<<

Consequences of dispersal failure: kereru and large in

Debra M. Wotton

AthesissubmittedinfulfilmentoftherequirementsofaDoctorofPhilosophy SchoolofBiologicalSciences UniversityofCanterbury 2007

Kereru( Hemiphaga novaeseelandiae )

‘What escapes the eye, however, is a much more insidious kind of : the extinction of ecological interactions’ (Janzen 1974)

Table of Contents

ABSTRACT 1

CHAPTER 1. INTRODUCTION 3

1.1 Importance of dispersal 3 1.1.1 Whatisseeddispersal? 3 1.1.2 Escape 4 1.1.3 Directeddispersal 5 1.1.4 Colonisation 6 1.1.5 Enhanced 6 1.1.6 Metapopulationmaintenance 7 1.1.7 Communitystructure 8

1.2 in New Zealand 10 1.2.1 dispersalmodes 10 1.2.2 NewZealandfrugivores 10 1.2.3 Dispersaloflargeseededspecies 11 Kereru 12

1.3 Thesis outline 13

CHAPTER 2. KERERU SEED RETENTION TIMES 15

2.1 Abstract 15

2.2 Introduction 16

2.3 Methods 17 2.3.1 Studysites 17 2.3.2 Captivetrials 17 2.3.3 Wildseedpassagetimes 18 2.3.4 Dataanalysis 18

2.4 Results 19 2.4.1 Captivetrials 19 2.4.2 Wildseedpassagetimes 21 2.4.3 Differencesamongspecies 21

2.5 Discussion 24

CHAPTER 3. MODELLING KERERU SEED DISPERSAL DISTANCES 27

3.1 Abstract 27

3.2 Introduction 28

3.3 Methods 29 3.3.1 Studyspecies 29 3.3.2 Studysites 30 3.3.3 Radiotracking 31 3.3.4 Statisticalanalysis 31

3.3.5 Modelstructure 32

3.4 Results 33 3.4.1 Kererubehaviour 33 3.4.2 Dispersaldistances 39

3.5 Discussion 42 3.5.1 Kererubehaviour 42 3.5.2 Dispersaldistances 43 3.5.3 Conservationimplications 45

CHAPTER 4. EFFECTS OF KERERU GUT PASSAGE ON TARAIRI SEED GERMINATION 47

4.1 Abstract 47 4.1.1 Introduction 47

4.2 Methods 49 4.2.1 Studyspeciesandsites 49 4.2.2 Experimentaldesign 49 4.2.3 Statisticalanalysis 50

4.3 Results 50

4.4 Discussion 52

CHAPTER 5. CONSEQUENCES OF DISPERSAL FAILURE FOR LARGE-SEEDED 55

5.1 Abstract 55

5.2 Introduction 57

5.3 Methods 59 5.3.1 Studyorganisms 59 5.3.2 Studysites 60 5.3.3 Experimentaldesign 60 5.3.4 Statisticalanalysis 64

5.4 Results 65 5.4.1 Secondarydispersalandseed 65 5.4.2 Germinationofunpredatedseeds 70 5.4.3 Seedlingsurvivalandgrowth 73 5.4.4 Overalleffects 82

5.5 Discussion 86 5.5.1 JanzenConnelleffects 86 5.5.2 pulpremoval 87 5.5.3 Theroleofintroduced 88 5.5.4 Reproductivedependenceonseeddispersal 89 5.5.5 Consequencesofdispersalfailure 90

CHAPTER 6. SEED SIZE VARIATION, POTENTIAL REPLACEMENT DISPERSERS, AND EFFECTS ON SEEDLING SIZE 93

6.1 Abstract 93

6.2 Introduction 94

6.3 Methods 95 6.3.1 Studysitesandspecies 95 6.3.2 Tawaseedlingsizeexperiment 96 6.3.3 Statisticalanalysis 97

6.4 Results 98 6.4.1 Fruitsizevariation 98 6.4.2 Potentialreplacementdispersers 100 6.4.3 Effectofseedsizeonseedlingsize 103

6.5 Discussion 108 6.5.1 Seedsizevariationandpotentialreplacementdispersers 108 6.5.2 Effectsofseedsizeonseedlingsize 109

CHAPTER 7. FRUIT SIZE PREFERENCE IN THE NEW ZEALAND PIGEON (HEMIPHAGA NOVAESEELANDIAE ) 111

7.1 Abstract 111

7.2 Introduction 112

7.3 Methods 114 7.3.1 Studysitesandspecies 114 7.3.2 Statistics 117

7.4 Results 117

7.5 Discussion 123

CHAPTER 8. SYNTHESIS 125

8.1 Effectiveness of kereru as seed dispersers 125 8.1.1 Dispersalquantity 125 8.1.2 Dispersalquality 126

8.2 Importance of kereru as dispersers of large-seeded trees 128 8.2.1 Consequencesofdispersalfailure 128 8.2.2 Potentialreplacementdispersers 129

8.3 Future research directions 129

ACKNOWLEDGEMENTS 131

REFERENCES 133

APPENDIX I. DISPERSAL MODEL 149

APPENDIX II. SEED FATE MODELS 153

1 Abstract

Thedeclineofkereru( Hemiphaga novaeseelandiae )maylimitdispersaloflargeseeded inNewZealand,buttheconsequencesofthisareunknown. Ideterminedkererudispersereffectivenessbymodellingseeddispersaldistances (usingseedretentiontimesandmovementpatterns).Meanseedretentiontimewas significantlylongerforlargerseededspecies,rangingfrom37–181minutes.Wildradio trackedkereruweresedentary,remainingatonelocationforupto5.25hours.Themean flightdistancewas77mandthemaximumwas1,457m.Estimatedmeanseeddispersal distancesfortawa( ),( Vitex lucens ),andfivefinger( )were95,98,and61mrespectively.Kererudispersed66–87%ofingestedseeds awayfromtheparent,with79–88%ofseedsdispersed<100mand<1%dispersed over1,000m. Inafieldseedfateexperiment,"prehuman"conditions(cleanedseeds,low density,awayfromparent,andprotectedfrommammals)increasedsurvivalcomparedto "posthuman"conditions(whole,highdensity,underparent,notprotected)forboth taraire( ; 15%vs.2%survivaltooneyearrespectively)andkaraka ( laevigatus ; 60%vs.11%totwoyears,respectively). Fruitdiametervariedconsiderablywithinkaraka,taraire,andtawa,although theoreticallynotenoughforthemtobeswallowedbyother.Nevertheless,otherbirds arereportedtooccasionallytakefruitsofnearlyalllargeseededspecies.Smalltawaseeds producedsmallerseedlingsintheglasshouse;thereforeselectionofonlysmallerseedsby alternativedispersersmaynegativelyaffecttawarecruitment.Kereruaregenerallynot gapelimited,andfruitsizepreferenceswereindependentofmeanfruitsize. Kereruprovideeffectivedispersalbymovingmostseedsawayfromtheparent,and enhancingseedandseedlingsurvival.Therefore,bothdispersalfailureandintroduced mammalsnegativelyaffecttheregenerationoflargeseededtreesinNewZealand.

2

3 Chapter 1. Introduction

1.1 Importance of seed dispersal

1.1.1 What is seed dispersal?

Seeddispersalisthemovementofseedsawayfromtheplantthatproducedthem,usually referredtoastheparentplant.Becauseadultterrestrialplantsareessentiallysessile,the seedistheonlystageofthelifecycleduringwhichindividualscanmovetoanother location,althoughgeneticmaterialisalsotransferredinpollen(Herrera2002).Seedsare dispersedbybothabiotic(e.g.wind,water,andgravity)andbioticmechanisms.Many plantspeciesaredispersedby,eitherexternallythroughattachmentofseedstofur orfeathers,orinternallythroughingestionoffruits(Herrera2002).Seedeatinganimals suchasareprimarilyseedpredators,butalsodispersesomeseedsthrough incompleterecoveryofseedsstoredincaches(VanderWalletal.2005).Birdsand mammalsarethemainseeddispersinggroups,althoughlizards,fish,tortoises,frogs,and alsodisperseseedsinsomesystems(e.g.Rick&Bowman1961;Bond&Slingsby 1984;Fialho1990;Wenny2000;Herrera2002;Wotton2002). Internalseeddispersalisgenerallyamutualisticinteraction,whereplants haveevolvedseedswithediblepulpthatareingestedbyanimals(Herrera2002).Theseeds areingestedincidentallybytheanimaldisperseralongwiththepulp,thenlaterdefecated, regurgitatedorspatoutintact(Herrera2002).Plantsbenefitfrommovementoftheirseeds andtheanimaldispersergainsareward.Vertebratedispersalisgenerallyassociated withlargeseedsize,anditsfrequencyincreaseswithdecreasinglatitude,altitude,and aridity,andwithincreasingsoilfertility(Herrera2002).Internalseeddispersalbyanimals isparticularlycommoninthewettropics,wheretypicallymorethan70%ofwoodyplant specieshavefleshyfruits(Willsonetal.1989). Thespatialdistributionofseedsisfundamentallyimportantintheecologyand ofplants.Seeddepositionpatternscaninfluenceindividualsurvivalprospects (e.g.Howeetal.1985;Wenny2000),communitycomposition(Christian2001),geneflow andgeneticstructure(Gibson&Wheelwright1995;Hamilton1999),metapopulation dynamics(Purves&Dushoff2005),andcolonisationrates(Clarketal.1998b).Howe& Smallwood(1982)proposedthreenonexclusivebenefitsofseeddispersal:(1)escapefrom disproportionateseedorseedlingmortalityneartheparentplant(escapehypothesis);(2)

4 colonisationofnew(colonisationhypothesis);and(3)dispersaldirectedtosites thatenhancesurvival(directeddispersalhypothesis).Seeddispersalmayalsobe advantageousformaintainingnaturallyorartificiallyfragmentedmetapopulations(e.g. Purves&Dushoff2005),andingestionofseedsbyfruiteatinganimalscanenhance germination(Traveset&Verdú2002).

1.1.2 Escape

Seeddispersalcanenableseedsandseedlingstoescapedisproportionatemortalitynear parentplants.Someplantsproducechemicalsthatinhibitthegerminationoftheseedsof otherspeciesorevenoftheirownseeds(Herrera2002).Theeffectsofbothincreasing distancefromtheparentandescapefromhighsiblingdensitiescanbeadvantageous.Since thegreatestseeddensitiesaretypicallyfoundbeneathfruitingadults,dispersalcan improvesurvivalprospectsbyreducingwithconspecificseedlings(Herrera 2002).Inaddition,somenaturalenemiesofseedsandseedlingsrespondtodistancefrom theparentanddensity,thuslimitingrecruitmentinthevicinityofconspecificadults(the JanzenConnellmodel;Janzen1970;Connell1971). TheJanzenConnellmodelproposesthatdistanceresponsiveenemiesare concentratedaroundparenttrees,resultinginhigherseed/seedlingmortalitywith increasingproximitytoconspecificadults.Herbivorousinsectsfeedingintheparent canopy,hostspecificfungi,seedpredators,andsoilpathogenscanallactasdistance responsiveenemies(Janzen1970;Packer&Clay2000).Connell(1971)predictedthat distanceeffectswouldbestrongerinseedlingsthanseeds,whichissupportedbyresults fromarecentmetaanalysisoftheeffectofdistancefromparentonseedandseedling predation(Hyattetal.2003).Hyattetal.(2003)foundthatdistancefromparentgenerally doesnotaffectlevelsofseedpredation,butseedlingpredationtendstodecreasewith distancefromtheparent.Pathogensmayprovideastrongermechanismforregulating survivalnearparentsthanpredation(Packer&Clay2000).Packer&Clay(2000)showed that Prunus serotina seedlingmortalitywasgreaterunderparenttreesthanaway,dueto higherlevelsofsoilpathogensinthevicinityofadultplants. Densityresponsivepredatorsconcentratetheirattacksonhighdensitypatchesof seedsandseedlings,sothatmortalityincreaseswithincreasingdensity(Schupp1992).An interestingexampleofdensitydependentmortalityisshownintheprairieplant Mirabilis hirsuta ,whereseedpredationbyantsandmiceincreasedwithincreasingseeddensity (Platt1976).Seedlingsurvivalwasalsonegativelydensitydependent,withsurvivalto

5 maturityofaround50%atlowseedlingdensitiesandvirtuallycompletemortalityathigh densities(Platt1976).Densitydependentseedpredationthereforeindirectlyincreased recruitmentsuccessbythinningseedlingdensitiestoalevelwheresomesurvived(Platt 1976).Harmsetal.(2000)reportednegativedensitydependentseedlingrecruitmentin53 plantspeciesinaPanamanianforest.Nevertheless,highinitialseeddensitiesoften overwhelmeddensitydependenteffects,sothatseedlingdensitywashighestwhereseed densitywasinitiallygreatest(Harmsetal.2000).

1.1.3 Directed dispersal

Directedseeddispersaloccurswhenseedsaredispersednonrandomlytositesthatare suitableforestablishment(Howe&Smallwood1982).Moststudiesquantifyseed depositionpatternsbymeasuringdispersaldistancefromtheparent,ratherthanby determiningtheenvironmentalcharacteristicsofthedepositionsite(Wenny2001).Asa result,directeddispersalmayhavebeenoverlookedinmanysystems(Wenny2001). Nevertheless,anumberofexamplesofdirecteddispersalhavebeenreported. Someplantspeciesabsolutelyrequireseeddepositioninspecificmicrositesor habitatsinordertoestablish.Forexample,mistletoe( Amyema quandang )seedsmustbe depositedonlivetwigsofaspecificthicknessandoncompatiblehosttreesinorderto establish(Reid1989).Mistletoebirds( Dicaeum hirundinaceum )werethemosteffective dispersers,defecatingmostingestedseedsonsuitablesizedtwigs(Reid1989).Directed dispersaliscrucialforpopulationpersistenceinthecolumnarcactus Neobuxbaumia tetetzon (GodínezAlvarezetal.2002).Thebat Leptonycteris curasoae deposits N. tetetzon seedsbeneaththecanopiesofperennialtreesandshrubs,whicharetheonlysites wheresuccessfulrecruitmentoccurs(GodínezAlvarezetal.2002). Forotherplantspecies,directedseeddispersalcanenhancetheprobabilityof establishment(Fialho1990;Wenny&Levey1998).Fialho(1990)foundthatdifferential seeddepositionpatternsbetweenlizardandfrogdispersersaffectedgerminationsuccess. Lizardstendedtodepositseedsonsandysubstratesintheopenwherefewseeds germinated,whiletreefrogsdepositedseedsinthemoistinteriorofbromeliadswhere germinationwasenhanced(Fialho1990).MalebellbirdsinCostaRicadepositedmost seedsatsongperchesontheedgesofforestcanopygaps(Wenny&Levey1998).Seedling survivalandgrowthwashigheratthesesitesthaninclosedforest,wherefungalpathogens contributedtoincreasedseedlingmortality(Wenny&Levey1998).

6

1.1.4 Colonisation

Seeddispersalalsoenablesplantstocolonisehabitatsthatareunpredictableinspaceand time(Howe&Smallwood1982).Broaddisseminationofseedsmayincreasethe likelihoodofrapidlycolonisingnewlyavailable(Howe&Smallwood1982). Recruitmentoftheperennialprairieplant M. hirsuta ,whichcannotcompetewithother plantspeciesinundisturbedsites,dependsonsuccessfulcolonisationofdisturbedsites createdbybadgermounds(Platt1976).Someplantsspeciesmayalsodispersethrough timebyhavingseeddormancy,whichenablesestablishmentwhensuitableconditions becomeavailable. Plantscanalsoexpandtheirdistributionalrangethroughseeddispersal,when climaticandenvironmentalconditionsbecomefavourable(Herrera2002).Forexample, manytreespeciesrapidlyrecolonisedareasfromwhichtheydisappearedduring Pleistoceneglaciations,afterglacialretreat(Clarketal.1998b).

1.1.5 Enhanced germination Ingestionbydisperserscanaffectgerminationsuccessbythreemechanisms:(1)the scarificationeffect;(2)thedeinhibitioneffect;and(3)thefertilisationeffect(Traveset& Verdú2002;Robertsonetal.2006).Seedpassagethroughafrugivore'sdigestivetractmay resultinchemicalorphysicalscarificationoftheseedcoat(Traveset&Verdú2002). Scarificationmayenhancegerminationbyimprovingtheabsorptionofwaterandgasesby theseedorreducegerminationifphysicalorchemicaltreatmentoftheseedistoovigorous (Traveset&Verdú2002).Gutretentiontimemaydeterminethedegreeofseedabrasion (Traveset&Verdú2002),andforonespeciesatleast,germinationsuccessincreaseswith decreasingseedretentiontime(Murrayetal.1994). Ametaanalysisofthescarificationeffectshowedthatseedingestionbyanimal frugivoresgenerallyenhancesgerminationsuccesscomparedtohandcleanedseeds (Traveset&Verdú2002).Gutpassageenhancedgerminationsuccessaroundtwiceas oftenasgerminationwasreduced(Traveset1998).Seedsthatabsolutelyrequireingestion inordertogerminateappeartoberare(Traveset1998).Perhapstheonlycurrentlyknown exampleistheGalapagostomato,whichappearstorequirepassagethroughthegutofthe Galapagostortoiseinordertogerminate(Rick&Bowman1961).However,similarclaims forotherspecies(e.g.Temple1977)haveprovedtobemistaken(Witmer&Cheke1991). Batsandbirdsgenerallyenhancegerminationsuccess,whilenonflyingmammalsand

7 reptilestendtohaveasmallpositiveeffectandnoeffectongerminationsuccess respectively(Traveset&Verdú2002). Frugivorescanalsoaffectgerminationsuccessbyseparatingseedsfromthefruit pulpandpotentiallyremovinggerminationinhibitors(deinhibitioneffect;Robertsonetal. 2006).Fewstudieshavetestedforadeinhibitioneffect,asmostexperimentsincludeonly handcleanedseedsandingestedseedsandnotwholefruits(Samuels&Levey2005).A recentmetaanalysisof51dispersedplantspeciesfrom28familiesshowedthatthe deinhibitioneffectgenerallyenhancesgerminationandissignificantlygreaterthanthe scarificationeffect(Robertsonetal.2006). Seedingestionmayalsoenhancegerminationsuccessbyfertilisationofthe seedlingfromfaecalmaterialdepositedwiththeseed(Traveset&Verdú2002).Sofar, evidenceforthefertilisationeffectisscarce,butTravesetetal.(2001)showedthatthe compositionofmanuredepositedwithseedscanaffectseedlinggrowth.However,the presenceoffaecesmayreducegerminationsuccessinsomespeciesbypromotingfungal and/orbacterialgrowth(Meyer&Witmer1998). Seedsingestedbyfrugivorestendtogerminatefasterthanhandcleanedseeds, althoughthedifferenceisgenerallyonlyafewdays(Traveset&Verdú2002).Anincrease inthespeedofgerminationmaynotalwaysbebeneficial,andmayevenbedetrimentalif otherfactorsaffectingseedlingrecruitmentfavourdormancy(Traveset&Verdú2002).It isalsoworthnotingthatbothgerminationspeedandfinalgerminationpercentageareoften calledgermination"rate"(Robertsonetal.2006),whichcaneasilycauseconfusionsothe lattertermisthusbestavoided.

