouse Shc2 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Shc2 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Shc2 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Shc2 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Shc2 gene (NCBI Reference Sequence: NM_001024539 ; Ensembl: ENSMUSG00000020312 ) is located on Mouse chromosome 10. 13 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 12 (Transcript: ENSMUST00000020564). Exon 3~4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Shc2 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-382A7 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for disruptions in this gene display sensory nerve defects related to nociception. Exon 3 starts from about 27.57% of the coding region. The knockout of Exon 3~4 will result in frameshift of the gene. The size of intron 2 for 5'-loxP site insertion: 1136 bp, and the size of intron 4 for 3'-loxP site insertion: 2574 bp. The size of effective cKO region: ~806 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 3 4 13 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Shc2 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7306bp) | A(21.54% 1574) | C(27.35% 1998) | T(25.88% 1891) | G(25.23% 1843) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr10 - 79630379 79633378 3000 browser details YourSeq 49 2584 2781 3000 68.8% chr12 - 23807591 23807708 118 browser details YourSeq 39 2160 2244 3000 95.4% chr12 - 3354114 3354263 150 browser details YourSeq 37 1484 1621 3000 89.8% chr3 - 108634187 108634322 136 browser details YourSeq 37 2731 2781 3000 86.3% chr1 - 37268995 37269045 51 browser details YourSeq 37 1484 1621 3000 97.5% chr16 + 16788802 16788941 140 browser details YourSeq 36 2160 2211 3000 92.9% chr14 - 14702221 14702273 53 browser details YourSeq 36 1484 1623 3000 95.2% chr12 - 99766839 99766982 144 browser details YourSeq 36 2730 2781 3000 90.7% chr11 + 62976604 62976657 54 browser details YourSeq 35 2132 2186 3000 87.2% chr12 - 72524120 72524172 53 browser details YourSeq 35 2707 2781 3000 87.2% chr17 + 5731191 5731263 73 browser details YourSeq 35 2722 2766 3000 88.9% chr1 + 183637498 183637542 45 browser details YourSeq 34 2730 2781 3000 84.1% chr12 - 22626631 22626681 51 browser details YourSeq 34 2730 2781 3000 84.1% chr12 - 21787636 21787686 51 browser details YourSeq 34 819 888 3000 94.9% chr15 + 98973995 98974372 378 browser details YourSeq 34 2730 2781 3000 84.1% chr12 + 19384566 19384616 51 browser details YourSeq 33 1492 1531 3000 92.5% chr16 - 94537776 94537816 41 browser details YourSeq 32 811 849 3000 92.4% chr16 + 38531164 38531203 40 browser details YourSeq 32 1193 1224 3000 100.0% chr15 + 66441879 66441910 32 browser details YourSeq 31 2751 2781 3000 100.0% chr19 - 55684055 55684085 31 Note: The 3000 bp section upstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr10 - 79626573 79629572 3000 browser details YourSeq 214 1272 1533 3000 92.3% chrX - 153677973 153678267 295 browser details YourSeq 210 1272 1536 3000 93.9% chr5 + 120832681 120833006 326 browser details YourSeq 209 1270 1533 3000 91.1% chr8 + 83950769 83951082 314 browser details YourSeq 201 1260 1533 3000 87.0% chr16 + 32223494 32223757 264 browser details YourSeq 200 1272 1533 3000 90.1% chr6 + 129360699 129360972 274 browser details YourSeq 199 1267 1533 3000 88.6% chr9 + 88553664 88553947 284 browser details YourSeq 198 1095 1516 3000 84.6% chr11 - 117795501 117795773 273 browser details YourSeq 198 1272 1533 3000 91.7% chr15 + 98716675 98716948 274 browser details YourSeq 197 1272 1533 3000 88.5% chr2 - 32114751 32115007 257 browser details YourSeq 197 1272 1533 3000 91.7% chr14 - 120954373 120954661 289 browser details YourSeq 197 1272 1533 3000 89.1% chr5 + 65798805 65799099 295 browser details YourSeq 197 1276 1533 3000 92.4% chr17 + 29364220 29364509 290 browser details YourSeq 196 1273 1529 3000 93.5% chr2 - 119409886 119410143 258 browser details YourSeq 196 1272 1533 3000 93.1% chr12 + 21509391 21509668 278 browser details YourSeq 195 1272 1533 3000 91.6% chr17 - 84069439 84069711 273 browser details YourSeq 195 1272 1533 3000 93.4% chr8 + 117289796 117290087 292 browser details YourSeq 194 1270 1533 3000 92.7% chr3 - 116747742 116748012 271 browser details YourSeq 194 1272 1533 3000 91.2% chr3 - 88589608 88828245 238638 browser details YourSeq 193 1276 1533 3000 90.4% chr2 + 120694142 121126441 432300 Note: The 3000 bp section downstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Shc2 SHC (Src homology 2 domain containing) transforming protein 2 [ Mus musculus (house mouse) ] Gene ID: 216148, updated on 