Deep Transcriptomic Analysis of Black Rockfish (Sebastes Schlegelii)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism -
The Expression of the Human Apolipoprotein Genes and Their Regulation by Ppars
CORE Metadata, citation and similar papers at core.ac.uk Provided by UEF Electronic Publications The expression of the human apolipoprotein genes and their regulation by PPARs Juuso Uski M.Sc. Thesis Biochemistry Department of Biosciences University of Kuopio June 2008 Abstract The expression of the human apolipoprotein genes and their regulation by PPARs. UNIVERSITY OF KUOPIO, the Faculty of Natural and Environmental Sciences, Curriculum of Biochemistry USKI Juuso Oskari Thesis for Master of Science degree Supervisors Prof. Carsten Carlberg, Ph.D. Merja Heinäniemi, Ph.D. June 2008 Keywords: nuclear receptors; peroxisome proliferator-activated receptor; PPAR response element; apolipoprotein; lipid metabolism; high density lipoprotein; low density lipoprotein. Lipids are any fat-soluble, naturally-occurring molecules and one of their main biological functions is energy storage. Lipoproteins carry hydrophobic lipids in the water and salt-based blood environment for processing and energy supply in liver and other organs. In this study, the genomic area around the apolipoprotein genes was scanned in silico for PPAR response elements (PPREs) using the in vitro data-based computer program. Several new putative REs were found in surroundings of multiple lipoprotein genes. The responsiveness of those apolipoprotein genes to the PPAR ligands GW501516, rosiglitazone and GW7647 in the HepG2, HEK293 and THP-1 cell lines were tested with real-time PCR. The APOA1, APOA2, APOB, APOD, APOE, APOF, APOL1, APOL3, APOL5 and APOL6 genes were found to be regulated by PPARs in direct or secondary manners. Those results provide new insights in the understanding of lipid metabolism and so many lifestyle diseases like atherosclerosis, type 2 diabetes, heart disease and stroke. -
1 CETP Inhibition Improves HDL Function but Leads to Fatty Liver and Insulin Resistance in CETP-Expressing Transgenic Mice on A
Page 1 of 55 Diabetes CETP inhibition improves HDL function but leads to fatty liver and insulin resistance in CETP-expressing transgenic mice on a high-fat diet Lin Zhu1,2, Thao Luu2, Christopher H. Emfinger1,2, Bryan A Parks5, Jeanne Shi2,7, Elijah Trefts3, Fenghua Zeng4, Zsuzsanna Kuklenyik5, Raymond C. Harris4, David H. Wasserman3, Sergio Fazio6 and John M. Stafford1,2,3,* 1VA Tennessee Valley Healthcare System, 2Division of Diabetes, Endocrinology, & Metabolism, 3Department of Molecular Physiology and Biophysics, 4Devision of Nephrology and Hypertension, Vanderbilt University School of Medicine. 5Division of Laboratory Sciences, Centers for Disease Control and Prevention. 6The Center for Preventive Cardiology at the Knight Cardiovascular Institute, Oregon Health & Science University. 7Trinity College of Art and Science, Duke University. * Address correspondence and request for reprints to: John. M. Stafford, 7445D Medical Research Building IV, Nashville, TN 37232-0475, phone (615) 936-6113, fax (615) 936- 1667 Email: [email protected] Running Title: CETP inhibition and insulin resistance Word Count: 5439 Figures: 7 Tables: 1 1 Diabetes Publish Ahead of Print, published online September 13, 2018 Diabetes Page 2 of 55 Abstract In clinical trials inhibition of cholesteryl ester transfer protein (CETP) raises HDL cholesterol levels but doesn’t robustly improve cardiovascular outcomes. About 2/3 of trial participants were obese. Lower plasma CETP activity is associated with increased cardiovascular risk in human studies, and protective aspects of CETP have been observed in mice fed a high-fat diet (HFD) with regard to metabolic outcomes. To define if CETP inhibition has different effects depending on the presence of obesity, we performed short- term anacetrapib treatment in chow- and HFD-fed CETP-transgenic mice. -