1.1.6 Metapopulation maintenance Plantmetapopulationsareasetofspatiallyseparatedpopulationslinkedbyseeddispersal andpollination(Cainetal.2000).Plantpopulationsareoftenseparatedfromeachotherby hundredsorthousandsofmetres,whilemostseedsaredispersedlessthan100m(Cainet al.2000).Theextenttowhichpopulationsarelinkedbyseeddispersalwilltherefore dependonthefrequencyoflongdistancedispersalevents,whicharedifficulttomeasure (Cainetal.2000).Thisisarecentareaofresearch,sotodatetheevidencefortheroleof seeddispersalinmetapopulationdynamicsisscarce.Nevertheless,seeddispersalis thoughttoplayakeyroleinmaintainingnaturallypatchyorhumanfragmented metapopulations(Purves&Dushoff2005).

8

Frugivoregeneratedseeddepositionpatternscanalsoinfluencelocalpopulation geneticstructureandgeneflowbetweenpopulations(Hamilton1999;Jordano&Godoy 2002),whichmaybecriticalformetapopulationmaintenance.However,thegenetic consequencesofseeddispersalarelargelyunknown(Herrera2002).Thereissome evidencethatrestricteddispersalamongpopulationsleadstodecreasedgeneticdiversity, andpossiblyanincreasedriskofextinction(Shapcott2000). Carpentaria acuminata isa vertebratedispersedpalmrestrictedtotinyforestpatchescreatedbyPleistoceneclimate changeintheNorthernTerritoryofAustralia(Shapcott2000).Itsseedsaredispersedby birdsandflyingfoxes,whilethearevisitedbyawiderangeofanimalsincluding rodents,flyingfoxes,insects,andbirds.Geneticdiversityin Carpentaria acuminata populationsdecreaseswithincreasingisolation,andthereissignificantheterogeneityand lowgeneflowamongpopulations(Shapcott2000).Insomecases,fragmentationactually appearstoincreasegeneflowamongpreviouslyisolatedpopulations,breakingdownlocal geneticstructure(Youngetal.1996). Seeddispersalcontributedagreaterproportiontogeneflowbetween Prunus mahaleb populationsthanpollen,duetothediploidnatureofseedsandlongerdispersal distancesforseedsthanpollen(Garcíaetal.2007).While20%ofthevertebratedispersed seedswerefromotherpopulations,only9.5%ofthepollen(whichiscarriedbyinsects) camefromfathersoutsidethestudypopulation(Garcíaetal.2007).Paternalgenes dispersethroughbothpollenandseed,whilematernalgenesdisperseonlyinseeds (Hamilton1999).Thecontributionofseeddispersalto Prunus mahalebgeneflowwas greaterthansimplytheproportionofimmigrantseeds.Becauseseedsarediploidand containgenesfrombothparents,ifallelseisequal,theywillcontributetwiceasmuchto thegeneticbreedingareaofapopulationaspollen,whichishaploid(Hamilton1999). Hardestyetal.(2006)alsoshowedthatmeanseeddispersaldistancesweregreaterthan meanpollendispersaldistances,inaPanamaniantree.

1.1.7 Community structure

Seeddispersalisthoughttoinfluencecommunitystructurebyestablishingthespatial patternfromwhichcommunitiesdevelop.Theoreticalstudiesshowthatseeddispersal couldaffectspeciescoexistencethroughcompetitiondispersaltradeoffs(Levine& Murrell2003).TheJanzenConnellmodel(Janzen1970;Connell1971)proposesthatseed dispersalcontributestothemaintenanceofhightreediversityintropicalforests.This modelhypothesisesthatsurvivalnearparentsisvirtuallynil(duetodensityanddistance

9 dependentmortality),recruitmentislimitedtoareasatsomedistancefromconspecifics, andadultsaremoreevenlyspacedthatexpectedfrompatternsofseedfall(Schupp1992). Theopenspacesarethereforeavailableforcolonisationbyotherspecies,competitive exclusionisreduced,andalargenumberoftreespeciescancoexist(Schupp1992). Theefficiencyofseedandseedlingpredatorsispredictedtodecreasewith increasinglatitude,asthephysicalenvironmentbecomesmoresevereandunpredictable andaffectsthesupplyofresources(Janzen1970).Asaresult,JanzenConnelleffectsare expectedintropicalareasbutnotintemperatesystems(Janzen1970).Alargebodyof researchhasbeendevotedtotestingforJanzenConnelldistanceanddensitydependent effectsinthetropics(e.g.Augspurger1984;Howeetal.1985;Schupp1992;Hyattetal. 2003).Althoughthereisapaucityofstudiesinnontropicalareas,JanzenConnell distanceanddensitydependenteffectshavealsobeenreportedfortemperatesystems (Platt1976;Packer&Clay2000).Despitetheprevalenceofdistanceanddensity dependenteffects(particularlyforseedlingrecruitment),sofarthereislittleempirical evidencetosupportthehypothesisthatseeddispersalinfluencestreediversityand communitystructure(Levine&Murrell2003).Arecentstudydemonstratingincreased seedlingdiversityduetonegativedensitydependentrecruitmentprovidessomesupportfor thehypothesis(Harmsetal.2000).

10

1.2 Seed dispersal in New Zealand

1.2.1 Plant dispersal modes

TheproportionoftreesintheNewZealandflorawithfleshyfruitsthatrelyonanimalsfor dispersalisunusuallyhigh(around70%)comparedtoothertemperatefloras(Burrows 1994a).ThismaybeduetothetaxonomicaffinitiesofmanyNewZealandtreestotropical species(Burrows1994a).Theproportionofwoodyplantspeciesincludingshrubsandof allplantspecieswithfleshyfruitsarebothcomparabletoothertemperateareas(48%and 12%respectively)(Burrows1994a;Lordetal.2002).TheproportionofNewZealandtree specieswithwinddispersedseedsiscorrespondinglylow(5.5%),butishigherforall woodyspecies(43.5%;Burrows1994a).

1.2.2 New Zealand frugivores

NewZealandhasalimitedrangeofvertebratesavailabletodisperseseedscomparedto otherregions.Untilrecently,theonlyterrestrialmammalsknowntohaveoccurredinNew Zealandwerebats(Lloyd2001).Fossilremainsofamousesizefromthe Miocene(19–16Ma)werediscoveredrecently,althoughlittleisknownofitspast ecologicalrole(Worthyetal.2006).ThenativeNewZealandterrestrialvertebratefaunais dominatedbybirdsandlizards(Towns&Daugherty1994;Bunceetal.2003). ThearrivalofhumanshashadadevastatingimpactonthenativeNewZealand fauna.Introducedmammalianpredators,habitatloss,andhuntinghavecausedthe extinctionofnumerousendemicvertebratespeciesandthedeclineofmanyothers, includingbats(Lloyd2001),reptiles(Towns&Daugherty1994),andbirds(Holdawayet al.2001).OfthethreebatsspeciesthatexistedinNewZealand,thetwoMicrochiropteran batspecies(thelessershorttailedbat Mystacina tuberculata andthegreatershorttailed bat M. robusta )probablybothdispersedsomeseeds(Lordetal.2002).Thegreatershort tailedbatisnowextinct,whilethelessershorttailedbatishighlythreatenedandplaysa limitedroleindispersalofsmallseededspecies(Lord et al. 2002). IntroducedmammalshavehadadevastatingeffectonthelizardfaunainNew Zealand,with40%oflizardspeciesdriventoextinctioninthelastmillennium(Towns& Daugherty1994).Manyremaininglizardspecieshavebeeneliminatedfromvastareasof theirpreviousranges,with41%nowconfinedalmostentirelytoratfreeoffshoreislands (Towns&Daugherty1994).Thedensityofmorewidespreadlizardspecieshasdeclined

11 drastically(Whitaker1987).LizardsdispersesmallfleshyfruitsinNewZealandand probablyplayedagreaterroleinprehumantimeswhenlizardsweremoreabundantand widespread(Whitaker1987;Wotton2002).Nevertheless,mostfleshyfruitedspeciesin NewZealandhaveprobablyalwaysbeenbirddispersed(Clout&Hay1989). Recentevidenceindicatesthatinvertebrateweta(Orthoptera),manyofwhichare threatenedwithextinctionbyintroducedmammals,mayprovidelimiteddispersalof fleshyfruitedspecieswithsmallseeds(Burns2006;Duthieetal.2006).However,weta destroyedmanyoftheseedsingested,andingestedonlythefruitpulpforotherspecies,so theirroleaseffectiveseeddispersersremainsuncertain(Burns2006;Duthieetal.2006). Clout&Hay(1989)listedthreegroupsofextinctbirdsthatatesomefruit: (Dinornithidae ),( Heteralocha acutirostris ),and( Turnagra capensis ).Tenmoa speciesarerecognizedcurrently(Bunceetal.2003),anumberofwhichincludedfruitin theirdiet(Burrowsetal.1981).Itisdifficulttoassesstheroleofextinctmoaspeciesas seeddispersers,asonlylimitedinformationisavailable.Onlythetwospeciesofgiantmoa (Dinornis novaezealandiae and D. robustus )areknowntohavefedunderforestcanopies andincludedfruitsintheirdiet(Worthy&Holdaway2001).Thelittlebushmoa (Anomalopteryx didiformis )livedinforesthabitatsbutfedoutsidetheforestcanopy(R.N. Holdawaypersonalcommunication).Giantmoacarriedlargequantitiesofgizzardstones intheirgut,whichwouldhavedestroyedseedswiththinseedcoats,althoughwoodyseeds mayhavepassedintact(Clout&Hay1989).Othermoaspeciesprobablyplayedaseed dispersalroleinnonforestedhabitats,particularlyfordivaricatespecies. Otherfrugivorousbirdspeciesthatwerepreviouslywidespread,suchas (Callaeas cinerea ),( Notiomystis cincta ),and( Philesturnus carunculatus ),arenowconfinedtopredatorfreeoffshoreislandsorintensivelymanaged mainlandsites.Manyoftheremainingavianfrugivoreswhicharestillwidespread, includingkereru(theNewZealandpigeon,orkukupa; Hemiphaga novaeseelandiae , )and( Prosthemadera novaeseelandiae ),havedecreasedinabundanceand disappearedfromsomeareas(Pierceetal.1993;Higginsetal.2001).

1.2.3 Dispersal of large-seeded species

Gapesizetendstolimitthesizeoffruitsananimalcanswallow,particularlyinbirds (Wheelwright1985).Themaximumtransversediameteroffruits,ratherthanthelength, restrictswhichspeciesandindividualscanswallowfruits(Mazer&Wheelwright1993). Frugivorescanavoidgapelimitationtosomeextentbyeatingsmallseededfruitsinpieces,

12 andbysquashingfruitsintheirbillpriortoswallowing(Levey1987).Nevertheless,fewer animalspeciesarecapableofdispersingtheseedsoflargeseededspecies,which consequentlyaremorevulnerabletodispersalfailure.Humanactivitiesarealsomore likelytoreducepopulationsoflargebodiedvertebratesanddrivethemtoextinction (Brook&Bowman2004). Forlargeseededtreespecieswithfruitsgreaterthan14mmindiameter,thekereru istheonlyknownextantfrugivorewithagapelargeenoughtoswallowfruitsanddisperse theseeds(McEwen1978;Clout&Hay1989).Thefivewidelyrecognisedlargeseeded treespeciesinNewZealandaretawa( Beilschmiedia tawa ,),taraire( B. tarairi ), puriri( Vitex lucens ,Verbenaceae),karaka( Corynocarpus laevigatus ,Corynocarpaceae), andtawapou( Planchonella costata ,Sapotaceae).Althoughtawaroa( B. tawaroa )isalso listedbyClout&Hay(1989),IfollowtheofAllan(1961),whichincludes B. tawaroa within B. tawa . Somegroundcoverspeciesalsohavelargesingleseededfruits,including Colensoa physaloides (fruits10–25mmdiameter)andLibertia ixiodes (15–20mm)(Dijkgraaf 2002).Dijkgraaf(2002)suggeststhattheselowerstaturespeciescouldhavebeen dispersedbyseveralspecies,includingmoa.However,moaandmanyotherground dwellingbirdspeciesareextinctandthecurrentdispersersfortheseplantspeciesare unknown.Kereruprobablyspentmoretimeforagingonthegroundpriortothe introductionofpredatorymammals.Somenativespeciesmodifytheirbehaviourinthe presenceofintroducedmammals.Forexample,treeweta( Hemideina crassidens )occupy galleriesclosertothegroundwhenmammalianpredatorsareabsent(Rufaut&Gibbs 2003),andkereruforageextensivelyonthegroundonpredatorfreeKapitiIsland(DMW personalobservation)andalsoonLittleBarrierIsland(D.Kelly,personalcommunication). Theselargeseededfruitsmayhavebeendispersedbykererualongwithotherground dwellingbirds.

Kereru

Kereruarelargebodied(c.650g;Clout&Tilley1992),frugivorouspigeonsendemicto NewZealand(Clout&Hay1989).Thekereruplaysanimportantseeddispersalrole, consumingfruitsofatleast70plantspeciesanddefecatingtheseedsintact(McEwen 1978;Clout&Hay1989).WhilestillwidespreadthroughoutNewZealand,kereru numbershavedeclinedduetointroducedpredators,habitatloss,andhunting(Cloutetal. 1995b).Theinherentlylowreproductionrateofkereru(asingleeggperclutch,maximum

13 of2–3clutchesperyear(Heather&Robertson2000),andnonestingattemptedinlow fruityears(Cloutetal.1995b))isexacerbatedbyhighlevelsofpredationbystoats (Mustela erminea ),rats( Rattus rattus ),possums( Trichosurus vulpecula ),andcats(Felis catus )(Cloutetal.1995b;Pierce&Graham1995;Innesetal.2004).Possumsandrats alsocompetewithkereruforfood,eatingripeandunripefruitsinthecanopy(Dijkgraaf 2002).Despitethelegalprotectionofkererusince1921,illegalhuntingcontinuestooccur, particularlyinNorthland(Pierceetal.1993;Cloutetal.1995b;Pierce&Graham1995).

Kereru(NewZealandpigeon, Hemiphaga novaeseelandiae )

1.3 Thesis outline

Themainobjectivesofthisthesisweretodeterminetheeffectivenessofkereruasseed dispersersandtodeterminetheirimportancefordispersaloflargeseededtreespecies.I addressedsomefundamentalquestionsrelatingtotheeffectivenessofkereruasseed dispersersinChapters2,3and4.Seeddispersereffectivenessisdefinedasthe contributionadispersermakestoaplant’sfuturereproduction,andhasbothquantitative andqualitativecomponents(Schupp1993).Seeddispersalquantitydependsonthenumber ofvisitsadispersermakes,andthenumberofseedsdispersedpervisit.Dispersalquality dependsonthetreatmentofseedsinthedisperser’smouthandgut,andseeddeposition patterns(Schupp1993).Dispersaldistanceisakeycomponentofthespatialpatternof

14 seeddispersal,butisverydifficulttomeasure.Ithereforeusedamodellingapproachto estimatekereruseeddispersaldistances,combiningdataonseedretentiontimes(Chapter 2)andkererudailymovementpatterns(Chapter3).InChapter4,Itestedtheeffectof kererugutpassageonseedgerminationinalargeseededtree. Adeclinein,orlossof,frugivorousanimalpopulationscandisruptseeddispersal mutualisms(Bond&Slingsby1984;Chapman&Chapman1995;Traveset1995; McConkey&Drake2002).However,fewstudieshaveestablishedthatthelossofasingle speciesofseeddisperserleadstofailureofplantstodisperseanyseeds("dispersalfailure"; Bond&Slingsby1984).Evenfewerhavedemonstratedsignificantconsequencesofseed dispersalfailureforplantpopulationsorcommunities(Christian2001).Theconceptof dispersalfailureisdiscussedinmoredetailintheintroductionanddiscussionofChapter5. AlthoughthedisappearanceofkererufromNewZealandforestsispredictedtohave seriousconsequencesfortheregenerationoflargeseededtrees(McEwen1978;Clout& Hay1989),thishypothesishasnotbeentested.Totesttheeffectofdispersalfailureon earlyrecruitmentinlargeseededspecies,Icomparedthefateofdispersedandundispersed seedsinafieldexperiment(Chapter5). Finally,Iinvestigatedsomeevolutionaryaspectsofseeddispersalbypotential replacementdispersersoflargeseededtrees(Chapter6)andbykereru(Chapter7).Seed sizecanvaryconsiderablywithinaplantspecies(Michaelsetal.1988)andcaninfluence theprobabilityofsurvivalandestablishment(Moles&Westoby2004).Gapesizetendsto limitthesizeoffruitsthatanimalscaningest,whichcouldresultinnonrandomremoval byfruitsizeandhaveimportantimplicationsforplantfitness(Wheelwright1985).For furtherdiscussionofthistopicseeChapters6and7.ResearchinChapter7wasconducted incollaborationwithJennyLadleyandhasbeenacceptedforpublication(Wotton& Ladleyinpress).Iconcludebysynthesisingmyresearchresultswithexistinginformation toassesstheimportanceofkereruasdispersersoflargeseededtreespeciesinNew Zealand(Chapter8).