10-Oct-2019 Gene summary Official Symbol Shc2 provided by MGI Official Full Name SHC (Src homology 2 domain containing) transforming protein 2 provided by MGI Primary source MGI:MGI:106180 See related Ensembl:ENSMUSG00000020312 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as SCK; Sli; ShcB; 6720466E06 Expression Broad expression in CNS E18 (RPKM 14.0), whole brain E14.5 (RPKM 11.3) and 19 other tissues See more Orthologs human all Genomic context Location: 10 C1; 10 39.72 cM See Shc2 in Genome Data Viewer Exon count: 13 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 10 NC_000076.6 (79617934..79637918, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 10 NC_000076.5 (79080679..79100663, complement) Chromosome 10 - NC_000076.6 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 3 transcripts Gene: Shc2 ENSMUSG00000020312 Description SHC (Src homology 2 domain containing) transforming protein 2 [Source:MGI Symbol;Acc:MGI:106180] Gene Synonyms ShcB, Sli Location Chromosome 10: 79,618,051-79,637,918 reverse strand. GRCm38:CM001003.2 About this gene This gene has 3 transcripts (splice variants), 186 orthologues, 4 paralogues, is a member of 1 Ensembl protein family and is associated with 4 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Shc2-201 ENSMUST00000020564.6 3243 573aa ENSMUSP00000020564.6 Protein coding CCDS48620 E9QLZ0 Q8BMC3 TSL:5 GENCODE basic APPRIS P1 Shc2-203 ENSMUST00000168116.1 3720 No protein - Retained intron - - TSL:1 Shc2-202 ENSMUST00000166450.1 969 No protein - Retained intron - - TSL:3 39.87 kb Forward strand 79.61Mb 79.62Mb 79.63Mb 79.64Mb Genes Gm47163-201 >lncRNA (Comprehensive set... Contigs AC132265.4 > Genes (Comprehensive set... < C2cd4c-201protein coding < Shc2-203retained intron < Odf3l2-201protein coding < C2cd4c-202protein coding < Shc2-201protein coding < Shc2-202retained intron Regulatory Build 79.61Mb 79.62Mb 79.63Mb 79.64Mb Reverse strand 39.87 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Gene Legend Protein Coding merged Ensembl/Havana Non-Protein Coding processed transcript RNA gene Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000020564 < Shc2-201protein coding Reverse strand 19.27 kb ENSMUSP00000020... Low complexity (Seg) Superfamily SSF50729 SH2 domain superfamily SMART PTB/PI domain SH2 domain Prints Phosphotyrosine interaction domain, Shc-like SH2 domain Pfam PTB/PI domain SH2 domain PROSITE profiles PTB/PI domain SH2 domain PANTHER SHC-transforming protein 2 PTHR10337 Gene3D PH-like domain superfamily SH2 domain superfamily CDD Phosphotyrosine interaction domain, Shc-like SH2 adaptor protein C, SH2 domain All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant splice region variant synonymous variant Scale bar 0 60 120 180 240 300 360 420 480 573 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • An Investigation Into the Genetic Architecture of Multiple System Atrophy and Familial Parkinson's Disease
    An investigation into the genetic architecture of multiple system atrophy and familial Parkinson’s disease By Monica Federoff A thesis submitted to University College London for the degree of Doctor of Philosophy Laboratory of Neurogenetics, Department of Molecular Neuroscience, Institute of Neurology, University College London (UCL) 2 I, Monica Federoff, confirm that the work presented in this thesis is my own. Information derived from other sources and collaborative work have been indicated appropriately. Signature: Date: 09/06/2016 3 Acknowledgements: When I first joined the Laboratory of Neurogenetics (LNG), NIA, NIH as a summer intern in 2008, I had minimal experience working in a laboratory and was both excited and anxious at the prospect of it. From my very first day, Dr. Andrew Singleton was incredibly welcoming and introduced me to my first mentor, Dr. Javier Simon- Sanchez. Within just ten weeks working in the lab, both Dr. Singleton and Dr. Simon- Sanchez taught me the fundamental skills in an encouraging and supportive environment. I quickly got to know others in the lab, some of whom are still here today, and I sincerely appreciate their help with my assimilation into the LNG. After returning for an additional summer and one year as an IRTA postbac, I was honored to pursue a PhD in such an intellectually stimulating and comfortable environment. I am so grateful that Dr. Singleton has been such a wonderful mentor, as he is not only a brilliant scientist, but also extremely personable and approachable. If I inquire about meeting with him, he always manages to make time in his busy schedule and provides excellent guidance and mentorship.