An Investigation Into the Genetic Architecture of Multiple System Atrophy and Familial Parkinson's Disease
An investigation into the genetic architecture of multiple system atrophy and familial Parkinson’s disease By Monica Federoff A thesis submitted to University College London for the degree of Doctor of Philosophy Laboratory of Neurogenetics, Department of Molecular Neuroscience, Institute of Neurology, University College London (UCL) 2 I, Monica Federoff, confirm that the work presented in this thesis is my own. Information derived from other sources and collaborative work have been indicated appropriately. Signature: Date: 09/06/2016 3 Acknowledgements: When I first joined the Laboratory of Neurogenetics (LNG), NIA, NIH as a summer intern in 2008, I had minimal experience working in a laboratory and was both excited and anxious at the prospect of it. From my very first day, Dr. Andrew Singleton was incredibly welcoming and introduced me to my first mentor, Dr. Javier Simon- Sanchez. Within just ten weeks working in the lab, both Dr. Singleton and Dr. Simon- Sanchez taught me the fundamental skills in an encouraging and supportive environment. I quickly got to know others in the lab, some of whom are still here today, and I sincerely appreciate their help with my assimilation into the LNG. After returning for an additional summer and one year as an IRTA postbac, I was honored to pursue a PhD in such an intellectually stimulating and comfortable environment. I am so grateful that Dr. Singleton has been such a wonderful mentor, as he is not only a brilliant scientist, but also extremely personable and approachable. If I inquire about meeting with him, he always manages to make time in his busy schedule and provides excellent guidance and mentorship. -
Reconstruction and Analysis of Gene Networks of Human
G C A T T A C G G C A T genes Article Reconstruction and Analysis of Gene Networks of Human Neurotransmitter Systems Reveal Genes with Contentious Manifestation for Anxiety, Depression, and Intellectual Disabilities Roman Ivanov 1,2,*, Vladimir Zamyatin 1,2, Alexandra Klimenko 1,2 , Yury Matushkin 1,2, Alexander Savostyanov 1,2,3 and Sergey Lashin 1,2 1 Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; [email protected] (V.Z.); [email protected] (A.K.); [email protected] (Y.M.); [email protected] (A.S.); [email protected] (S.L.) 2 Novosibirsk State University, 630090 Novosibirsk, Russia 3 Institute of Physiology and Basic Medicine SB RAMS, 630117 Novosibirsk, Russia * Correspondence: [email protected] Received: 12 August 2019; Accepted: 9 September 2019; Published: 11 September 2019 Abstract: Background: The study of the biological basis of anxiety, depression, and intellectual disabilities in humans is one of the most actual problems of modern neurophysiology. Of particular interest is the study of complex interactions between molecular genetic factors, electrophysiological properties of the nervous system, and the behavioral characteristics of people. The neurobiological understanding of neuropsychiatric disorders requires not only the identification of genes that play a role in the molecular mechanisms of the occurrence and course of diseases, but also the understanding of complex interactions that occur between these genes. A systematic study of such interactions obviously contributes to the development of new methods of diagnosis, prevention, and treatment of disorders, as the orientation to allele variants of individual loci is not reliable enough, because the literature describes a number of genes, the same alleles of which can be associated with different, sometimes extremely different variants of phenotypic traits, depending on the genetic background, of their carriers, habitat, and other factors. -
Multiple System Atrophy: Genetic Or Epigenetic?