15 Chapter 2. Kereru seed retention times 1

Thehazardsoffieldwork!Acaptivekereruinvestigating JennyLadley’sjacket.

2.1 Abstract

Iofferedripefruitsoftawa( Beilschmiedia tawa ),taraire( B. tarairi ),andpuriri( Vitex lucens )tocaptivekereru(NewZealandpigeons, Hemiphaga novaeseelandiae )and recordedseedretentiontimes.Ialsorecordedseedretentiontimeswhileradiotracking wildkereruinandCanterbury.Ireportwildkereruretentiontimesfortawa, puriri,miro( ferruginea ),fivefinger( Pseudopanax arboreus ),andkahikatea ( )seeds.Wheredatawereavailableforthesameplantspecies fromwildandcaptivekereru,retentiontimesweresimilar.Seedretentiontimediffered significantlyamongfruitspeciesandwaspositivelyrelatedtoseedmass.Meanretention timesrangedfrom37–45minutesforthetwosmallestseededspecies(fivefingerand kahikatea)upto109–181minutesforthethreelargestspecies(puriri,taraire,andtawa).I alsoreportthesecondpublishedinstanceofregurgitationbykereru.

1Arevisedversionofthischapterhasbeenacceptedforpublication(Wottonetal.inpress).

16

2.2 Introduction

Internaltransportoffleshyfruitsbyavianfrugivoresisawidespreadseeddispersal mechanism.Frugivorousbirdsandfruitingplantsbothencounterarangeoftradeoffs relatingtothelengthoftimedispersersretainseedsafteringestingfruits.Thetreatmentof seedsbyanimaldisperserscanhaveimportanceconsequencesforplantreproductive success.Fromtheplant’sperspective,seedretentiontimeisatradeoffbetweendispersal distanceandseedviability(Murrayetal.1994).Longerseedretentiontimesgenerally resultingreaterdispersaldistances(Murrayetal.1994;Holbrook&Smith2000),but decreasedseedviability(Murphyetal.1993;Murrayetal.1994;Charalambidouetal. 2003).Foranimalfrugivores,seedretentiontimeisatradeoffbetweenabsorbingnutrients fromthefruitpulpandeliminatingtheindigestibleseed‘ballast’(Snow1971;Levey& Grajal1991).Thepresenceofseedsinabird’sgutlimitsitscapacityforfoodingestion (Sorensen1984).Inaddition,theweightofseedsincreasestheenergyexpenditurerequired forflight(Levey&Grajal1991).However,someplantsappeartohavetheabilityto influencegutpassagetimes,whichconsequentlymaynotalwaysbeunderthebird’s control(Murrayetal.1994;Leveyetal.2007). IntheNewZealandfloraaround70%oftrees,48%ofwoodyplants(Burrows 1994a),and12%ofallplantspecies(Lord et al. 2002)havefleshyfruitsthatrelyon animalsfordispersal.TheonlyterrestrialmammalsinNewZealandaretwothreatened speciesofMicrochiropteranbat,oneofwhicheatssomefruitandmayplayalimitedrole indispersalofsmallseededspecies(Lord et al. 2002).Lizardsdispersesmallfleshyfruits inNewZealand(Whitaker1987;Wotton2002),butmostfleshyfruitedspeciesarebird dispersed.Kereru(theNewZealandpigeon, Hemiphaga novaeseelandiae )arelarge(c. 650g;Clout&Tilley1992),frugivorouspigeonswidespreadthroughoutNewZealand (Clout&Hay1989).Kereruplayanimportantseeddispersalrole,consumingfruitsofat least70plantspeciesanddefecatingtheseedsintact(McEwen1978;Clout&Hay1989). Theonlypublishedkereruseedretentiontimesareformiro( , )(Clout&Tilley1992).Myresearchaimedtoanswerthefollowing questions: 1)Howlongdoesittakeforseedsofarangeofnativespeciestopassthroughthegutof kereru? 2)Dokereruseedretentiontimesvaryamongplantspecies? 3)Isseedretentiontimerelatedtoseedsize?

17

2.3 Methods

2.3.1 Study sites

IconductedseedpassagetrialswithcaptivekereruinoutdooraviariesatOranaWildlife ParkandWillowbankWildlifeReserve,inChristchurch,NewZealand.Theaviarieswere generallylargeenoughforkererutoundertakeshortflights,withtheexceptionofone injuredindividual,whichwasunabletoflyandwasheldseparatelyinasmalleraviary. Captivekereruweremaintainedonadietofsweetcorn,peas,commerciallyavailablefruit (e.g.kiwifruit),bread,andseeds.Maintenancefoodforkereruwasplacedintheaviaries onceaday,usuallyaroundmidmorning. IradiotrackedwildkereruinTaranakiandonBanksPeninsula,Canterbury,New Zealand,whichhadbeenradiotaggedforotherstudies(R.G.Powleslandpersonal communication;Campbell2006).KereruinTaranakiwerelocatedinandaroundNew Plymouthcity(39°04′S174°05′E)innativeforestremnantsandinurbanparkswith mixednativeandintroducedvegetation.OnBanksPeninsula,kereruweremostlytracked inHinewaiReserve(43°49′37S173°02′42″E)andonadjacentfarmland.One individualwastrackedinthenearbytownshipofAkaroa(43°48′24″S172°58′26″E).

2.3.2 Captive trials

Iofferedcaptivekererunativefruitsofthreespecies:tawa( Beilschmiedia tawa (A.Cunn.) Benth.etHook.f.exKirk, Lauraceae),taraire( B. tarairi (A.Cunn.)Benth.etHook.f.ex Kirk),andpuriri (Vitex lucens Kirk,Verbenaceae),allofwhichareimportantinthedietof wildkereru(McEwen1978).Bothtawaandtarairehavelarge,darkpurpletoblackfleshy fruitswithasingleseed.Tawafruitsareapproximately27x16mm(lengthxdiameter) (Wotton&Ladleyinpress).Tarairefruitsarelargerthantawa,measuringapproximately 32x19mm(Wotton&Ladleyinpress).Puririhaspinkishred,fleshyfruitsmeasuring18 x16mm(J.M.Lord,personalcommunication).Thedispersalunitofpuriri(for conveniencehereafterreferredtoasaseed)consistsofbetweenonetofourseedsenclosed inawoodyendocarp(Godley1971),whichremainsintactafteringestion(Webb& Simpson2001).TaraireandpuririfruitswerecollectedfromWenderholmRegionalPark (36°32′15″S174°42′24″E),near,NewZealand,andtawafruitswere collectedfromBlueDuckReserve,Kaikoura,NewZealand(42°14′10″S173°46′59″E). Iofferedfruitsofasinglespeciesinseparatetrialsonceortwicetoeachindividual kereru.Fruitswereofferedtotenkereruintotal,althoughonlyfivebirdsactuallyingested

18 fruits.Twentyfruitsofasinglespecieswereplacedintheusualfeedingtrayintheaviary inthemorningpriortonormalfoodbeingmadeavailable.Irecordedthetimesatwhich fruitswereeatenandthenumberoffruitseaten.Anyfruitsnotconsumedwithin10 minutesofthefirstfruitbeingswallowedwereremoved,andthenormalfoodsupplywas placedinthefeedingtray.Iobservedkererucontinuouslyuntilallseedswererecovered, recordingthetimeofeachdefecationandthenumberofseedsdefecated.Iusetheterm ‘seedretention’toencompassbothseedsthatweredefecatedandthosethatwere regurgitated.‘Seedpassage’referstoonlythoseseedsthatweredefecated.Icalculated seedretentiontimesbysubtractingthemidpointofthetimebetweeningestionofthefirst andlastfruitsfromthetimeofegestion.

2.3.3 Wild seed passage times

IcollecteddataonseedpassagetimeswhileradiotrackingwildkererufromJanuaryto April2006.KereruwerefittedwithSirtrackradiotransmittersandlocatedusingSirtrack TR4andR1000receiversand160MHzfoldingYagiantennae.Itrackedindividualkereru continuouslyfromearlymorningforupto8.5hours.DuringeachtrackingsessionI recordedthetimeoffeedingobservations,notingthespeciesofanyfruitconsumed.Ialso recordedthetimeofanydefecationscontainingseeds,andwhenthesecouldbecollected identifiedtheseedstospecies.Ideterminedseedpassagetimesonlyforthoseobservations thatmetthefollowingcriteria:(1)kererudefecatedseedsafterthefirstobservationfeeding onafruitspeciesforthatdayandpriortorepeatedfeedingonthesamespecies;or(2) therewasaminimumfivehourintervalbetweenthefeedingobservationandanyprior ingestionoffruitofthesamespecies,andnorepeatedfeedingwasobservedonthesame speciespriortoseeddefecation.Icalculatedseedpassagetimesbysubtractingthetimeat themidpointofthefeedingboutfromthetimeofdefecation.

2.3.4 Data analysis

ForcaptivetrialsItestedfordifferencesinseedretentiontimebetweenfruitspeciesusing atwotailedANOVA.WheresamplesizewassufficientItesteddifferenceswithinfruit speciesbetweenwildversuscaptivekereruusingatwosamplettest.Forfruitspecies whereIhadbothwildandcaptiveretentiontimesIcombinedalldataforthatplantto calculateanoverallmeanseedretentiontime,whichwasusedinsubsequentanalyses.I usedatwotailedANOVAtotestfordifferencesinseedretentiontimebetweenfruit species(wildandcaptivedatacombined).Icarriedoutalinearregressiontodetermine

19 whethermeanseedretentiontimewasrelatedtomeanseedmassacrossallplantspecies.I includedcaptivekererupassagetimedataformiroseedsfromClout&Tilley(1992)in thisanalysis.AirdriedseedmassdatawereobtainedfromMolesetal.(2000)forall speciesexcepttawaandtaraire,forwhichIcollecteddatafromthesiteatwhichfruitsfed tocaptivekereruwerecollected.Iincludedseedsthatwereregurgitatedinallanalysesas theredidnotappeartobeanyconsistenteffectofseedtreatmentonseedretentiontime, althoughthenumberofobservationswastoosmalltotestthis.Allanalyseswerecarried outusingRversion2.1.1(RDevelopmentCoreTeam2005).

2.4 Results

2.4.1 Captive trials

Captivekereruwereunfamiliarwithnativefruits,oftendroppingfruitsrepeatedlywhile attemptingtoswallowthem.Thefivekereruthatdidnotingestanyfruitsmadenoattempt toswallowthem,showinglittleinterestinthefruits.Tawafruitswerereadilyingestedby fivekereru,althoughretentiontimeswererecordedforonlyfourindividuals.Onlytwo kereruswallowedpuririandtarairefruits;individualsthathadeatentawafruitsinprevious trialsmadenoattempttoswalloweitherofthesespecies.Withpractice,kereruappearedto beabletomanipulatetheellipticaltawafruitsmoreeasilythanthoseofpuriri(whichare almostspherical),despitethefactthattawafruitsareconsiderablylarger.Kereru manoeuvredtawafruitslengthwiseintheirbillpriortoswallowing.Kereruappearedto experienceconsiderabledifficultyswallowingtarairefruitsduetotheirlargediameter. Nevertheless,inthewildkereruareoftenobservedfeedingontarairefruits. Thenumberoffruitsingestedduringafeedingboutappearstobelimitedbyboth fruitsizeandthesizeofthekereru’scrop.Inasinglefeedingboutcaptivekererunearly alwaysingestedsixorsevenpuririfruits,fourtawafruits,oronetarairefruit(from smallesttolargestfruitsrespectively).Kererudefecationscontainedasingleseedoftawa ortaraire,orbetweenoneandthreepuririseeds. Seedretentiontimesvariedsignificantlyamongplantspecieswithincaptivetrials (Table2.1).Captivekereruretentiontimesrangedfromaminimumof43minutesfora puririseedtoamaximumoffiveandahalfhoursfortheslowesttawaseed(Table2.2).

20

Table 2.1. ResultsoftwotailedANOVAtestingfordifferencesinmeanseedretention timeamongfruitspeciesingestedbykereru. Source df SS MS F P Captive kereru Fruitspecies 2 57193 28597 4.952 0.014 Residuals 30 173236 5775 Captive and wild data combined Fruitspecies 5 161483 32297 7.1751 <0.0001 Residuals 58 261071 4501 Table 2.2 Seedretentiontimesfornativefruitsswallowedbycaptiveandwildkereru.All timesareinminutes. Plantspecies Common Mean SD Range Samplesizes(seeds, name defecations,birds) Captive Beilschmiedia tawa tawa 180.8 100.3 57–330 15,13,4 B. taraire taraire 137.8 55.3 74–192 4,4,2 Vitex lucens puriri 91.9 42.3 43–189 14,11,2 Wild Beilschmiedia tawa tawa 254.0 11.3 246–262 2,2,1 Dacrycarpus kahikatea 44.5 2.143–46 ,2,1 dacrydioides Prumnopitys ferruginea miro 80.0 80–80 1,1,1 Pseudopanax arboreus fivefinger 37.4 9.9 19–50 ,9,1 Vitex lucens puriri 122.4 66.3 63–269 17,10,3

21

Iobservedtwokereruregurgitateseedsandfruitsduringcaptivefeedingtrials.Thefirst birdingestedfourtawafruitsduringasinglefeedingboutandallfourseedswere regurgitatedintwoevents.Thefirstregurgitationoccurred57minutesafteringestion, duringwhichthekereruejectedoneintactfruitandoneseedwiththepulppartlydigested. Duringthesecondevent(5½hoursafteringestion),thekereruregurgitatedtheothertwo seedswiththepulpcompletelydigested.Thesameindividualalsoregurgitatedataraire seedwiththepulppartlydigested110minutesafteringestion.Thesecondkereru regurgitatedanintacttarairefruit74minutesafterswallowingit.

2.4.2 Wild seed passage times

Icollectedwildseedpassagetimesforfiveplantspecies(Table2.2,Figure2.1),twoof whichwerealsousedincaptivetrialsinthisstudy.Thenumberofseedscontainedinwild kererudefecationsvariedfromoneseedfortawa,or1–3puririseeds,tomorethanten seedsoffivefinger( Pseudopanax arboreus )orkahikatea (Dacrycarpus dacrydioides ).A singlemiroseedwascollectedfromadroppingthatalsocontainedonepuririseed.Seed retentiontimesforfivefingerandkahikateaarefordefecationsratherthanindividualseeds. DuetothesmallseedsizeforthesetwospeciesIwasunabletorecoverandcountall seeds.AlthoughIrecordedwildpassagetimesforonlyasmallnumberofseeds,these wereconsistentwithtimesrecordedforcaptivekereru(Table2.2,Figure2.1).Ttest resultsshowedthatpuririretentiontimesdidnotdiffersignificantlyamongcaptiveand wildkereru(meansof92and122minutesrespectively,d.f.=29,t=1.487,P=0.148). Theseedpassagetimeof80minutesIrecordedforasinglemiroseedinthewildwasalso comparabletothemeanforcaptivebirdsof95.4minutes(Clout&Tilley1992).Similarly, thetwotawaseedpassagetimesIcollectedfromwildbirdswerewithintherangeI recordedforcaptivebirds(Table2.2).

2.4.3 Differences among species

Theoverallmeanseedretentiontimeforkereruwas120±82minutes.Meanseed retentiontime,combiningcaptiveandwilddata,was108.6± 57.9minutesforpuririand 189.4±97.0minutesfortawa.Seedretentiontimedifferedsignificantlyamongfruit species(Table2.1)andwassignificantlyaffectedbyseedmass(Figure2.2).

22 Seedpassage time (minutes) 50 100 150 200 250

fivefinger kahikatea miro puriri taraire tawa Fruit species Figure 2.1Seedpassagetimesfornativefruitsingestedbywildkereru.Horizontallines withinboxesindicatethemedian,andloweranduppersidesofboxesrepresentthe25 th and75 thpercentilesrespectively.Errorbarsshow1.5timestheinterquartilerangeofthe data.

23

tawa

taraire

puriri

miro Mean seed retention time (minutes) 50 100 150 kahikatea fivefinger

0.0 0.5 1.0 1.5 2.0 2.5 Mean seed mass (g) Figure 2.2Relationshipbetweenmeanseedmassandmeanseedretentiontimeforsix fruitspeciesconsumedbywildandcaptivekereru.SeedmassdataarefromMoles et al. (2000),exceptfortawaandtarairemeasuredatmysites.Therelationshipwassignificant (adjustedR 2=0.687,regressionequation=55.61+47.22x,F=11.96,d.f.=1and4,P= 0.026).