    [Show full text]
  • Reconstruction and Analysis of Gene Networks of Human
    G C A T T A C G G C A T genes Article Reconstruction and Analysis of Gene Networks of Human Neurotransmitter Systems Reveal Genes with Contentious Manifestation for Anxiety, Depression, and Intellectual Disabilities Roman Ivanov 1,2,*, Vladimir Zamyatin 1,2, Alexandra Klimenko 1,2 , Yury Matushkin 1,2, Alexander Savostyanov 1,2,3 and Sergey Lashin 1,2 1 Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; [email protected] (V.Z.); [email protected] (A.K.); [email protected] (Y.M.); [email protected] (A.S.); [email protected] (S.L.) 2 Novosibirsk State University, 630090 Novosibirsk, Russia 3 Institute of Physiology and Basic Medicine SB RAMS, 630117 Novosibirsk, Russia * Correspondence: [email protected] Received: 12 August 2019; Accepted: 9 September 2019; Published: 11 September 2019 Abstract: Background: The study of the biological basis of anxiety, depression, and intellectual disabilities in humans is one of the most actual problems of modern neurophysiology. Of particular interest is the study of complex interactions between molecular genetic factors, electrophysiological properties of the nervous system, and the behavioral characteristics of people. The neurobiological understanding of neuropsychiatric disorders requires not only the identification of genes that play a role in the molecular mechanisms of the occurrence and course of diseases, but also the understanding of complex interactions that occur between these genes. A systematic study of such interactions obviously contributes to the development of new methods of diagnosis, prevention, and treatment of disorders, as the orientation to allele variants of individual loci is not reliable enough, because the literature describes a number of genes, the same alleles of which can be associated with different, sometimes extremely different variants of phenotypic traits, depending on the genetic background, of their carriers, habitat, and other factors.
    [Show full text]
  • Multiple System Atrophy: Genetic Or Epigenetic?
    http://dx.doi.org/10.5607/en.2014.23.4.277 Exp Neurobiol. 2014 Dec;23(4):277-291. pISSN 1226-2560 • eISSN 2093-8144 Review Article A featured article of the special issue on Parkinsonian Syndrome Multiple System Atrophy: Genetic or Epigenetic? Edith Sturm and Nadia Stefanova* Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innsbruck A-6020, Austria Multiple system atrophy (MSA) is a rare, late-onset and fatal neurodegenerative disease including multisystem neurodegeneration and the formation of α-synuclein containing oligodendroglial cytoplasmic inclusions (GCIs), which present the hallmark of the disease. MSA is considered to be a sporadic disease; however certain genetic aspects have been studied during the last years in order to shed light on the largely unknown etiology and pathogenesis of the disease. Epidemiological studies focused on the possible impact of environmental factors on MSA disease development. This article gives an overview on the findings from genetic and epigenetic studies on MSA and discusses the role of genetic or epigenetic factors in disease pathogenesis. Key words: Multiple system atrophy, α-synuclein, neurodegeneration, genetics, epigenetics INTRODUCTION is characterized by selective wide spread neuronal cell loss, gliosis and oligodendroglial cytoplasmic inclusions (GCIs) affecting In 1969 Graham and Oppenheimer suggested the term several structures of the central nervous system [3, 6, 7]. “multiple system atrophy” (MSA) to describe and combine Neuronal loss in MSA affects the striatum, substantia nigra a set of different disorders, including olivopontocerebellar pars compacta (SNpc), cerebellum, pons, inferior olives, central atrophy (OPCA), striatonigral degeneration (SND) and Shy- autonomic nuclei and the intermediolateral column of the spinal Drager syndrome [1].