http://dx.doi.org/10.5607/en.2014.23.4.277 Exp Neurobiol. 2014 Dec;23(4):277-291. pISSN 1226-2560 • eISSN 2093-8144 Review Article A featured article of the special issue on Parkinsonian Syndrome Multiple System Atrophy: Genetic or Epigenetic? Edith Sturm and Nadia Stefanova* Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innsbruck A-6020, Austria Multiple system atrophy (MSA) is a rare, late-onset and fatal neurodegenerative disease including multisystem neurodegeneration and the formation of α-synuclein containing oligodendroglial cytoplasmic inclusions (GCIs), which present the hallmark of the disease. MSA is considered to be a sporadic disease; however certain genetic aspects have been studied during the last years in order to shed light on the largely unknown etiology and pathogenesis of the disease. Epidemiological studies focused on the possible impact of environmental factors on MSA disease development. This article gives an overview on the findings from genetic and epigenetic studies on MSA and discusses the role of genetic or epigenetic factors in disease pathogenesis. Key words: Multiple system atrophy, α-synuclein, neurodegeneration, genetics, epigenetics INTRODUCTION is characterized by selective wide spread neuronal cell loss, gliosis and oligodendroglial cytoplasmic inclusions (GCIs) affecting In 1969 Graham and Oppenheimer suggested the term several structures of the central nervous system [3, 6, 7]. “multiple system atrophy” (MSA) to describe and combine Neuronal loss in MSA affects the striatum, substantia nigra a set of different disorders, including olivopontocerebellar pars compacta (SNpc), cerebellum, pons, inferior olives, central atrophy (OPCA), striatonigral degeneration (SND) and Shy- autonomic nuclei and the intermediolateral column of the spinal Drager syndrome [1]. -
Comparative Transcriptome Profiling of the Human and Mouse Dorsal Root Ganglia: an RNA-Seq-Based Resource for Pain and Sensory Neuroscience Research
bioRxiv preprint doi: https://doi.org/10.1101/165431; this version posted October 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Comparative transcriptome profiling of the human and mouse dorsal root ganglia: An RNA-seq-based resource for pain and sensory neuroscience research Short Title: Human and mouse DRG comparative transcriptomics Pradipta Ray 1, 2 #, Andrew Torck 1 , Lilyana Quigley 1, Andi Wangzhou 1, Matthew Neiman 1, Chandranshu Rao 1, Tiffany Lam 1, Ji-Young Kim 1, Tae Hoon Kim 2, Michael Q. Zhang 2, Gregory Dussor 1 and Theodore J. Price 1, # 1 The University of Texas at Dallas, School of Behavioral and Brain Sciences 2 The University of Texas at Dallas, Department of Biological Sciences # Corresponding authors Theodore J Price Pradipta Ray School of Behavioral and Brain Sciences School of Behavioral and Brain Sciences The University of Texas at Dallas The University of Texas at Dallas BSB 14.102G BSB 10.608 800 W Campbell Rd 800 W Campbell Rd Richardson TX 75080 Richardson TX 75080 972-883-4311 972-883-7262 [email protected] [email protected] Number of pages: 27 Number of figures: 9 Number of tables: 8 Supplementary Figures: 4 Supplementary Files: 6 Word count: Abstract = 219; Introduction = 457; Discussion = 1094 Conflict of interest: The authors declare no conflicts of interest Patient anonymity and informed consent: Informed consent for human tissue sources were obtained by Anabios, Inc. (San Diego, CA). Human studies: This work was approved by The University of Texas at Dallas Institutional Review Board (MR 15-237). -
Comparative Transcriptome Profiling of the Human and Mouse Dorsal Root