24

2.5 Discussion Kereruseedretentiontimesarerelativelylongcomparedtootheravianfrugivores.Small typicallydefecateseedswithinanhourofingestion(Sorensen1984;Murphyet al.1993),andoftenwithin20minutes(Levey1987;French1996).Thiscontrastswith kereruseedretentiontimes,whichrangefrom19to330minutes,withanoverallmeanof twohours.However,giventhelargesizeofkererumyresultsareconsistentwithevidence thatseedretentiontimeincreaseswithfrugivorebodysize(Herrera1984;Levey1986; Holbrook&Smith2000). Therelationshipbetweenseedpassagetimeandseedsizeappearstobeinconsistent amongavianseeddispersers.Seedpassagetimeinkereruincreaseswithincreasingseed size,whichagreeswithresultsreportedforanumberofotherstudies(Sorensen1984; Holbrook&Smith2000;Westcottetal.2005).However,otherauthorsshoweithera negativerelationship(Levey1986;Levey&Grajal1991;Stanley&Lill2002;Fukui 2003),ornorelationshipbetweenseedpassagetimeandseedsize(Sunetal.1997).It appearsthatothercharacteristicsofbothfruitsanddispersersalsoinfluenceseedpassage time.Forexamplesomebirdsmayprocessrichmorerapidlythan lipidrichones(Afik&Karasov1995).Lipidsrequiremoretimetodigestandabsorbthan simplesugars(Witmer&VanSoest1998).Specialistfrugivorescanalsohaveamore rapidgutpassageratethanfruitorseedpredatorsandnonfrugivores(Herrera1984). Frugivoresfaceconflictingdemandsbetweenretainingfruitsforasufficientperiod oftimetoassimilatenutrientsanddiscardingtheindigestibleseedasrapidlyaspossible (Murrayetal.1994).Regurgitationisacommonmethodofrapidlyprocessinglargeseeds, wherebirdsregurgitatelargeseedsanddefecatesmallerones(Johnsonetal.1985;Levey 1986,1987;McConkeyetal.2004).Nevertheless,Iknowofonlytwopreviously publishedrecordsofregurgitationinNewZealand,byasinglekereruthatregurgitateda puririfruit(Simpson1971)andbySouthIslandrobins(Powlesland1979). Hemiphaga chathamensis wasalsoobservedregurgitating Myrsine chathamica fruitsonChatham Island,NewZealand(R.G.Powleslandpersonalcommunication). Regurgitationmaybeunderreportedasitisdifficulttoobserveindenseforest wherekereruareoftenfound.However,kererudonotappeartouseregurgitationasa meansofeliminatinglargeseedsrapidly.RegurgitationeventsIobserveddidnotappearto decreaseseedretentiontime;infactthelongestretentiontimerecordedwasfortwo

25 regurgitatedtawaseeds.Captivekereruthatregurgitatedseedsorfruitsfailedtofully processthepulpforfourofthesixfruits,andwholefruitswereregurgitatedinbothwild events.Kereruappeartoobtainlittlebenefitfromregurgitationintermsofrapidseed processingornutrientassimilation,andmayregurgitatefruitsonlywhentheyareunder stressorhaveeatenalargeamount(McEwen1978). Plantsalsoexperiencecostsandbenefitsrelatedtoseedretentiontime.Asseed retentiontimeincreases,dispersaldistancesbecomegreater(Murrayetal.1994;Holbrook &Smith2000),whichisgenerallyadvantageoustotheplant.Longdistancedispersal enablesplantstocolonisenewsites(Howe&Smallwood1982)andmaintain metapopulationsinnaturallyorartificiallyfragmentedlandscapes(Cainetal.2000).On theotherhand,longerseedretentiontimesdecreasethenumberoffruitsdispersed,since frugivoreingestionislimitedbygutcapacity(Sorensen1984;Levey1986;Levey&Grajal 1991).Increasingseedretentiontimecanalsodecreasegerminationsuccess(Murphyetal. 1993;Murrayetal.1994;Charalambidouetal.2003). Seedpassagetrialsconductedwithcaptivebirdshaveanumberofpotential limitations(Holbrook&Smith2000).Captivebirdsarelikelytoberelativelyinactive comparedtowildonesandseedpassagetimesmaythereforebeslower.However,feeding bykereruinthewildisoftenfollowedbyalongperiodofinactivity,sometimeslastingfor over5hrs(McEwen1978;Chapter3).Indeed,Levey&Grajal(1991)notethat“Many fruiteatingbirdsandbatsareinactiveforlongperiodsafterameal”. Inaddition,thedietofcaptivebirdsmaydifferconsiderablytothatofwildbirds. Individualbirdsincaptivitycanmodifytheirgutprocessingrateinresponsetochangesin diet(Afik&Karasov1995).ThecaptivedietofkereruIuseddifferedfromthatofwild kereru,althoughitdidincludefruit.Offeringkereruonlyasinglefruitspeciesduring feedingtrialsmayalsohaveinfluencedgutpassagerates.However,kereruoftenfeedon onlyonefruitspeciesduringafeedingbout(Clout&Hay1989).McEwen(1978) examinedthestomachcontentsof177kereruandfoundthatfruitusuallyconsistedofonly asingleplantspecies.Ihaveshownthatseedretentiontimesweresimilarforwildand captivebirds.Wildbirdseedretentiontimesaredifficulttomeasureandthereareonlya fewpreviouslypublishedestimates(Howe1977;Howe&VandeKerckhove1981; Wheelwright1991).Onlyoneoftheseactuallyquantifiedseedretentiontimesforwild birds(Wheelwright1991). Seeddispersaldistanceisafunctionoffrugivoremovementpatternsandseed retentiontimes(Westcottetal.2005).Myresultswillenableestimationofseeddispersal

26 distancesbykereruforarangeofplantspecies.Seedretentiontimesofuptofiveanda halfhourscombinedwithseasonalmovementsoftensofkilometres(Cloutetal.1986; Cloutetal.1991)indicatethepotentialforeffectiveseeddispersaloverlongdistancesby kereru.

27 Chapter 3. Modelling kereru seed dispersal distances

MaggieTischradiotrackingkereruatLakeMangamahoe, Taranaki

3.1 Abstract

Measuringdispersaldistancesisakeychallengelimitingprogressinseeddispersal research.Iusedrecentadvancesinmodellingapproachestoestimateseeddispersal distancesgeneratedbyfrugivorouskereru(NewZealandpigeon, Hemiphaga novaeseelandiae ).Mechanisticseeddispersalmodelscombinedataonfrugivore movementpatternsandseedretentiontimes.Icollecteddataonkererudailymovement patternsbyradiotracking24individualkereruintheTaranakiandCanterburyregionsof NewZealand.Kereruweretrackedforatotalof43trackingdaysduringthepeakfruiting season.Ifollowedeachindividualcontinuouslyforuptoeightandahalfhours,recording kereruresidencetimesandlocationsvisited. Kereruexhibitedsedentarybehaviour,withameanresidencetimeof32(±39) minutesbetweenflights.Thelongesttimerecordedatonelocationwasfiveandaquarter hours.Kererumovementswerehighlyvariable,withameanflightdistanceof77(±159) mandrangingupto1,457minasingleflight. Iestimatedkereruseeddispersaldistancesbycombiningtheradiotracking movementdatawithseedretentiontimesfor Beilschmiedia tawa (tawa), Vitex lucens

28

(puriri),and Pseudopanax arboreus (fivefinger).Kererudispersed66–87%ofingested seedsawayfromtheparenttree.Estimatedmeanseeddispersaldistancesfortawa,puriri, andfivefingerwere95,98,and61mrespectively.Themaximumdispersaldistancewas 1,469mforallspecies.Seeddispersalkernelsestimatedforallthreespecieswereright skewedandleptokurticinshape,withbetween79–88%ofseedsdispersedwithin100mof thesourceandasmallnumberoflongdistancedispersalevents.

3.2 Introduction

Thespatialdistributionofseedsisfundamentallyimportantintheecologyandevolutionof plants.Seeddepositionpatternscaninfluenceindividualsurvivalprospects(e.g.Howe et al. 1985;Wenny2000),communitycomposition(Christian2001),geneflowandgenetic structure(Gibson&Wheelwright1995;Hamilton1999),metapopulationdynamics (Purves&Dushoff2005),andcolonisationrates(Clarketal.1998b). Difficultyinquantifyingthespatialdistributionofseedshassignificantlyhindered progressinseeddispersalresearch.Traditionalmethodssuchastheuseofseedtrapsor transectstendtounderestimateseeddispersaldistancesbymeasuringtothenearestadult plant,whichisnotnecessarilytheparent(Godoy&Jordano2001).Inaddition,studies usingthesemethodsaregenerallyunabletodetectlongdistancedispersaleventsdueto theirrarityandissuesofscale(Nathanetal.2003).Recentlydevelopedmolecular techniquescanovercometheselimitations,bothquantifyinglocaldispersalandproviding anestimateoflongdistancedispersal(Godoy&Jordano2001).However,these techniquesrequirethedevelopmentofmolecularmarkersandthemappingandgenetic identificationofeveryreproductiveadultinthepopulation(Godoy&Jordano2001). Modellingapproacheshavealsobeenusedtoquantifyseeddepositionpatterns. Phenomenologicalmodelsfitamathematicalfunctiontoobserveddata,describing dispersalpatternsbutignoringdispersalprocesses(Nathanetal.2003).Mechanistic modelscombinedataontraitsofbothplantsandtheirdispersalagentstoestimatethe magnitudeandfrequencyofseeddispersaldistances(Nathan&MullerLandau2000; Nathanetal.2003).Forvertebratedispersedplants,seeddepositionpatternsresult primarilyfromthemovementandbehaviourofanimaldispersers(Westcottetal.2005). MechanisticmodellingwasfirstusedforvertebratedispersedseedsbyMurray(1988)and hassincebeenrefinedbysubsequentauthors(Sunetal.1997;Holbrook&Smith2000; Westcott&Graham2000;Westcottetal.2005;Russoetal.2006).Oneoftheadvantages

29 ofmechanisticmodelsisthattheycanhelpdeterminethekeyfactorsinfluencingthe dispersalprocess(Nathan&MullerLandau2000;Westcottetal.2005).Unlike phenomenologicalmodels,mechanisticmodelscanpredictdispersaldistances independentlyoftheobserveddata(Nathanetal.2003). Iusedamechanisticmodellingapproachtoestimateseeddispersaldistancesforan importantNewZealandfrugivore,theNewZealandpigeon(kereru, Hemiphaga novaeseelandiae ,Columbidae).FollowinghumanarrivalinNewZealand,anumberof largebodiedbirdsweredriventoextinction(Holdawayetal.2001).Kereruarevirtually theonlyremainingdisperseroflargeseededplantsinNewZealand(McEwen1978;Clout &Hay1989).Iaskedthefollowingquestions: 1. Doeskereruforagingactivityvarythroughouttheday? 2. Whatisthedistributionofkereruresidencetimes? 3. Dokereruresidencetimesdifferdependingontimeofday? 4. Whatisthedistributionofkereruflightdistanceswithinaday? 5. Dokereruresidencetimesduringforagingdifferamongfleshyfruitedplant species? 6. Whatistheseeddispersalkernelgeneratedbykereru? 7. Doestheseeddispersalkerneldifferamongplantspecies? 8. Doesseeddispersaldistanceincreasewithincreasingseedsizeamongplant species?

3.3 Methods

3.3.1 Study species

Thekereruisalarge(c.650g;Cloutetal.1995b)pigeonthateatsonlyfruits,flowers,and (whenfruitisscarce)(McEwen1978;Clout&Hay1989).Kereruswallowfruits wholeanddefecatetheseedsintact.Althoughregurgitationiscommonformanyavian frugivores(Levey1986),ithasbeenreportedonlytwiceforkereru(McEwen1978; Wottonetal.inpress).Kereruconsumefruitsofatleast70differentplantspecies(Clout& Hay1989),acrossawiderangeoffruitsizes.Kereruarecapableofflyinglongdistances andtendtomigrateseasonally,oftenfollowingsourcesofpreferredfruit(Clout et al. 1986;Clout et al. 1991).AlthoughkereruarewidespreadthroughoutNewZealand,they

30 arethreatenedbyhabitatloss,predationbyintroducedmammalianpests,andillegal hunting(McEwen1978;Cloutetal.1995a;Cloutetal.1995b). Imodelledseeddispersaldistancesforthreefruitspecieseatenbykereru:tawa (Beilschmiedia tawa ,Lauraceae),puriri( Vitex lucens ,Verbenaceae),andfivefinger (Pseudopanax arboreus ,Araliaceae).PlantnamesfollowPooleandAdams(1990).Tawa isacanopytreeupto30mtall,foundfromnorthernNewZealandtoasfarsouthas Kaikoura(Poole&Adams1990).Tawahaslargefruitsmeasuring15x25mm(Wotton& Ladleyinpress),whichareimportantinthedietofkereru(McEwen1978).Tawafruits containasinglelargeseedweighing2.0g(meanairdriedweight;DMWunpublished data)andmeasuring12x24mm(Wotton&Ladleyinpress). Puririisacanopytreeupto20mtallfoundinnorthernNewZealandasfarsouth asTaranaki,withlarge,sphericalfruitsaround20mmindiameter(Poole&Adams1990). Thedispersalunitofpuriri(forconveniencehereafterreferredtoasaseed)consistsof betweenonetofourseedsenclosedinawoodyendocarp(Godley1971),whichremains intactafteringestion(Webb&Simpson2001).Puririfruitsarealsoanimportantfooditem forkereruandseedsweigh0.67g(meanairdriedweight,DMWunpublisheddata). Fivefingerisasmalltreereaching8m,foundthroughoutNewZealand.The compressedfruitsoffivefingerare6–8mmindiameter(Poole&Adams1990)andcontain asinglesmallseedweighing0.0063g(meanairdriedweight,DMWunpublisheddata).

3.3.2 Study sites

Thisstudywasreplicatedattwosites,intheTaranakiandCanterburyregionsofNew Zealand,fromJanuarytoApril2006.StudysitesinTaranakiwerelocatedinNew Plymouth(39°04′S174°05′E)atPukekuraParkandsurroundingurbanareas(withboth nativeforestandintroducedvegetation),andinsmallnativeforestreservesinandnear NewPlymouthsurroundedbyanurbanorruralmatrix.Taranakisitesrangedinaltitude from14–176m. CanterburysiteswerelocatedonBanksPeninsulaatHinewaiReserve(43°50′S 173°03′S)andadjacentfarmland,andinthenearbysettlementofAkaroa(43°49′S172° 58′E).Hinewaiisa1,050hanaturereservedominatedbyscrubandregeneratingnative forest,andissurroundedbyfarmlandwithsmallnativeforestremnants.Akaroasiteswere locatedbothinurbanAkaroaandinanearbynativeforestfragment.Canterburysites rangedinaltitudefromsealevelto806m.

31

3.3.3 Radio-tracking

Iradiotracked13kereruinTaranaki(7femalesand6males)and11individualsin Canterbury(fivefemales,threemales,andthreeofunknownsex).KereruinTaranakiwere fittedwithSirtrackradiotransmittersbetweenAugust2004andSeptember2005bythe DepartmentofConservation(R.G.Powlesland,personalcommunication).Kereruin CanterburywerecapturedinFebruary2004atHinewaiReserveandtransmittersattached byDepartmentofConservationandLincolnUniversity(Campbell2006).Itrackednineof theCanterburykereruatHinewaiReserveandonadjacentproperties,andtwoinAkaroa. Imadetwotripstoeachregion,withatotalof25trackingsessionsinTaranaki duringJanuaryandMarch2006,and18trackingsessionsinCanterburyduringFebruary andlateMarchtoearlyApril2006.Thesetimescoincidedwiththepeakavailabilityofripe fruit.Eachkereruwasfollowedforonetothreedaysintotalandnotmorethantwice duringeachtrip.Itrackedonlythosekereruthatwerenotnestingatthetimeofthestudy. IfollowedkererucontinuouslyusingSirtrackTR4andR1000receiversand160 MHzfoldingYagiantennas.Itrackedkereruforuptoeightandahalfhoursbetweenthe hoursof8amand5.30pm.Irecordedeachlocationatwhichanindividualwasfound throughouttheday,usingaGarmonEtrexGlobalPositioningSystem(GPS)unitwhere possible.WhereaGPSreadingwasnotpossible(e.g.duetotheterrainordenseforest canopy)Irecordedlocationsusingacompassbearingandanestimateddistancefroma nearbyGPSwaypointorfrom1:50,000NZMS260topographicalmaps.Tolimitobserver interferencewithkererubehaviour,Iusedradiotransmittersignalstrengthandbinoculars toconfirmeachlocationfrom>10mawaywherepossible.ItookGPSlocationreadings afterthekereru’sdeparturewhereobserverproximitywaslikelytocausedisturbance.At eachlocationIalsorecorded(wherepossible)arrivalanddeparturetimes,kereruactivity, plantspeciesoccupied,andthenumberandspeciesofanyfruitsconsumed.