    [Show full text]
  • Comparative Transcriptome Profiling of the Human and Mouse Dorsal Root Ganglia: an RNA-Seq-Based Resource for Pain and Sensory Neuroscience Research
    bioRxiv preprint doi: https://doi.org/10.1101/165431; this version posted October 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Comparative transcriptome profiling of the human and mouse dorsal root ganglia: An RNA-seq-based resource for pain and sensory neuroscience research Short Title: Human and mouse DRG comparative transcriptomics Pradipta Ray 1, 2 #, Andrew Torck 1 , Lilyana Quigley 1, Andi Wangzhou 1, Matthew Neiman 1, Chandranshu Rao 1, Tiffany Lam 1, Ji-Young Kim 1, Tae Hoon Kim 2, Michael Q. Zhang 2, Gregory Dussor 1 and Theodore J. Price 1, # 1 The University of Texas at Dallas, School of Behavioral and Brain Sciences 2 The University of Texas at Dallas, Department of Biological Sciences # Corresponding authors Theodore J Price Pradipta Ray School of Behavioral and Brain Sciences School of Behavioral and Brain Sciences The University of Texas at Dallas The University of Texas at Dallas BSB 14.102G BSB 10.608 800 W Campbell Rd 800 W Campbell Rd Richardson TX 75080 Richardson TX 75080 972-883-4311 972-883-7262 [email protected] [email protected] Number of pages: 27 Number of figures: 9 Number of tables: 8 Supplementary Figures: 4 Supplementary Files: 6 Word count: Abstract = 219; Introduction = 457; Discussion = 1094 Conflict of interest: The authors declare no conflicts of interest Patient anonymity and informed consent: Informed consent for human tissue sources were obtained by Anabios, Inc. (San Diego, CA). Human studies: This work was approved by The University of Texas at Dallas Institutional Review Board (MR 15-237).
    [Show full text]
  • Comparative Transcriptome Profiling of the Human and Mouse Dorsal Root
    Research Paper Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq–based resource for pain and sensory neuroscience research a,b a a a a a 07/20/2018 on BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3mH5nK33R3Qh4f27oe7zFUUf7ZAUK5aCsyqAeT54jiDxP7ZjumT3TrA== by https://journals.lww.com/pain from Downloaded Pradipta Ray , Andrew Torck , Lilyana Quigley , Andi Wangzhou , Matthew Neiman , Chandranshu Rao , Downloaded Tiffany Lama, Ji-Young Kima, Tae Hoon Kimb, Michael Q. Zhangb, Gregory Dussora, Theodore J. Pricea,* from https://journals.lww.com/pain Abstract Molecular neurobiological insight into human nervous tissues is needed to generate next-generation therapeutics for neurological disorders such as chronic pain. We obtained human dorsal root ganglia (hDRG) samples from organ donors and performed RNA- sequencing (RNA-seq) to study the hDRG transcriptional landscape, systematically comparing it with publicly available data from by BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3mH5nK33R3Qh4f27oe7zFUUf7ZAUK5aCsyqAeT54jiDxP7ZjumT3TrA== a variety of human and orthologous mouse tissues, including mouse DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted gene coexpression patterns and putative transcriptional regulators, and formulated an information-theoretic framework to quantify DRG enrichment. Relevant gene families and pathways were also analyzed, including transcription factors, G-protein-coupled receptors, and ion channels. Our analyses reveal an hDRG-enriched protein-coding gene set (;140), some of which have not been described in the context of DRG or pain signaling. Most of these show conserved enrichment in mDRG and were mined for known drug–gene product interactions. Conserved enrichment of the vast majority of transcription factors suggests that the mDRG is a faithful model system for studying hDRG, because of evolutionarily conserved regulatory programs.