Research Paper Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq–based resource for pain and sensory neuroscience research a,b a a a a a 07/20/2018 on BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3mH5nK33R3Qh4f27oe7zFUUf7ZAUK5aCsyqAeT54jiDxP7ZjumT3TrA== by https://journals.lww.com/pain from Downloaded Pradipta Ray , Andrew Torck , Lilyana Quigley , Andi Wangzhou , Matthew Neiman , Chandranshu Rao , Downloaded Tiffany Lama, Ji-Young Kima, Tae Hoon Kimb, Michael Q. Zhangb, Gregory Dussora, Theodore J. Pricea,* from https://journals.lww.com/pain Abstract Molecular neurobiological insight into human nervous tissues is needed to generate next-generation therapeutics for neurological disorders such as chronic pain. We obtained human dorsal root ganglia (hDRG) samples from organ donors and performed RNA- sequencing (RNA-seq) to study the hDRG transcriptional landscape, systematically comparing it with publicly available data from by BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3mH5nK33R3Qh4f27oe7zFUUf7ZAUK5aCsyqAeT54jiDxP7ZjumT3TrA== a variety of human and orthologous mouse tissues, including mouse DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted gene coexpression patterns and putative transcriptional regulators, and formulated an information-theoretic framework to quantify DRG enrichment. Relevant gene families and pathways were also analyzed, including transcription factors, G-protein-coupled receptors, and ion channels. Our analyses reveal an hDRG-enriched protein-coding gene set (;140), some of which have not been described in the context of DRG or pain signaling. Most of these show conserved enrichment in mDRG and were mined for known drug–gene product interactions. Conserved enrichment of the vast majority of transcription factors suggests that the mDRG is a faithful model system for studying hDRG, because of evolutionarily conserved regulatory programs. -
Apolipoprotein A4 Gene (APOA4) (Chromosome 11/Haplotypes/Intron Loss/Coronary Artery Disease/Apoal-APOC3 Deficiency) Sotirios K
Proc. Natl. Acad. Sci. USA Vol. 83, pp. 8457-8461, November 1986 Biochemistry Structure, evolution, and polymorphisms of the human apolipoprotein A4 gene (APOA4) (chromosome 11/haplotypes/intron loss/coronary artery disease/APOAl-APOC3 deficiency) SOTIRios K. KARATHANASIS*t, PETER OETTGEN*t, ISSAM A. HADDAD*t, AND STYLIANOS E. ANTONARAKISt *Laboratory of Molecular and Cellular Cardiology, Department of Cardiology, Children's Hospital and tDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115; and tDepartment of Pediatrics, Genetics Unit, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205 Communicated by Donald S. Fredrickson, July 11, 1986 ABSTRACT The genes coding for three proteins of the APOC3 deficiency and premature coronary artery disease plasma lipid transport system-apolipoproteins Al (APOAI), (13-15), hypertriglyceridemia (16), and hypoalphalipopro- C3 (APOC3), and A4 (APOA4)-are closely linked and teinemia (17). tandemly organized on the long arm ofhuman chromosome 11. In this report the nucleotide sequence of the human In this study the human APOA4 gene has been isolated and APOA4 gene has been determined. The results suggest that characterized. In contrast to APOAl and APOC3 genes, which the APOAI, APOC3, and APOA4 genes were derived from a contain three introns, the APOA4 gene contains only two. An common evolutionary ancestor and indicate that during intron interrupting the 5' noncoding region of the APOA1 and evolution the APOA4 gene lost one of its ancestral introns. APOC3 mRNAs is absent from the corresponding position of Screening of the APOA4 gene region for polymorphisms the APOA4 mRNA. However, similar to APOAI and APOC3 showed that two different Xba I restriction endonuclease genes, the introns of the APOA4 gene separate nucleotide sites are polymorphic in Mediterranean and Northern Euro- sequences coding for the signal peptide and the amphipathic pean populations. -
Apoa4 Antibody Cat
ApoA4 Antibody Cat. No.: 6269 Western blot analysis of ApoA4 in chicken small intestine tissue lysate with ApoA4 antibody at 1 μg/mL Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Chicken, Human ApoA4 antibody was raised against a 20 amino acid synthetic peptide near the carboxy terminus of chicken ApoA4. IMMUNOGEN: The immunogen is located within the last 50 amino acids of ApoA4. TESTED APPLICATIONS: ELISA, WB ApoA4 antibody can be used for detection of ApoA4 by Western blot at 1 μg/mL. APPLICATIONS: Antibody validated: Western Blot in chicken samples. All other applications and species not yet tested. POSITIVE CONTROL: 1) Chicken Small Intestine Lysate Properties PURIFICATION: ApoA4 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG September 24, 2021 1 https://www.prosci-inc.com/apoa4-antibody-6269.html CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: ApoA4 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL ApoA4 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: APOA4 ALTERNATE NAMES: ApoA4 Antibody: Apolipoprotein A-IV, Apolipoprotein A4, Apo-AIV ACCESSION NO.: NP_990269 PROTEIN GI NO.: 71773110 GENE ID: 337 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References ApoA4 Antibody: Apolipoprotein A4 (also known as ApoA-IV) is a plasma protein that is O- linked glycoprotein after proteolytic processing. -