3.3.4 Statistical analysis

Icalculatedkereruresidencetimesbysubtractingfromthearrivaltimeateachlocationthe timeofdeparturefromthepreviouslocation.Kererugenerallytooklessthanaminuteto flybetweenlocations.Forlocationsatthestartandendoftrackingsessions,Ionlyknew thekereruarrivalanddeparturetimeforthosesessionsthatstartedorendedwithaflight. ForremainingstartandendlocationsIwasunabletodetermineexactresidencetimes. However,firstand/orlastresidencetimessometimescontributedasignificantproportion tothedurationofatrackingsession.Forexample,onekererustayedatthesamelocation

32 fortheentireperiodofafivehourtrackingsession.Toincludethisimportantdata,I estimatedresidencestimesatthestartandendlocationsusingeitherthestartorendtimeof thetrackingsessionasthearrivalordeparturetime.Becauseoftheuncertaintyassociated withresidencetimeestimates,Ionlyincludedestimatedtimeslongerthanonehour,asthe errorinestimationshoulddecreasewithincreasingresidencetimeandlongerresidence timesmadeupagreaterproportionofatrackingsession.Priortoanalysis,Iremovedall residencetimeswhereobserverproximitymayhavestartledthekereruintoflight.Kereru residencetimedatawerelogtransformedtoimprovenormality.IthenusedANOVA,with birdasarandomeffect,totestfordifferencesinmeankereruresidencetimebetween TaranakiandCanterbury. Foreachkererulocationthedistancebetweenthislocationandeveryotherlocation inthesametrackingsession(i.e.forthesamebirdonthesameday)wascalculatedusing ArcInfoGISsoftware.Flightdistancedatawerelogtransformedtoimprovenormality beforetestingfordifferencesinmeanflightdistancebetweenregionsusingANOVA,with birdasarandomeffect.Itestedfordifferencesamongplantspeciesinkereruresidence timewhileforagingonfruitusingANOVA.AlldatawereanalysedusingRversion2.1.1 (RDevelopmentCoreTeam2005).

3.3.5 Model structure

Aseedshadowdescribesdepositionpatternsrelativetoparentplantsandother conspecificsandisafunctionofboththedistanceandthedirectionofseeddispersal (Janzen1970;Godoy&Jordano2001).Aseeddispersalkernel(alsoreferredtoasa dispersalcurve)isaonedimensionalprobabilitydistributionofdispersaldistances (Skarpaasetal.2005).Idevelopedamechanisticseeddispersalmodeltoestimatekereru dispersalkernelsfortawa,puriri,andfivefinger.ThemodelwaswrittenintheSlanguage usingRversion2.1.1(AppendixI;RDevelopmentCoreTeam2005).Seedretentiontimes weresimulatedbyrandomlysampling100seedretentiontimesfromanormaldistribution, usingthemeanandstandarddeviationfromempiricaldataforeachplantspecies(tawa= 180.8±100.3,puriri=108.6±57.9,andfivefinger=37.4±9.9minutes;Wottonetal.,in press). Themodelsimulatedingestionofthese100seeds(withretentiontimesgenerated asabove)ateachminuteofeachtrackingsession.Usingthelocationofthebirdatthetime ofingestion,andtheretentiontimeforthatseed,themodeldeterminedthelocationofthe kereruatthetimeofdefecationandthedistancefromtheingestionpointforeachseed.

33

Themodelrepeatedtheprocedureforeachof39trackingsessions.AlthoughIrecorded43 trackingsessions,fourtrackingsessionswereexcluded,threeduetomissingdata,andone becauseitwasshorterthanthemaximumseedretentiontime. Themodelwasunabletocalculatedispersaldistanceswhereaseedretentiontime ranpasttheendofthetrackingsession.Oneoptionwastostopthesimulationwhenthe timeremaininginthetrackingsessionwaslessthanthelongestseedretentiontime. However,thiswouldhaveexcludedalargenumberofdispersaldistances,especiallyfrom timeslaterintheday.Ithereforedecidedtoallowallpossibledispersaldistancestobe calculated.Thismeansthatdispersaldistanceswerebiasedtowardsshorterseedretention times.

3.4 Results

3.4.1 Kereru behaviour

Iobservedkererufeedingonfruitsof19plantspecieswhileradiotracking,andforaging occurredthroughouttheday(Figure3.1).KereruinCanterburyalsofedonleavesof kowhai( Sophora microphylla ),ribbonwood( Plagianthus regius ),andmahoe( Melicytus ramiflorus ).Whileforagingforfruits,kereruspentmorethanhalfofthetimefeedingon puriri,tawaandcabbagetree( australis ),whichcontributed21.6%,20.6%,and 11.9%tofruitforagingtimerespectively.Theremainingtimewasspentfeedingonfruits oftreefuchsia( .8.7%),kawakawa( Macropiper excelsum ,7.8%), ngaio( ,7.7%),mahoe(6.0%),kahikatea( Dacrycarpus dacrydioides , 5.2%),miro( Prumnopitys ferruginea ,2.3%),cherrylaurel( Prunus caroliniana ,2.0%), rohutu( Lophomyrtus obcordata ,1.4%),horopito( Pseudowintera colorata ,1.2%),nikau ( sapida ,0.9%),fivefinger( Pseudopanax arboreus ,0.7%),kaikomako ( ,0.7%),lancewood( Pseudopanax crassifolius ,0.6%),kohekohe (Dysoxylum spectabile ,0.3%),poroporo( Solanum sp. ,0.3%),andtitoki( excelsus ,0.2%).Iobservedkererufeedingonfruitsofonlyonenonnativeplantspecies (cherrylaurel),eventhoughotherintroducedspeciesthatkereruhavebeenreportedtofeed onhadripefruitsatthestudysites(e.g.holly,Ilex aquifolium ;McEwen1978).

34 Proportion of time foraging 0.0 0.1 0.2 0.3 0.4 8 9 10 11 12 13 14 15 16 17 Start hour Figure 3.1Distributionofforagingeffortbykereruthroughouttheday.Timeofdaywas thehourduringwhichtheforagingboutcommenced.

35

Themeanoverallkereruresidencetimewas32(±39SD)minuteswithamedianof19 minutesandamaximumof315minutes(Figure3.2;allmeansreportedinthetextare untransformed).KereruinTaranakiweresignificantlymoresedentarythanthosein Canterbury,withmeanresidencetimesof37and27minutesrespectively(d.f.=22and 502,F=16.796,P<0.001).Kereruresidencetimesdidnotdifferdependingontimeof day(Figure3.3),whichdidnotappeartobeimportantandsowasignoredsubsequently. Irecorded528individualflightdistanceswhileradiotrackingkereru.Kereru movementsweregenerallyquitelocalisedduringthecourseoftheday(Figure3.4).The meanflightdistancewas77(±159)mwithamaximumobservedflightdistanceof1,457 m(Figure3.5).Flightdistanceswerehighlyrightskewedandleptokurticinshape,witha medianflightdistanceof32m.Therewasnosignificantdifferenceinmeanflightdistance betweenthetworegions(d.f.=22and504,F=0.177,P=0.678). Frequency 0 50 100 150 200

0 30 60 90 120 150 180 210 240 270 300 Residence time (minutes) Figure 3.2Frequencydistributionofobservedkereruresidencetimes.

36 Log residence time(minutes) 1.5 2.0 2.5 3.0 3.5

8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 Time of day Figure 3.3Kererulogmeanresidencetimeasafunctionoftimeofday(takenasthe midpointbetweenarrivalanddeparturetimes).Errorbarsare95%confidenceintervals.

37

6 1

8 9 2

7 4 3 Northing (m)

5

10 6236950 6237000 6237050 6237100 6237150 6237200

2604350 2604400 2604450 2604500 2604550 2604600 2604650 2604700 Easting (m) Figure 3.4Exampleofakereru'smovementpatternduringoneday.Itrackedthis individualcontinuouslyfor441minuteson5March2006,inTaranaki.

38 Frequency 0 50 100 150

0 500 1000 1500 Flight distance (m) Figure 3.5Frequencydistributionofobservedkereruflightdistances.

39

3.4.2 Dispersal distances

Themodelestimatedthatkererudispersed66–87%ofingestedseedsawayfromtheparent tree.Mostseedsweredepositedwithin100mofthesourcewithlessthan1%ofseeds dispersedgreaterthan1km(Table3.1).Themaximumdispersaldistanceestimatedbythe modelforallspecies(1,469m)wasconstrainedbythemaximumdistancebetweentwo pointsvisitedbyanindividualkereruduringradiotracking.Fivefingerdispersaldistances wereshortedthanpuririandtawa,withagreaterproportionofseedsdispersedbeneaththe parent(Figure3.6,Table3.1). Table 3.1Kereruseeddispersaldistances(m)estimatedusingamechanisticmodelbased onempiricaldataforkererumovementsandseedretentiontimes.N=numberofseed dispersal“events”simulatedbythemodel,seetextfordetails. Seedsdispersed(%) Species Mean(±1sd) Median 0m >100m >1,000m N Tawa 95(±171) 42 12.7 21.0 0.68 754,351 Puriri 98(±186) 41 13.4 20.5 0.96 999,061 Fivefinger 61(±140) 22 34.3 12.4 0.39 1,299,670

40

(a) Probability 0 0.05 0.1 0.15 0.2 0.25 0.3

0 500 1000 1500 Distance dispersed (m) (b) Probability 0 0.05 0.1 0.15 0.2 0.25 0.3

0 500 1000 1500 Distance dispersed (m) (c) Probability 0 0.1 0.2 0.3 0.4 0.5

0 500 1000 1500 Distance dispersed (m) Figure 3.6Estimatedkereruseeddispersalkernelsfor(a)tawa,Beilschmiedia tawa ;(b) puriri,Vitex lucens ;and(c)fivefinger,Pseudopanax arboreus .Dispersalkernelswere generatedusingamechanisticmodelthatincorporatedempiricaldataforindividualkereru movementsandseedretentiontimes.Notedifferencesintheyaxisscales.

41

Residencetimewhilefeedingonfruitdifferedsignificantlyamongplantspecies(d.f.=4, F=2.74,P=0.0361;Figure3.7).Kereruresidencetimeswereshortestwhilefeedingon cabbagetree(mean±1s.d.=15±8.29minutes).Kawakawa,ngaio,andpuririhadsimilar residencetimes(25±26.96,24±32.47,and29±18.11minutesrespectively),whileI recordedthelongestresidencetimeswhenkereruwereforagingontawa(40±21.91 minutes). Table 3.2Kereruresidencetime(minutes)indifferentplantspecieswhileforagingfor fruit.Onlythosespecieswithtenormoreforagingobservationsareshown(N=numberof foragingobservations).Therewasasignificantdifferenceinmeanresidencetimeamong fruitspecies(P=0.0361). Fruitspecies Scientificname Mean SD Min. Max. N Cabbagetree 15 8.29 1 38 19 Kawakawa Macropiper excelsum 25 26.96 3 91 10 Ngaio Myoporum laetum 24 32.47 6 118 11 Puriri Vitex lucens 29 18.11 4 59 19 Tawa Beilschmiedia tawa 40 21.91 6 75 14

42

3.5 Discussion

3.5.1 Kereru behaviour

Despitetheirabilitytoflylongdistances,kereruwererelativelysedentaryonadailybasis, oftenrestingforlongperiodsbetweenflights.Kereruresidencetimes(mean15–40 minutesanduptofiveandaquarterhours)aregenerallymuchlongerthanreportedfor otheravianfrugivores(Pratt&Stiles1983;Murray1988;Wheelwright1991;Sunetal. 1997).MeanresidencetimesforthreebirdspeciesinCostaRicancloudforestrangedfrom 7–12minutes(Murray1988).Wheelwright(1991)reportedmedianresidencetimesin fruitingtreesoffrugivorousbirdsinCostaRicarangingfrom1–9minutes.Toucanets occasionallystayeduptofourhoursinafruitingtree,andquetzalsuptoonehour,butthe maximumresidencetimeforotherbirdswas40minutes(Wheelwright1991).Inastudyof tenfrugivorousbirdspecies,meanresidencetimesinfruitingtreesrangedfrom4.5–31.1 minutes(Pratt&Stiles1983). Longresidencetimesinkererumayresultinpartfromslowfruitdigestionrates (Wottonetal.inpress).Thisissupportedbyevidenceforlongeravianresidencetimes afterfeedingonlauraceousspecieswithlargefruitsandlongerprocessingtimes (Wheelwright1991).Unlikemanyfrugivores(Levey1987),kererugenerallydonot regurgitateseeds(McEwen1978),andcantakeuptofiveandahalfhourstovoidlarge seedssuchastawa(Wottonetal.inpress).Becausekereruaregutlimited(Wottonetal.in press),longresidencetimesprobablyminimiseenergyexpenditurewhilewaitingforspace tobecreatedinthegut(Wheelwright1991),andalsoincreasethechanceofeliminating theheavyseed“ballast”beforeflight(Levey&Grajal1991). Longresidencetimesmayalsodecreasepredationrisk,becausekereruusuallyrest amongorunderthecanopy,hiddenfromavianpredators(Bell1996).Priortothehuman introductionofmammalianpredators,kereruhadonlyavianpredators,includingtheNew Zealandfalcon( Falco novaeseelandiae )andthegiantNewZealandharrierhawk( Circus eylesi ),whichisnowextinct(R.N.Holdaway,personalcommunication).Howe(1979) predictedthatforagingbehaviouroffrugivorousbirdswillbeinfluencedbypredationrisk. Somestudiessupportthisprediction,showingthatlargerbirdsvisitfruitingplantsfor longerthansmallpasserines,whichhaveahigherpredationriskandusuallyremainonly longenoughtofeed(Pratt&Stiles1983;Green1993).Kereruusuallyleavenikauand

43 cabbagetreesshortlyafterfeeding,andtheseplantsgenerallylackconcealedperches(Bell 1996). Longseedretentiontimesincreasethepotentialseeddispersalrangeofkereru. Seedsizeprobablyaffectsdispersaldistancestoo,askereruseedretentiontimesare stronglypositivelycorrelatedwithseedsize(Wottonetal.inpress).Rapiddigestionrates infivefingerreducedboththeproportionofseedsdispersedawayfromtheparentandthe averageseeddispersaldistance(Table3.1).Nevertheless,themaximumdispersaldistance (1,469m)wasthesameforallspecies,asestimateddispersaldistanceswereconstrained bythemaximumdistancethatIrecordedbetweentwolocationswithinatrackingsession. Occasionallongerdispersaldistances,especiallyforspeciessuchastawathathavelong retentiontimes,areprobable. Kereruarecapableofflyingconsiderabledistances,migratingkilometresortensof kilometresonaseasonalbasis,oftentrackingfruitavailability(Clout et al. 1986;Clout et al. 1991).Harper(2003)observedkererucrossingFoveauxStraitbetweenSouthand StewartIslands,anestimatedflightof32kmwithatleast25kmofthisoversea.Mystudy wastooshortindurationtodetectsuchlongdistancemovements,whichappeartobe infrequent.Inaddition,Iradiotrackedkereruonfoot.InTaranaki,somekereruthatwere radiotrackedinNewPlymouthduringthefirsttripwereunabletobelocatedduringthe secondvisit.DepartmentofConservationresearcherssubsequentlydetectedthemusing aerialsurveysinTaranakiNationalPark,atleast15kmfromNewPlymouth.Kereru probablymigratedtofeedonmirofruits,whicharecommoninlowlandareasofthe NationalParkandwereripeningatthetime(SarahKivi,personalcommunication,April 2006).Kereruusuallydefecatewhileperchingandonlyoccasionallywhileinflight (McEwen1978).Therefore,kereruwouldtendtovoidseedseitherpriortoalongflightor afterreachinganewdestination,althoughthechanceofdefecationinflightmightbe expectedtoincreasewiththedurationoftheflight.

3.5.2 Dispersal distances

Theestimatesofkererudispersalkernelswereallrelativelysimilarinshape,regardlessof treespecies.Kererudepositedmanyseedsclosetothesource,witharapiddeclineinseed densityawayfromthe“parent”andlessthan1%ofseedsdispersedgreaterthan1,000m. Theshapeofkererudispersalkernelssuggestsaleptokurticdistribution.Dispersalkernels estimatedforhornbillsresembledaPoissondistribution(Holbrook&Smith2000),while thoseformonkeysbestfitamixturedistribution(Russoetal.2006).

44

Myestimatesofkererudispersaldistancesarecomparabletodispersaldistancesby spidermonkeys(Russoetal.2006)andcassowarys(Westcottetal.2005).Holbrookand Smith(2000)usedamechanisticmodeltoestimatemaximumseeddispersaldistancesby hornbillsofnearly7km.Estimatesforturacomeanseeddispersaldistancesweregreater thanforkereru,butmaximumdispersaldistanceestimateswerenotreported(Sunetal. 1997).WestcottandGraham(2000)estimatedthatasmallflycatcherdispersedseedsupto 100m,withmeandistancesof21–46m.Kererudispersed66–87%ofingestedseedsaway fromtheparenttree.Otherstudiesgenerallyhavenotreportedtheproportionofingested seedsdepositedbydispersersbeneaththeparentplant.However,dispersersof Prunus mahaleb deposited18–24%ofseedsbeneaththecanopiesofadultconspecifics(Jordanoet al.2007).Forsmalltomediumsizedbirds,17–19%ofseedsunder P. mahaleb canopies camefromanotherpopulation,whileformammalsnearly80%ofseedsunderconspecifics wereimmigrants(Jordanoetal.2007). Theforagingbehaviourofkererudiffersamongplantspecies(Bell1996,Figure 3.7)andishighlylikelytoinfluenceseeddispersalkernels.Thelengthoftimekererustay inafruitingtreeisprobablyinfluencedtoalargeextentbytreearchitecture.Speciessuch ascabbagetreeandnikaugenerallydonotprovideeasyperchingsitesforkereru.Onmore thanoneoccasionIobservedkererulosingtheirbalanceandfallingwhilefeedingon cabbagetreefruits. Kererumaybemoreeffectivedispersersforthosespecieswheredeparturetakes placesoonafterfeeding.Forexample,whenfeedingoncabbagetreefruits,kereruusually remainedinthesametreeforaround15minutes.Thiscontraststothosespecieswhichare favouredasrestingsites,suchastawawherethemeanresidencetimewhenforagingwas 40minutes.Bell(1996)showedthatkereruweremostlikelytodepartsoonafterfeedingin nikauandkahikatea,andleastlikelyinpuriri.Toimprovetheaccuracyoftheestimated dispersalkernel,themodelcouldsimulatefruitingestiononlyattimescorrespondingto whenkereruwereactuallyobservedinthatplantspecies.Forexample,dispersaldistances maybegreaterthanestimatedinasmallseededspeciessuchasfivefingerifresidence timesareshorterthanaverage.Iwasunabletotestwhetherthevariationinresidencetime amongfruitingspeciesinfluencesthedispersalkernel,duetoinsufficientreplicationof visitstofruitingspeciesand/orlackofseedretentiontimedata.Thesedifferencesinkereru behaviouraremostlikelytoaffectdispersalofsmallseededspecies,forwhichalternative seeddispersersareavailable.Thecurrentmodelprovidesagoodapproximationforthe largeseededspeciestawaandpuriri,forwhichkereruarevirtuallythesoledispersers.