    [Show full text]
  • Strong Synaptic Transmission Impact by Copy Number Variations in Schizophrenia
    Strong synaptic transmission impact by copy number variations in schizophrenia Joseph T. Glessnera, Muredach P. Reillyb, Cecilia E. Kima, Nagahide Takahashic, Anthony Albanoa, Cuiping Houa, Jonathan P. Bradfielda, Haitao Zhanga, Patrick M. A. Sleimana, James H. Florya, Marcin Imielinskia, Edward C. Frackeltona, Rosetta Chiavaccia, Kelly A. Thomasa, Maria Garrisa, Frederick G. Otienoa, Michael Davidsond, Mark Weiserd, Abraham Reichenberge, Kenneth L. Davisc,JosephI.Friedmanc, Thomas P. Cappolab, Kenneth B. Marguliesb, Daniel J. Raderb, Struan F. A. Granta,f,g, Joseph D. Buxbaumc, Raquel E. Gurh, and Hakon Hakonarsona,f,g,1 aCenter for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104; bPenn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; cConte Center for the Neuroscience of Mental Disorders and Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, 10029; dSheba Medical Center, Tel Hashomer, 52621, Israel; eMount Sinai and Institute of Psychiatry, King’s College, London, SE5 8AF, United Kingdom; fDivision of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104; gDepartment of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and hSchizophrenia Center, Neuropsychiatry Division, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 Edited by James R. Lupski, Baylor College of Medicine, Houston, TX, and accepted by the Editorial Board April 13, 2010 (received for review January 7, 2010) Schizophrenia is a psychiatric disorder with onset in late adoles- contribute to the complex etiology underlying various psychiatric cence and unclear etiology characterized by both positive and ne- and neurodevelopmental disorders (13, 14). Whereas rare recurrent gative symptoms, as well as cognitive deficits.
    [Show full text]
  • RAS/MAPK Pathway Genes 210 200 RAS Genes - Total No 190 180 Linked to ID (Strong, Monogenic 170 Cause) 160 Linked to ID (Mild) 150
    About the impact of altered RAS-MAPK and PI3K-AKT signalling in human developmental disorders Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) genehmigt durch die Fakultät für Naturwissenschaften der Otto-von-Guericke-Universität Magdeburg von M.Sc., Sangamitra Boppudi geb.am 16.Juli 1986 Visakhapatnam, Indien Gutachter: Prof. Dr. med. Martin Zenker Prof. Dr. rer. nat. Frank Kaiser eingereichte am: 21-12-2017 verteidigt am: 25-09-2018 Table of Contents Table of Contents ........................................................................................................................ I List of Figures ........................................................................................................................... III List of Tables ............................................................................................................................. V Zusammenfassung .................................................................................................................... VI 1. Abstract ................................................................................................................................... 1 2. Introduction ............................................................................................................................ 2 2.1 RAS signalling pathway ................................................................................................... 2 2.2 PI3K/AKT/mTOR signalling pathway ............................................................................
    [Show full text]
  • The Pdx1 Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet Β Cell
    Page 1 of 125 Diabetes The Pdx1 bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet β cell function Jason M. Spaeth1,2, Jin-Hua Liu1, Daniel Peters3, Min Guo1, Anna B. Osipovich1, Fardin Mohammadi3, Nilotpal Roy4, Anil Bhushan4, Mark A. Magnuson1, Matthias Hebrok4, Christopher V. E. Wright3, Roland Stein1,5 1 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 2 Present address: Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 3 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 4 Diabetes Center, Department of Medicine, UCSF, San Francisco, California 5 Corresponding author: [email protected]; (615)322-7026 1 Diabetes Publish Ahead of Print, published online June 14, 2019 Diabetes Page 2 of 125 Abstract Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet β cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes- linked transcription factor essential to pancreatic morphogenesis and adult islet-cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet β cell activity, which included whole animal glucose intolerance, hyperglycemia and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient β cells lost the ability to produce the mRNAs for insulin and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors.