Strong Synaptic Transmission Impact by Copy Number Variations in Schizophrenia
Strong synaptic transmission impact by copy number variations in schizophrenia Joseph T. Glessnera, Muredach P. Reillyb, Cecilia E. Kima, Nagahide Takahashic, Anthony Albanoa, Cuiping Houa, Jonathan P. Bradfielda, Haitao Zhanga, Patrick M. A. Sleimana, James H. Florya, Marcin Imielinskia, Edward C. Frackeltona, Rosetta Chiavaccia, Kelly A. Thomasa, Maria Garrisa, Frederick G. Otienoa, Michael Davidsond, Mark Weiserd, Abraham Reichenberge, Kenneth L. Davisc,JosephI.Friedmanc, Thomas P. Cappolab, Kenneth B. Marguliesb, Daniel J. Raderb, Struan F. A. Granta,f,g, Joseph D. Buxbaumc, Raquel E. Gurh, and Hakon Hakonarsona,f,g,1 aCenter for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104; bPenn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; cConte Center for the Neuroscience of Mental Disorders and Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, 10029; dSheba Medical Center, Tel Hashomer, 52621, Israel; eMount Sinai and Institute of Psychiatry, King’s College, London, SE5 8AF, United Kingdom; fDivision of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104; gDepartment of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and hSchizophrenia Center, Neuropsychiatry Division, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 Edited by James R. Lupski, Baylor College of Medicine, Houston, TX, and accepted by the Editorial Board April 13, 2010 (received for review January 7, 2010) Schizophrenia is a psychiatric disorder with onset in late adoles- contribute to the complex etiology underlying various psychiatric cence and unclear etiology characterized by both positive and ne- and neurodevelopmental disorders (13, 14). Whereas rare recurrent gative symptoms, as well as cognitive deficits. -
Convergence of Genes Implicated in Alzheimer's Disease on the Cerebral
Neurochemistry International 50 (2007) 12–38 www.elsevier.com/locate/neuint Review Convergence of genes implicated in Alzheimer’s disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis C.J. Carter 176 Downs Road, Hastings, East Sussex TN34 2DZ, UK Received 5 April 2006; received in revised form 30 June 2006; accepted 11 July 2006 Available online 12 September 2006 Abstract Polymorphic genes associated with Alzheimer’s disease (see www.polygenicpathways.co.uk) delineate a clearly defined pathway related to cerebral and peripheral cholesterol and lipoprotein homoeostasis. They include all of the key components of a glia/neurone cholesterol shuttle including cholesterol binding lipoproteins APOA1, APOA4, APOC1, APOC2, APOC3, APOD, APOE and LPA, cholesterol transporters ABCA1, ABCA2, lipoprotein receptors LDLR, LRP1, LRP8 and VLDLR, and the cholesterol metabolising enzymes CYP46A1 and CH25H, whose oxysterol products activate the liver X receptor NR1H2 and are metabolised to esters by SOAT1. LIPA metabolises cholesterol esters, which are transported by the cholesteryl ester transport protein CETP. The transcription factor SREBF1 controls the expression of most enzymes of cholesterol synthesis. APP is involved in this shuttle as it metabolises cholesterol to 7-betahydroxycholesterol, a substrate of SOAT1 and HSD11B1, binds to APOE and is tethered to LRP1 via APPB1, APBB2 and APBB3 at the cytoplasmic domain and via LRPAP1 at the extracellular domain. APP cleavage products are also able to prevent cholesterol binding to APOE. BACE cleaves both APP and LRP1. Gamma-secretase (PSEN1, PSEN2, NCSTN) cleaves LRP1 and LRP8 as well as APP and their degradation products control transcription factor TFCP2, which regulates thymidylate synthase (TS) and GSK3B expression.