45

3.5.3 Conservation implications

Kererudensitieshavedeclinedsignificantlysincethearrivalofhumans(Clout&Hay 1989).Changesinkereruabundancecouldaffectboththeprobabilityofdispersalandseed dispersaldistances.McConkeyandDrake(2006)demonstratedthatflyingfoxesinTonga onlyprovideeffectivedispersalathighbatdensities,whenaggressiveinteractionsoccur. Atlowbatdensitiesflyingfoxesdispersedlessthan1%ofseedsawayfromparents. Althoughtheconsequencesareunlikelytobeasextremeinthisstudysystem,kereru behaviourappearstochangewhenbirddensitiesarehigh.Kereruoftendefendfruiting treesoffavouredspeciessuchasmiro( Prumnopitys ferruginea )andkahikatea,whichmay causeindividualstomoveelsewherewhendeniedaccesstofruitlocally(Cloutetal.1991). Thisislikelytoincreasebothtotaldispersal,withshorterresidencetimesinfruitingtrees, andtheprobabilityoflongdistancedispersal,withmorefrequentmovementsbetween forestpatches. Landscapestructuremayalsoinfluenceseeddispersaldistances.MuchofNew Zealand’sforesthabitatwasdestroyedbybothMaoriandEuropeansettlers,creatinga mosaicofforestremnantsinterspersedwithagriculturalandurbanareas.Iconductedthis studyinfragmentedhabitats,inwhichkererumovementpatternsmaydiffercomparedto thoseoccurringincontinuousforest.However,foodsupplymayhaveagreaterinfluence onmovementpatternsaskererureadilyflybetweenforestpatches.Theconsequencesof forestfragmentationforgeneticstructureandgeneflowinlargeseededspeciesinNew Zealandareunknown,butmovementofkererubetweenforestpatchesmaybeessentialin maintainingfragmentedmetapopulationsoflargeseededtrees.

46

47 Chapter 4. Effects of kereru gut passage on Beilschmiedia tarairi seed germination

Kererudefecatedtaraire( Beilschmiedia tarairi )seed.

4.1 Abstract

Itestedtheeffectsofgutpassage(scarification)andpulpremoval(deinhibition)onseed germinationofthefleshyfruitedtree Beilschmiedia tarairi .Iconductedagermination experimentundernaturalfieldconditionsusinghandcleanedseeds,seedsfreshly defecatedbywildkereru(NewZealandpigeon, Hemiphaga novaeseelandiae ),andwhole fruits.Seedtreatmenthadasignificanteffectongerminationpercentage,whichwashigher forkererudefecatedseeds(mean96%)thanhandcleanedseeds(83%)andseedsinwhole fruits(75%).Thescarificationeffectwasgreaterthanthedeinhibitioneffect,whichwas notstatisticallysignificant.Kererudefecatedseedsalsogerminatedfasterthanhand cleanedseedsandseedsinwholefruits.

4.1.1 Introduction

Animalseeddisperserscaninfluencethefitnessofplantsbyaffectingthequantityand qualityofdispersal(Schupp1993).Thetreatmentofseedsindispersers’gutsisoneaspect ofseeddispersalquality(Schupp1993).Frugivorescanaffectgerminationsuccessby

48 threemechanisms:(1)thescarificationeffect—scarificationoftheseedcoat,whichmay enhancegerminationbyimprovingtheabsorptionofwaterandgasesbytheseed,ormay reducegerminationifphysicalorchemicaltreatmentoftheseedistoovigorous;(2)the deinhibitioneffect—removalofgerminationinhibitorscontainedinthefruitpulp;and(3) thefertilisationeffect—nourishmentoftheseedandseedlingfromfaecalmaterial defecatedwiththeseed(Traveset&Verdú2002;Robertsonetal.2006). Ingestionbydisperserscanenhancegerminationsuccess,althoughveryfewor perhapsnospecieshaveseedsthatabsolutelyrequiregutpassageinordertogerminate (Rick&Bowman1961;Traveset1998).However,fewstudieshavecomparedgermination ofwholefruitsandingestedseeds(thetwonaturallyoccurringseedfates),andmost studiesarecarriedoutunderartificialconditions(Kellyetal.2004;Samuels&Levey 2005;Robertsonetal.2006).Therefore,weknowlittleaboutthelikelyconsequencesin thefieldofdispersalfailure(Robertsonetal.2006). FollowingthearrivalofhumanstoNewZealand,anumberoflargebodiedbirds weredriventoextinction(Holdawayetal.2001).Otherpreviouslywidespreadbirdspecies wererestrictedtoatinyfractionoftheirformerranges,andthedensityofmostremaining specieswasdrasticallyreduced(Clout&Hay1989).Oneoftheconsequencesofthis devastationofNewZealand’savianfaunaisthatanumberoflargeseededspeciesnow relyonasinglefrugivore,theNewZealandpigeon(kereru, Hemiphaga novaeseelandiae ), fortheirdispersal(Clout&Hay1989).AlthoughkereruarewidespreadthroughoutNew Zealandandrelativelycommon,theyarethreatenedbyhabitatloss,predationby introducedmammalianpests,andillegalhunting(McEwen1978;Cloutetal.1995a;Clout etal.1995b).Giventheapparentvulnerabilityoftheselargeseededspeciestodispersal failure,Iinvestigatedwhetherkererugutpassageandfruitpulpremovalarebeneficialto germinationofthelargeseededtreetaraire( Beilschmiedia tarairi ),forwhichthekereruis theonlyextantbirdlargeenoughtoswallowitsfruits.Itestedthefollowinghypotheses: 1) Germinationsuccessishigherforhandcleanedseedsthanwholefruits(a deinhibitioneffectoccurs) 2) Germinationsuccessishigherforkererudefecatedseedsthanhandcleanedseeds (ascarificationeffectoccurs) Giventhatkereruareprimarilyfrugivorous(McEwen1978),andguidedbythemost commonresultsintheliterature(Traveset&Verdú2002;Samuels&Levey2005; Robertsonetal.2006),Ipredictedthatthetreatmentofseedsinthegutwaslikelytobe gentle,primarilyenhancinggerminationsuccessbyremovingpulpfromtheseed.Ididnot

49 testforafertilisationeffect,becausefaecalmaterialisvirtuallyabsentwhenkereru defecatelargeseeds(DMWpersonalobservation).

4.2 Methods

4.2.1 Study species and sites

KereruarelargefruitpigeonsendemictoNewZealandweighingaround650g(Cloutetal. 1995b).Theyareprimarilyfrugivorous,butalsoeatflowersandleaveswhenfruitsare scarce(McEwen1978).Kereruareanimportantseeddisperser,consumingfruitsofmore than70plantspecies.Kererugenerallyswallowfruitswholeanddefecatetheseedsintact (McEwen1978;Wottonetal.inpress). Taraireisalargeseededtreewithsingleseededfruitsmeasuring19x32mm (meandiameterxlength)andseedsmeasuring16x29mm(Wotton&Ladleyinpress). TaraireoccursincoastalandlowlandforestinnorthernNewZealandandfruitsare importantinthedietofkereru(McEwen1978).IconductedresearchatMtTigerBush, Whangarei(35°43′S,174°23′E)fromSeptembertoDecember2005.Thestudysitewas locatedina7haprivatelyownedblockthatformspartofthe267haMtTigerBush.The siteismainlytowai( Paratrophis banksii )dominantsecondarylowlandforest,rangingin altitudefrom140–270m.

4.2.2 Experimental design

Iconductedthegerminationexperimentinthefieldratherthanglasshouses,asrecent evidenceindicatesthatlaboratoryandgreenhousetrialsarelessrelevantandlesslikelyto detectactualdifferencesthanfieldtrials(Traveset&Verdú2002;Robertsonetal.2006).I usedarandomised,nestedblockexperimentaldesignwiththreelevelsofseedtreatment: handcleanedseeds,kererudefecatedseeds,andwholefruits.Iselectedfiveadulttaraire treeslocatedthroughoutthestudysite.AteachtreeIestablishedapairofplots,oneplot beneaththeadulttarairetreeandanother20maway.Irandomlyassignedthethreeseed treatmentstoeachexperimentalunitwithinaplot(tenplotsintotal). Icollectedripefallentarairefruitsandkererudefecatedseedsfromprivately ownedforestinWhangareinearbytothestudysite.Iusedonlywholefruitsthatwerefree frominsectattackandfreshlydefecatedseedsintheexperiment.Thehandcleanedand wholefruittreatmentswerealsousedaspartofalongtermseedfateexperimentandhad 20seedsorfruitsperexperimentalunit(seeChapter5fordetails).Iwasabletocollect

50 only70freshlydefecatedtaraireseeds;thereforethistreatmenthadsevenseedsforeach experimentalunit. TopreventseedsrollingawayIused7cmwidestripsoflexanpolycarbonate(1 mmthick)withtheendsstapledtogethertoconstruct20cmdiametertubes.Tubeswere insertedintothesoilapproximately1mapartwitharound5cmofthetuberemaining aboveground.Iplacedseedsinsidetubesandcoveredthemwithmammalproofcages constructedof5.8mmaperturestainlesssteelweldmesh.Cagesandtubesweresecuredto thegroundwithwirepegs.IsowedseedsinSeptember2005andcheckedtheexperiment monthly,recordinggerminationpercentageuntilallseedshadeithergerminatedorrotted. Ateachvisit,Iplacedanylitterfoundontopofthecageinsidethetubetominimisethe effectoflitterinterceptionbycages.

4.2.3 Statistical analysis

Ianalysedthegerminationdatausingabinomialgeneralisedlinearmixedmodelwitha logitlinkfunction.IfittedthemodelusingtheLaplacianapproximationtomaximum likelihood,withseedtreatmentasafixedeffectandplotsnestedwithintreesasrandom effects.Distancefromparentwasnotincludedasavariableinthemodel,asithadno effectontarairegerminationsuccessinaconcurrentseedfateexperiment(Chapter5).I carriedouttheanalysisusingthelme4packageinRversion2.4.1(RDevelopmentCore Team2006).

4.3 Results

Taraireseedsbegangerminatingwithinonemonthofsowing,andallseedshadeither germinatedorrottedwithinthreemonths.Seedtreatmenthadasignificanteffecton germinationsuccess(d.f.=2,SS=12.2098,MS=6.1049,deviance=24.98;Table4.1). Seedsdefecatedbykereruhadsignificantlyhighergerminationsuccess(mean±1s.d.= 95.7±9.6%)thanhandcleanedseeds(82.5±8.6%)andseedsinwholefruits(75±6.7%; Table4.1).Inotherwords,kererugutpassagehadasignificanteffectongermination successduetoseedscarification.Theeffectofpulpremoval(thedeinhibitioneffect,i.e. handcleanedversuswholefruits)wasnotstatisticallysignificant(Table4.1).Kereru defecatedseedsalsogerminatedfasterthanbothhandcleanedseedsandseedsinwhole fruits(Figure4.1).

51

Table 4.1Effectsofscarification(handcleanedvs.kererudefecatedseeds)and deinhibition(handcleanedseedsvs.wholefruits)ongerminationsuccessoftaraire (Beilschmiedia tarairi )seeds.Ianalyseddatausingabinomialgeneralisedlinearmixed modelwithalogitlinkfunction. estimate s.e. zvalue P intercept(handcleaned) 1.55 0.19 8.33 <0.001 defecated 2.00 0.75 2.67 0.008 wholefruits –0.45 0.25 –1.82 0.069 Cumulative germination (%) 0 20 40 60 80 100

Sep Oct Nov Dec

Figure 4.1Effectofseedtreatmentonmeangerminationspeedintaraire( Beilschmiedia tarairi ).Filledcircles=wholefruits,opencircles=handcleanedseeds,opentriangles= kererudefecatedseeds.

52

4.4 Discussion

Largeseededplantspeciesaremorevulnerabletodispersalfailure,asfewerfrugivoresare largeenoughtoswallowfruitsanddisperseseeds(Wheelwright1985;Clout&Hay1989; Kitamuraetal.2002).Oftheselargeseededspecies,thosethatrequireremovalofthefruit pulporseedscarificationinordertogerminatearemostlikelytobedependentonseed dispersalmutualisms(Kellyetal.2004).Therehavebeenmanytestsofthescarification effect,whichgenerallyenhancesgerminationinfleshyfruitedspecies(Traveset&Verdú 2002).However,fewstudieshaveincludedwholefruitsasatreatment,whichallowsthe deinhibitioneffect(andconsequentlythetotaleffectofgutpassageongermination success)tobetested(Samuels&Levey2005;Robertsonetal.2006).Previoustrialswith miro( Prumnopitys ferruginea )usingwholefruitsandkererudefecatedseedsshowedno differenceingerminationsuccessbetweenthetwotreatments,butthisplanthasespecially recalcitrantseedsthatcantakemorethan4yearstogerminate(Clout&Tilley1992). Inaddition,mostexperimentshavebeenconductedunderartificialconditions (Traveset&Verdú2002).Undernaturalfieldconditions,seedsareexposedtothe elementsandotherbiotathatcanenhanceleachingofpulpinhibitorsandbreakdownof thefruitpulp(Kellyetal.2004;Robertsonetal.2006).Somemicrobesthatoccurunder naturalconditionsenhancegerminationsuccess(Morpeth&Hall2000),whileotherskill theseedembryo(Titusetal.1990).Burrows(1996)reportedzerogerminationofkaraka seedswithinwholefruits,indicatingthisspeciescouldbedependentonseeddispersalin ordertogerminate.However,seedsweregerminatedinpetridishesinthelaboratory (Burrows1996);subsequenttrialsinthefieldshowthatkarakaseedsdogerminatein wholefruitswhenundernaturalconditions(Robertsonetal.2006,Chapter4).Taraire seedsdidnotrequirepulpremovalinordertogerminate,althoughkererugutpassage enhancedgerminationsuccess.Althoughkereruingestedseedsgerminatedfasterthan handcleanedseedsandwholefruits,thedifferenceisnotlikelytohaveasignificanteffect onlongtermsurvival. Someofthepotentialdrawbacksofusingnaturallydefecatedseedsinclude unknownseedage,limitedavailability,andnonrandomselectionoffruitsbyfrugivores (Robertsonetal.2006).Iusedonlyfreshlydefecatedseedsandfruitsthathadnosignof decayorinsectattackintheexperiment.However,becausefreshlydefecatedseedswere relativelyscarce,seeddensitydifferedamongthetreatments.Resultsfromthisexperiment needtobeinterpretedinlightoffindingsfromtheseedfateexperiment(Chapter5),where

53 wholefruitshadgreatergerminationsuccessathighdensity(75%,20seeds)thanatlow density(65%,4seeds),whilethereversewastrueforhandcleanedseeds(82.5%athigh densityand97.5%atlowdensity).Thus,densitymaybeconfoundedwithseedtreatment inthisexperiment,duetofewerdefecatedseedsthanhandcleanedseedsorwholefruits. Theeffectofseeddensityongerminationsuccessofdefecatedseedsisunknown,butmay besimilartohandcleanedfruits. Inthisexperiment,thescarificationeffectwasgreaterthanthedeinhibitioneffect, whichwasnotstatisticallysignificant.Nevertheless,kererugutpassageappearstohave enhancedgerminationsuccesscomparedtowholefruits.Althoughthemechanism (deinhibitionand/orscarification)wasunclearinthisexperiment,theseedfateexperiment demonstratedthatfruitpulpremovalincreasedgerminationsuccess.Inexperiments conductedunderartificialconditions,fruitpulpremovalconsistentlyincreasedtaraire germinationsuccess,whileseedscarification(afterkererugutpassage)increased germinationsuccessinonestudybutnotintheother(Myers1984;Bell1996).Ideallythis experimentshouldberepeatedinthefieldusingequalseeddensitiesinalltreatmentsto confirmwhetherkererugutpassageenhancestarairegerminationsuccessthroughseed scarification. Kererugutpassageandfruitpulpremovalbothenhancedgerminationspeed (Figure4.1).Althoughtheincreasewasrelativelysmall(1–2months)itmaybeimportant forenablingtaraireseedlingstoestablishpriortodrysummerconditions.However,early germinationisnotalwaysbeneficial(Robertsonetal.2006).Insomeplantspecies, delayedgerminationinwholefruitsmaybeastrategyfordispersingseedsinbothspace andtime(Robertsonetal.2006). Defecatedseedsusedinthisexperimentmayhavebeenanonrandomsample,if kereruselectedfruitsnonrandomlyfromthoseavailable(Robertsonetal.2006).Fruit selectionmaydifferdependingonfactorssuchassize(Wotton&Ladleyinpress),degree ofripeness,presenceofpathogens,orinsectinfestation.Wheredefecatedseedshavea greatergerminationsuccessthanhandcleanedseeds,dispersalwillstillbebeneficialto plantswhethertheincreaseisduetofrugivoreselectionofhigherviabilityseedsorto scarification.BecauseIwasnotabletocollecttarairefruitsdirectlyfromthecanopy, wholefruitandhandcleanedseedtreatmentswerealsononrandomsamples.Interestingly, Myers(1984)testedgerminationfromintacttarairefruitscollectedfromthegroundand fromthecanopyintwoconsecutiveyearsandinbothyearsfoundlowergerminationfor thosecollectedfromtheground;however,shethoughtthiswasrelatedtoinsectpredation

54 andfallenfruitsdryingout,whichItriedtominimisebyonlycollectingapparently uninfested,freshlyfallenfruits.Randomlyselectedfruitscouldbefedtocaptivekereruto controlforanyeffectsoffruitselectionbykereru. Nevertheless,thisstudysuggeststhatdispersalfailurewillhavesignificant detrimentaleffectsonthegerminationoftaraireseeds.Unusually,inthiscasethemajor benefitofhandlingbyfrugivoresseemstobefromthescarificationeffectratherthanthe deinhibitioneffect(c.f.Robertsonetal.2006).However,theoverallmagnitudeofthe effect(aonefifthreductioningermination,from96%to75%ofseeds)ismuchsmaller thanthatpostulatedforotherlargeseededspeciesonthebasisoflaboratorygermination trials(Kellyetal.2004).