    [Show full text]
  • Deep Transcriptomic Analysis of Black Rockfish (Sebastes Schlegelii)
    www.nature.com/scientificreports OPEN Deep Transcriptomic Analysis of Black Rockfsh (Sebastes schlegelii) Provides New Insights on Received: 19 October 2017 Accepted: 27 March 2018 Responses to Acute Temperature Published: xx xx xxxx Stress Likang Lyu, Haishen Wen, Yun Li, Jifang Li, Ji Zhao, Simin Zhang, Min Song & Xiaojie Wang In the present study, we conducted an RNA-Seq analysis to characterize the genes and pathways involved in acute thermal and cold stress responses in the liver of black rockfsh, a viviparous teleost that has the ability to cope with a wide range of temperature changes. A total of 584 annotated diferentially expressed genes (DEGs) were identifed in all three comparisons (HT vs NT, HT vs LT and LT vs NT). Based on an enrichment analysis, DEGs with a potential role in stress accommodation were classifed into several categories, including protein folding, metabolism, immune response, signal transduction, molecule transport, membrane, and cell proliferation/apoptosis. Considering that thermal stress has a greater efect than cold stress in black rockfsh, 24 shared DEGs in the intersection of the HT vs LT and HT vs NT groups were enriched in 2 oxidation-related gene ontology (GO) terms. Nine important heat-stress-reducing pathways were signifcantly identifed and classifed into 3 classes: immune and infectious diseases, organismal immune system and endocrine system. Eight DEGs (early growth response protein 1, bile salt export pump, abcb11, hsp70a, rtp3, 1,25-dihydroxyvitamin d(3) 24-hydroxylase, apoa4, transcription factor jun-b-like and an uncharacterized gene) were observed among all three comparisons, strongly implying their potentially important roles in temperature stress responses.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]
  • Transcriptome Profiling Reveals the Complexity of Pirfenidone Effects in IPF
    ERJ Express. Published on August 30, 2018 as doi: 10.1183/13993003.00564-2018 Early View Original article Transcriptome profiling reveals the complexity of pirfenidone effects in IPF Grazyna Kwapiszewska, Anna Gungl, Jochen Wilhelm, Leigh M. Marsh, Helene Thekkekara Puthenparampil, Katharina Sinn, Miroslava Didiasova, Walter Klepetko, Djuro Kosanovic, Ralph T. Schermuly, Lukasz Wujak, Benjamin Weiss, Liliana Schaefer, Marc Schneider, Michael Kreuter, Andrea Olschewski, Werner Seeger, Horst Olschewski, Malgorzata Wygrecka Please cite this article as: Kwapiszewska G, Gungl A, Wilhelm J, et al. Transcriptome profiling reveals the complexity of pirfenidone effects in IPF. Eur Respir J 2018; in press (https://doi.org/10.1183/13993003.00564-2018). This manuscript has recently been accepted for publication in the European Respiratory Journal. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online. Copyright ©ERS 2018 Copyright 2018 by the European Respiratory Society. Transcriptome profiling reveals the complexity of pirfenidone effects in IPF Grazyna Kwapiszewska1,2, Anna Gungl2, Jochen Wilhelm3†, Leigh M. Marsh1, Helene Thekkekara Puthenparampil1, Katharina Sinn4, Miroslava Didiasova5, Walter Klepetko4, Djuro Kosanovic3, Ralph T. Schermuly3†, Lukasz Wujak5, Benjamin Weiss6, Liliana Schaefer7, Marc Schneider8†, Michael Kreuter8†, Andrea Olschewski1,
    [Show full text]
  • (NF1) As a Breast Cancer Driver
    INVESTIGATION Comparative Oncogenomics Implicates the Neurofibromin 1 Gene (NF1) as a Breast Cancer Driver Marsha D. Wallace,*,† Adam D. Pfefferle,‡,§,1 Lishuang Shen,*,1 Adrian J. McNairn,* Ethan G. Cerami,** Barbara L. Fallon,* Vera D. Rinaldi,* Teresa L. Southard,*,†† Charles M. Perou,‡,§,‡‡ and John C. Schimenti*,†,§§,2 *Department of Biomedical Sciences, †Department of Molecular Biology and Genetics, ††Section of Anatomic Pathology, and §§Center for Vertebrate Genomics, Cornell University, Ithaca, New York 14853, ‡Department of Pathology and Laboratory Medicine, §Lineberger Comprehensive Cancer Center, and ‡‡Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514, and **Memorial Sloan-Kettering Cancer Center, New York, New York 10065 ABSTRACT Identifying genomic alterations driving breast cancer is complicated by tumor diversity and genetic heterogeneity. Relevant mouse models are powerful for untangling this problem because such heterogeneity can be controlled. Inbred Chaos3 mice exhibit high levels of genomic instability leading to mammary tumors that have tumor gene expression profiles closely resembling mature human mammary luminal cell signatures. We genomically characterized mammary adenocarcinomas from these mice to identify cancer-causing genomic events that overlap common alterations in human breast cancer. Chaos3 tumors underwent recurrent copy number alterations (CNAs), particularly deletion of the RAS inhibitor Neurofibromin 1 (Nf1) in nearly all cases. These overlap with human CNAs including NF1, which is deleted or mutated in 27.7% of all breast carcinomas. Chaos3 mammary tumor cells exhibit RAS hyperactivation and increased sensitivity to RAS pathway inhibitors. These results indicate that spontaneous NF1 loss can drive breast cancer. This should be informative for treatment of the significant fraction of patients whose tumors bear NF1 mutations.
    [Show full text]