55 Chapter 5. Consequences of dispersal failure for large-seeded trees

WenderholmRegionalPark,northofAuckland.

5.1 Abstract

Whenanimalseeddispersersarelostandtheirservicesarenotreplaced,seedsremain undispersedandfallbeneaththeparentcanopy(“dispersalfailure”).Largeseededplants aremorepronetodispersalfailure,asfewerspeciesofanimalsarecapableofdispersing theseeds,andhumanimpactsdecimatelargefrugivoresmoreoftenthansmallfrugivores. FollowingthearrivalofhumansinNewZealand,anumberoflargefrugivorousbirdswere driventoextinction.TheNewZealandpigeon(kereru, Hemiphaga novaeseelandiae , Columbidae)isthesoleremainingwidespreadfrugivorethatiscapableofswallowingand dispersinglargeseededspecies.Thedispersaloflargeseededtreesisunderthreatas kererunumbershavedeclinedduetoillegalhunting,habitatloss,andintroduced mammalianpredators. Iinvestigatedtheconsequencesofdispersalfailureforthelargeseededtreespecies taraire (Beilschmiedia tarairi ,Lauraceae)andkaraka( Corynocarpus laevigatus , Corynocarpaceae)inNewZealand.Icomparedseedpredation,germination,seedling

56 heightandsurvivalfordispersedandundispersedseedsforuptotwoyearsinthefield.I comparedthefateofseedsunderconspecificadults(“parents”)and20mawayfromthe parent,wholefruitsvs.handcleanedseeds,seedsathighvs.lowdensity,andseeds enclosedinmammalproofcagesvs.uncagedseedsinafullfactorialdesign.Ianalysed dataateachrecruitmentstageusinggeneralisedlinearmixedeffectsmodels. Taraireseedpredationwassignificantlyhigherforwholefruits(mean27%)than handcleanedseeds(14%)andforuncagedseeds(30%)comparedtocagedseeds(10%). Forunpredatedtaraireseeds,fruitpulpremovalincreasedgerminationsuccessfrom84% to95%.Fortaraireseedsthatgerminated,seedlingsurvivalafteroneyearwaslowerfor thosefromwholefruits(7%)thanfromhandcleanedseeds(15%),atlowdensity(7%) thanhighdensity(15%),underneathparents(7%)thanaway(16%),andoutsidecages (10%)comparedtoinsidecages(12%).Thecombinedcumulativeeffectsofdispersal failureandintroducedmammalsdecreasedtarairesurvivalafteroneyearfrom15%for dispersedseedsprotectedfrommammalsto2%forundispersedseedswithaccessby mammals(an87%reduction). Karakaseedpredationwashigherforwholefruits(30%)thanprocessedseeds (21%),underparents(30%)thanaway(21%),andoutsidecages(34%)thaninsidecages (17%).Forunpredatedkarakaseeds,germinationsuccesswaslowerunderparents(83%) comparedto20maway(94%).Forkarakaseedsthatgerminated,seedlingsurvivaltoone yearwaslowerforseedsathighdensity(63%)thanlowdensity(70%),outsidecages (55%)thaninsidecages(78%),andunderparents(50%)thanaway(82%).Iremoved cagesfromkarakaseedlingsafteroneyeartoallowunrestrictedseedlinggrowth.Karaka seedlingrecruitmentfromonetotwoyearswaslowerathighdensity(63%)thanlow density(81%)andunderparents(57%)comparedto20maway(81%).Combined cumulativeeffectsofdispersalfailureandintroducedmammalsdecreasedkarakasurvival aftertwoyearsfrom60%fordispersedseedsto11%forundispersedseeds(an82% reduction).Hence,theeffectsofkereruseeddispersalpersistbeyondthedispersaland germinationstages.Bothdispersalfailureandintroducedmammalshavenegative consequencesfortheregenerationoftaraireandkarakainNewZealandforests,in combinationreducingsurvivingseedlingnumbersbymorethan80%.

57

5.2 Introduction

Globaldeclinesinbiodiversitythreatentodisruptkeyecologicalprocesses,including plantanimalmutualisms(e.g.Bond&Slingsby1984;Aizen&Feinsinger1994; Robertsonetal.1999;Rieraetal.2002;Sekerciogluetal.2004).Animalmutualistsmay persistfollowinganthropogenicdisturbance,butininsufficientnumberstocarryouttheir ecologicalroleeffectively(McConkey&Drake2002).Thereisagrowingrealisationthat maintainingspeciesinteractionsisasimportantasconservingthespeciesthemselves (Janzen1974;Fisher1998;Sekerciogluetal.2004). Animalseeddisperserscontributetothemaintenanceofbiodiversitythroughtheir roleinplantpopulationandcommunitydynamics,geneflowandgeneticstructure, metapopulationdynamics,andspeciescolonisationrates(Gibson&Wheelwright1995; Clarketal.1998b;Hamilton1999;Christian2001;GodínezAlvarezetal.2002;Purves& Dushoff2005).Adeclinein,orlossof,frugivorousanimalpopulationscandisruptseed dispersalmutualisms(Bond&Slingsby1984;Chapman&Chapman1995;Traveset1995; McConkey&Drake2002).Whenseeddispersalmutualistsarelostandtheirservicesare notreplaced,seedsremainundispersedandfallbeneaththeparentcanopy(“dispersal failure”)(Bond1994).However,fewstudieshaveestablishedthatthelossofasingle speciesofseeddisperserleadstodispersalfailure(Bond&Slingsby1984).Evenfewer havedemonstratedsignificantconsequencesofdispersalfailureforplantpopulationsor communities(Christian2001). Theriskofaplantbecoming(locally)extinctfollowingseeddispersaldisruption dependsonthreefactors:1)theprobabilityofdispersalfailure;2)theplant’sreproductive dependenceontheseeddispersalmutualism;and3)itsdemographicdependenceonseeds (Bond1994).Therelationshipbetweenfleshyfruitedplantsandtheiranimalseed disperserswasoriginallyassumedtobeanobligatemutualism,inwhichpassageofseeds throughthedispersersgutwasrequiredforseedstogerminate.Thebestknownandstill citedexampleisthetambalacoquetreeandtheextinctdodoinMauritius(Temple1977). However,subsequentevidenceoftambalacoquegerminationwithoutgutpassageorseed abrasionshowsthatthisappealingexampleisinvalid(Witmer&Cheke1991). Theextenttowhichdispersersareecologicallyredundantwillaffecthowmuch theirdisappearancemayalterplantpopulationsandcommunities(Christian2001;Loiselle &Blake2002).Ifmultipledispersersareperformingthesameecologicalrole,dispersal failureislesslikely(Loiselle&Blake2002).However,ifamorespecialiseddisperseris

58 lostotherfrugivoresmaybeunabletoprovideeffectivedispersalservices.Largeseeded speciesaremorevulnerabletodispersaldisruptionthansmallseededspecies,asfewer animalspeciesarelargeenoughtoswallowanddisperselargeseeds(Wheelwright1985; Clout&Hay1989;Kitamuraetal.2002).Inaddition,largebodiedfrugivoresare devastatedbyhumanimpactsmoreoften(Cardilloetal.2005). Insufficientfrugivoreactivitycanlimitplantrecruitmentdirectlythroughdispersal limitation—afailuretodisperseseedstopotentialrecruitmentsites(Schuppetal.2002). Dispersallimitationcanoccurwhenfewseedsaredispersed,manyseedsaredispersed shortdistances,and/orseedsaredepositedverypatchily(Schuppetal.2002).Frugivores canalsoinfluenceplantrecruitmentindirectlywhendispersallimitationmeansseedsend upatsiteswhereenvironmentalconditionsareunsuitableforestablishment(Clarketal. 1998a;Schuppetal.2002). Anumberofmechanismsmaycontributetodecreasedsurvivalofundispersed seeds.Frugivoregutpassagemayenhancegerminationsuccessthroughscarificationofthe seedcoatandremovalofthefruitpulp(Traveset&Verdú2002;Robertsonetal.2006). TheJanzenConnellmodel(Janzen1970;Connell1971)proposesthathostspecific predatorsandherbivoresmaintainhighlevelsoftropicaltreediversitythroughdensity and/ordistancedependenteffects.Insuchcases,seedand/orseedlingmortalityispredicted todecreasewithincreasingdistancefromadultconspecifics. Inthischapter,Iinvestigatetheconsequencesofdispersalfailureforregeneration oflargeseededtreesinNewZealand.FollowingthearrivalofhumansinNewZealand,a numberoflargefrugivorousbirdsweredriventoextinction.Kereru(theNewZealand pigeon, Hemiphaga novaeseelandiae ,Columbidae)arethesoleremainingwidespread, nativefrugivorecapableofswallowinganddispersinglargeseeded(fruits>14mm diameter)species.Othernativebirdscapableofdispersinglargeseedsareeitherextinctor haveaveryrestricteddistribution(Clout&Hay1989).Fivelargeseededtreespecies (excluding Beilschmiedia tawaroa ,whichisnotwidelyacceptedasaseparatespecies)in NewZealandnowdependalmostentirelyonkereruforseeddispersal(Clout&Hay1989). Declinesinkererupopulationsduetohunting,habitatloss,andintroducedmammalian predators(Cloutetal.1995a;Cloutetal.1995b;James&Clout1996)threatentodisrupt thisseeddispersalmutualism.However,theconsequencesofanylossofseeddispersal serviceforplantpopulationsandcommunitiesareunknown. Ialsoinvestigatedtheroleofintroducedmammalsinlimitingtherecruitmentof largeseededspecies.TheonlyextantspeciesofnativeterrestrialmammalsinNew

59

Zealandaretwobatspecies.However,numerousmammalspecieshavebeenintroduced bothdeliberatelyandaccidentally,includingomnivorouspossums( Trichosurus vulpecula ),rats( Rattus spp. ),mice( Mus musculus ),goats( Capra hircus ),and (Cervus elaphus scoticus ).Introducedmammalsnotonlyreducekererunumbersthrough predationofeggs,chicksandadults(Cloutetal.1995b;Pierce&Graham1995),butmay alsolimitplantrecruitmentbypreventingseedproduction(Cowan&Waddington1990; Cowan1991;Cloutetal.1995b;Dijkgraaf2002),destroyingseeds(Beveridge1964; Daniel1973;Campbell&Atkinson2002),andbrowsingonseedlingsandsaplings (Nugentetal.2001;Wilsonetal.2003). Theaimofthisstudywastodeterminetheimportanceofseeddispersaland introducedmammalstoearlyrecruitmentstagesofthekererudispersed,largeseededtree specieskaraka( Corynocarpus laevigatus J.R.Forst.&G.Forst.,Corynocarpaceae)and taraire( Beilschmiedia tarairi (A.Cunn.)Benth.&Hook.f.exKirk,Lauraceae).Theseare thetwolargestfruitedspeciesinthenativeflora(Wotton&Ladleyinpress),andassuch maybeamongthemostsusceptibletodispersalfailure.Iaskedwhetherpostdispersalseed predation,germination,orseedlingsurvivalandgrowthinkarakaandtarairewereaffected by(1)movementawayfromparentplants,(2)seeddensity,(3)pulpremoval,or(4) exclusionofintroducedmammals.

5.3 Methods

5.3.1 Study organisms

Kereruarelarge(c.650g;Clout&Tilley1992)fruitpigeonsendemictoNewZealand. AlthoughkereruarestillwidespreadthroughoutNewZealand,theirnumbershave declineddrasticallysincehumansarrivedinNewZealand.Insomeareasofthefarnorthof NewZealand(thecentreofdiversityforlargeseededtreespecies)kereruarevirtually absent,andtheyhavebecomelocallyextinctonRaoulIsland(Cloutetal.1995b). Taraireisacanopytreethatgrowsupto20mormoretallandisfoundinlowland andcoastalforestfromthenorthoftheNorthIslandtolatitude38°S(Allan1961).Taraire drupesaredarkpurple(19x32mm)withasingleseedmeasuring16x29mm(Figure 5.1a;Wotton&Ladleyinpress).Tarairefruitsareimportantinthedietofkereru, particularlyastheyripeninwinterwhenfewotherfruitsareavailable(McEwen1978).In

60 manyareasthereappearstobelittleornoregenerationoftaraireseedlingsunderataraire canopy(Dawson&Sneddon1969). Karakaisacanopytreethatgrowsupto20mtallandoccursnaturallyinthe northernNorthIslandofNewZealand.Thebrightorangedrupesofkarakameasure20x 28mmandcontainasingleseed16x25mm(Figure5.1b;Wotton&Ladleyinpress). KarakawascultivatedbyMaori,andnowoccursasfarsouthasBanksPeninsulainthe SouthIslandofNewZealand.Inapparentcontrasttotaraire,densecarpetsofkaraka seedlingsareoftenfoundbeneathkarakatrees,indicatingsomesurvivalwithoutdispersal, atleasttotheearlyseedlingstage.Karakahasbecomeinvasiveinsomeareasoutsideofits naturalrangeandoutcompetesothercanopyspecies(Costalletal.2006).

5.3.2 Study sites

IconductedresearchattwositesinNewZealand,WenderholmRegionalPark,near Auckland(36°32′S174°42′E)andMtTigerBush,Whangarei(35°43′S174°23′E) fromJanuary2005toFebruary2007.Wenderholmcontainsa55haremnantofnative lowlandpodocarpbroadleafforestranginginaltitudefromsealevelto100m.Theforest atWenderholmisdominatedbytaraire,karaka,kohekohe( Dysoxylum spectabile ),and kowhai( Sophora tetraptera ),withareasofregeneratingkanuka( Kunzea ericoides )forest. PossumcontrolbeganatWenderholmin1982andpossumnumbershavebeenconsistently lowsince1994(Dijkgraaf2002).controlatWenderholmbeganin1995andoccurs annually(Dijkgraaf2002). TheMtTigersitewaslocatedina7haprivatelyownedblockthatformspartofthe 267haMtTigerBush.Thesiteismainlytowai( Paratrophis banksii )dominantsecondary lowlandforest,ranginginaltitudefrom140–270m.Duringthisstudy,intensivepossum andratcontrolwasconfinedtooneareaofthesite(wheretwokaraka“parents”andthree taraire“parents”werelocated—seebelowfordetails),andwascarriedoutfromlate wintertolatesummer(R.J.Pierce,personalcommunication).Therewasnopestcontrolin therestofthestudysite,althoughitwouldhavegainedaslightbenefitfromtheintensive controlnearby(R.J.Pierce,personalcommunication).Feralgoatswerepresentinthearea duringthestudyandsomeindividualswerekilledatthesite.

5.3.3 Experimental design

Iconductedafieldexperimenttocomparethefateofdispersedandundispersedseedsof karakaandtaraire.Iusedasplitplotfullfactorialdesignwithfourtreatments,eachwith

61 twolevels:(1)underaconspecificadult(hereafterreferredtoastheparent)or20maway, (2)wholefruitsorseedswiththepulpremoved,(3)highorlowseeddensity(20or4seeds respectively),and(4)mammalexclusionoropenaccess.Eachparenttreewaspaired spatiallywithalocation20maway.Fruit,densityandexclusiontreatmentswerenested withinparenttree,withplotsunderandawayfromparents.Iusedadistanceof20mfor “away”plotsasIwasunabletoobtainsufficientreplicatesusinggreaterdistanceswithout comingwithintheradiusofanotherconspecifictree.Previousstudiesindicatethatmost parentaleffectsonrecruitmentarenegligiblebeyond20m(Augspurger1983;Howeetal. 1985;Schupp1992). TopreventseedsrollingawayIused7cmwidestripsoflexanpolycarbonate(1 mmthick)withtheendsstapledtogethertoconstruct20cmdiametertubes.Tubeswere insertedintothesoilapproximately1mapartwitharound5cmofthetuberemaining aboveground(Figure5.1b).Iconstructed30cmhighmammalproofcagesusing5.8mm aperturestainlesssteelweldmesh(Figure5.1c).Cagesandtubesweresecuredtothe groundwithwirepegs.Irandomlyassignedeachoftheeighttreatmentcombinationsto eachtubeintheplot. ThisdesignwasreplicatedatfiveparenttreesatbothWenderholmandMtTiger forkaraka,andatMtTigerfortaraire.Iinitiallyplannedtoconducttheexperimentfor bothspeciesatbothsites,butthetarairefruitcropvirtuallyfailedin2005.AtMtTigerI wasabletocollecttarairefruitsfromanearbysitetosetuptheexperimentinSeptember 2005.AllkarakaparenttreesatMtTigerwerefruitingatthestartoftheexperimentin February2005,butonlysomeparenttreesatWenderholm. Iwasunabletolocateanumberofseedsthatwereremovedfromtubesinthe karakaexperiment.Becausethekarakaexperimentwassetupearlier,Iwasabletomodify theexperimentfortaraire.Ithereforemarkedtarairefruitsandseedstoincreasethe recoveryrateandhelpdeterminetheirfate(Figure5.1d).Itaggedseedsbytyingoneend ofa15cmlengthofnylonfishinglineto5cmstripsofpinkandblackstripedflagging tape,andgluingtheotherendtotheseed.Icuttheflaggingtapetoapointattheend attachedtothenylonlinetodecreasesnaggingandnumberedeachtagtoaididentification. IconductedapilotstudyinJune2005atWenderholmtodeterminewhethertagging affectedtaraireseedremovalrates.Iplacedeitherfourhandcleanedseedsorfourwhole fruitsineachtube.Halfofthetubeshadtaggedseedsandtheotherhalfwereuntagged.I repeatedthisattwolocationsatWenderholm(givingtworeplicatesforeachtreatment combination)andrecordedremovalratesafteronemonth.Removaloftaggedand

62 untaggedseedsdidnotdiffer,andIthereforeassumedthatmarkingofseedshadnoeffect onseedremoval. Imonitoredkarakaseedsoneweekaftersettinguptheexperiment,monthlyforthe firstsixmonths,andthenatoneandtwoyears.Taraireseedsweremonitoredmonthlyfor thefirstthreemonthsandthenatoneyear.Iplacedanylitterfoundontopofacageat eachvisitinsidethetubetoreducetheeffectofinterceptionoflitterfallbycages.Ateach visitIrecordedseeddisappearance,insectandmammalpredation,germination,seedling heightandsurvivalforeachseedorseedling.Iremovedcagesfromkarakaseedlingsafter oneyeartoallowunrestrictedseedlinggrowth. Insecteatenseedswerecharacterisedbysmallholesintheseedorseedcoatand thepresenceofinsectsand/orfrass.Mammaleatenseedsgenerallyhad2–3mmwide toothmarksconsistentwithrodentpredation(Beveridge1964;Dijkgraaf2002).Some seedsthatwerepartiallyeatenbyeitherinsectsormammalsstillgerminated.Therefore,I classifiedonlythoseseedsthatsufferedfatalpredationasbeingeaten,assigningthefateof eachseedpriortogerminationintofouruniquecategories:disappeared,insectpredated, mammalpredated,oruneaten.Forsomeseeds,predationoccurredaftergermination,in whichcaseIclassifieditasmortalityduringyearone(whenfatal).Forthepurposeofthe analysisIassumedseedsthatdisappearedwerekilledasIfoundnoevidenceofseed caching(c.f.VanderWalletal.2005).Asmallnumberofseedsthatwereinitially classifiedasdisappearedweresubsequentlylocatedoutsidethetube,whereIcontinuedto followtheirfate.Iclassifiedseedsasgerminateduponradicleemergence.Aseedwas consideredaliveifitremainedfirm,andviablekarakaseedswereoftengreenbeneaththe seedcoat.

63

(a) (b)

(c) (d)

Figure 5.1(a)Taraire (Beilschmiedia tarairi )fruits;(b)karaka (Corynocarpus laevigatus ) fruitsinexperimentaltubes(Photo:JaviRodríguez);(c)mammalproofcagecovering karakaseedlings;(d)taraireseedsandfruitsweremarkedwithstripsofpinkandblack stripedflaggingtapetiedtofluorescentyellownylonfishingline,whichwasattachedto theseedwithsuperglue.

64

5.3.4 Statistical analysis

Ianalyseddataateachstageofrecruitment,i.e.totalseedpredation(includinginsect predation,mammalpredation,andremovedseeds),germinationofthoseseedsthatwere noteaten,survivalandgrowthtooneyearforgerminatedseeds,andsurvivalandgrowth fromonetotwoyearsforthoseseedlingsaliveafteroneyear.Iusedgeneralisedlinear mixedmodels(GLMMs)toanalyseseedpredation,germination,andseedlingsurvival(the binomialresponsevariables)foreachspecies.GLMMsprovideaframeworkforanalysing datawithanonnormalerrordistributionandhierarchicalrandomeffects.Iusedlinear mixedmodels(LMMs)toanalyseseedlinggrowthforoneandtwoyearsforkarakaand foroneyearfortaraire.Forseedpredation,germination,andseedlingsurvivalGLMMsI specifiedabinomialerrordistribution(andassociatedlogitlink),withnumberof successes/numberoffailuresastheresponsevariable.ForseedlinggrowthLMMsI specifiedaGaussianerrordistribution. Forseedpredation,oneyearseedlingsurvival,andoneyearseedlingheight,I constructeda(maximal)modelthatinitiallyincludedallexplanatoryvariables(location, density,fruit,andmammalexclusion)andalltwowayinteractionsasfixedeffects.For germinationIincludedlocation,density,andfruitandalltwowayinteractionsasfixed effectsinthemaximalmodel.Forkarakatwoyearseedlingsurvivalandgrowth,Iincluded location,density,andcageandthetwowayinteractionsbetweenthethreevariablesas fixedeffects.Iincludedplotsnestedwithinparenttreesasrandomeffectsinallmodels. Forkarakamodels,Ialsoincludedsiteasafixedeffectinthemaximalmodel,analysing dataforthetwositesseparatelywhensitehadasignificanteffect. IfittedtheGLMMsusingLaplacianapproximationtomaximumlikelihoodandthe LMMsusingrestrictedmaximumlikelihood.Iusedmodelsimplificationbybackward selectiontoconstructfinalmodels.Icomparedtheeffectofremovingeachvariablefrom themaximalmodelonAkaikeInformationCriterion(AIC)values.AICprovidesa measureofmodelfitaccountingforthesamplesizeandthenumberofparameters estimatedinthemodel,withsmallervaluesofAICindicatingabetterfittingmodel.I proceededwithsimplificationofthemodelwiththelowestAICvalueuntilremovingany variableincreasedtheAICvalue.Icalculated∆AICasthedifferenceinAICbetweena modelandthebestfitting(final)model,whichhas∆AICof0.Asaruleofthumb,models with∆AIC ≤2havesubstantialsupport,thosewith4 ≤∆AIC ≤7weakersupport,and thosewith∆AIC>10virtuallynosupport(Burnham&Anderson2001).Wheremultiple

65 modelshad∆AIC ≤2,IselectedthemodelwiththelowestAICvalueasthefinalmodel, exceptwhereinteractiontermsinthatmodelappearedbiologicallyinsignificantfrom graphicalinspectionofthedata.Iranallmodelsusingthelme4packageinRversion2.4.1 (RDevelopmentCoreTeam2006).

5.4 Results

5.4.1 Secondary dispersal and seed predation

Karakafruitpulpwaseatenbybothinsectsandmammals(Figures5.2aand5.2b).Insects consumedthepulpovermanymonths,whilemammalsatethepulpwithinonemonth, sometimesdepositingtheunharmedseedsoutsidetubes(Figure5.2b).Someseedswhere mammalsatethepulpweresubsequentlypredatedbymammalsordisappeared.Other seedsweremovedoutsidetubeswithoutthepulporseedbeingeaten.Mostoftheseseeds, mammalpredatedseeds,andtagsfromseedsthatdisappeared(hereafterreferredtoas removed)wererecoveredwithin1mofthetubeandIfoundnoevidenceofseedcaching. Fortaraire,tagswererecoveredfromameanof70%ofremovedseeds. Bothinsectsandmammalsatekarakaandtaraireseeds(Figures5.2c–5.2fand 5.3).InsectpredatorsfoundinkarakaseedswereidentifiedastheLepidopteranlarvae Cryptaspasma querula (Tortricidae )(R.Hoare,personalcommunication).Mammalseed predationoccurredforuptofivemonthsafterseedsowing,whileseedswereremoved(and probablyeatenbymammals)foruptosixmonths.Cagesdidnotappeartorestrictaccess toseedsbyinvertebrateseedpredators(withthepossibleexceptionofweta),andkaraka insectpredationwashigherwhenseedswereinsidecages(Figures5.3b–5.3d).Protection ofseedsfrommammalshadthegreatesteffectonseedpredationlevelsforbothkarakaand taraire,with30%ormoreofuncagedseedseaten(Figure5.3).

66

(a) (b)

(c) (d)

(e) (f)

Figure 5.2Pulpremovalandpredationofkarakaseeds.(a)Insectpulpremoval;(b) mammalpulpremovalandsecondarydispersal;(c)karakaseedpredationprobablybyship rats(d)karakaseedpredationprobablybypossums;(e)entryandexitholesinkarakaseed indicatingpredationtypicalofunidentifiedlarvae;(f)thesameinsectpredatedseed brokenopentorevealfrassinsideandseedcompletelyeaten.

67

Sevenmodelsoftaraireseedpredationhadsubstantialsupport,with∆AIC ≤2 (AppendixII).ThefinalmodelisshowninTable5.1a.Taraireseedpredationwasmuch higherforwholefruitsthanhandcleanedseedsandforuncagedseedscomparedtocaged seeds(Figure5.3a).Insectpredationwashigherforwholetarairefruitsthanhandcleaned seeds,whilemammalpredationonlyoccurredoutsidecages(Figure5.3a).Forwhole fruits,predationlevelswerehigheratlowdensity(31%)thanathighdensity(22%),while densityhadlittleeffectonpredationlevelsforhandcleanedseeds.Seedsatlowdensity experiencedafourfoldincreaseinpredationlevelsfromcagedtouncagedtreatments, comparedtoadoublinginpredationlevelsforseedsathighdensity. Sitewasasignificantpredictorofkarakaseedpredation,thereforeIconstructed separatemodelsforeachsite.Ateachsite,threemodelsforkarakaseedpredationhad substantialsupport(with∆AIC ≤2).ThefinalmodelsforeachsiteareshowninTables 5.1band5.1c.Karakaseedpredationwashigheroutsidecagesthaninsidecagesatboth sites,andhigherforwholefruitsthanprocessedseeds,andunderparentsthanawayatMt Tiger(Figure5.3).AtMtTiger,karakaseedsnotprotectedfrommammalshadmuch higherpredationlevelsunderparents(53%)thanseeds20maway(23%),whilearound 20%ofseedsinsidecageswereeatenregardlessoflocation.Theincreaseinpredation levelsinwholefruitscomparedtoprocessedseedswasgreaterinsidecagesthatoutside.At MtTiger,insectpredationwasgreaterforwholefruitsthanprocessedseeds(Figure5.3c). Insectpredationwashigherforkarakaseedsinsidecagesthanoutside,whilemammal predation(includingremovedseeds)washigherforwholefruitsthancleanseeds,under parentsthanaway,andoutsidecagesthaninside(Figure5.3).

68

(a) (b) Seed predation(%) Seed predation(%) 0 10 20 30 40 50 0 10 20 30 40 50 low low high high cage cage open open away away clean clean under under whole whole (c) (d) Seed predation (%) Seed predation(%) 0 10 20 30 40 50 0 10 20 30 40 50 low low high high cage cage open open away away clean clean under under whole whole Figure 5.3Maintreatmenteffectsonmeanseedpredationpercentage.Treatmentswere cleanedseedsvs.wholefruits,20mawayfrom“parents”vs.under“parents”,mammal exclusionvs.openaccess,lowseeddensity(4seeds)vs.highseeddensity(20seeds). White=insectpredation,grey=removed,black=mammalpredation.Errorbarsare95% confidenceintervals.(a)taraire,(b)karakaatbothsites,(c)karakaatMtTiger,(d)karaka atWenderholm.

69

Table 5.1Totalseedpredation(insect,mammal,andremovedseeds)parameterestimates andstandarderrors(s.e.)fromGLMMsfor(a)taraire( Beilschmiedia tarairi ),(b)karaka (Corynocarpus laevigatus )atMtTiger,and(c)karakaatWenderholm.Foreachresponse variableonlythefinalmodelisshown. (a)Taraire parameter level estimate s.e. intercept –2.65 0.34 fruit wholefruit 1.08 0.37 density low –0.99 0.59 cage uncaged 1.16 0.31 location under 0.25 0.36 fruit:density whole:low 0.87 0.49 fruit:cage whole:uncaged –0.46 0.38 fruit:location whole:under –0.54 0.35 density:cage low:uncaged 1.05 0.53

(b)KarakaatMtTiger Parameter level estimate s.e. intercept –1.93 0.28 fruit wholefruit 1.25 0.25 cage uncaged 0.40 0.30 location under –0.49 0.33 fruit:cage whole:uncaged –0.73 0.33 cage:location uncaged:under 2.03 0.32

(c)KarakaatWenderholm parameter level estimate s.e. intercept –1.82 0.16 cage uncaged 0.87 0.17

70

5.4.2 Germination of unpredated seeds

Taraireseedsgerminatedwithinonetothreemonthsofsowing,andanyungerminated seedsweresoftbythreemonths.Overall,72%oftaraireseedsgerminated.Threetaraire germinationmodelshadsubstantialsupport(∆AIC ≤2)andthefinalmodelisshownin Table5.2a.Fortaraireseeds,germinationsuccesswashigherforhandcleanedseedsthan wholefruits(Figure5.4a).Forhandcleanedseeds,germinationsuccesswasgreateratlow density(98%)thanhighdensity(92%),whichwasreversedforwholefruitswhere germinationsuccesswasgreaterathighdensity(88%)thanlow(79%). Karakaseedsstartedgerminatingonemonthaftersowing.Mostkarakaseeds germinatedbetweenfourtosixmonthsaftersowing,butasmallnumbergerminatedafter oneyear.Overall,67%ofkarakaseedsgerminated.Sitehadasignificanteffecton variationinkarakagermination.AtMtTiger,fivemodelshadsubstantialsupport,with ∆AIC ≤2.AtWenderholm,fourmodelshadsubstantialsupport.Thefinalmodelsforeach siteareshowninTables5.2band5.2c.Forkarakaseeds,germinationsuccesswaslower underparentscomparedto20maway(Figures5.4b–5.4d).Theeffectoflocationon germinationsuccesswasgreateratMtTigerthanWenderholm.

71

(a) (b) Germination success (%) Germination success (%) 60 70 80 90 100 60 70 80 90 100

fruit location cage density fruit location cage density (c) (d) Germinationsuccess (%) Germination success (%) 60 70 80 90 100 60 70 80 90 100

fruit location cage density fruit location cage density Figure 5.4Maintreatmenteffectsonmeangerminationsuccessfor(a)taraire,(b)karaka atbothsites,(c)karakaatMtTiger,and(d)karakaatWenderholm.Opencirclesrepresent prehumantreatmentlevels(processedseeds,20maway,caged,andlowdensity),while filledcirclesrepresentposthumantreatmentlevels(wholefruits,underparents,uncaged, andhighdensity).Errorbarsare95%confidenceintervals.

72

Table 5.2Germinationsuccess(forunpredatedseeds)parameterestimatesandstandard errors(s.e.)fromGLMMsfor(a)taraire( Beilschmiedia tarairi ),(b)karaka( Corynocarpus laevigatus )atMtTiger,and(c)karakaatWenderholm.Foreachresponsevariableonlythe finalmodelisshown. (a)Taraire parameter level estimate s.e. intercept 2.62 0.30 fruit wholefruit –0.36 0.26 density low 1.33 1.05 location under –0.37 0.35 fruit:density whole:low –2.55 1.09 density:location low:under 1.21 0.73

(b)KarakaatMtTiger parameter level estimate s.e. intercept 2.94 0.32 fruit wholefruit 0.07 0.26 density low 0.01 0.42 location under –1.76 0.37 fruit:density whole:low 1.25 0.88

(c)KarakaatWenderholm parameter level estimate s.e. intercept 2.88 0.40 location under –0.69 0.55

73

5.4.3 Seedling survival and growth

Iobservedbothinsectandmammalherbivoryofkarakaseedlings(Figure5.5).Taraire seedlingswerenotattackedbyinsects,althoughsomewerebrowsedbymammals.

Figure 5.5Insectherbivoryofkarakaseedlings. Sixmodelsoftaraireseedlingsurvivaltooneyearhadsubstantialsupport(AppendixII) andthefinalmodelisshowninTable5.3a.Fortaraireseedsthatgerminated,seedling survivalafteroneyearwaslowerforthosefromwholefruitsthanfromhandcleaned seeds,atlowdensitythanhighdensity,andunderneathparentsthanaway(Figure5.6a). Insidecages,taraireseedlingsurvivalwasgreaterathighdensity(20%)thanatlowdensity (5%),whileoutsidecagessurvivalwasaround10%atbothhighandlowdensity. Sitehadasignificanteffectonvariationinkarakasurvivaltooneyear.Foreach site,fivemodelsforsurvivaltooneyearhadsubstantialsupport(AppendixII).Thefinal modelsforeachsiteareshowninTables5.3band5.3c.Forkarakaseedsthatgerminated, seedlingsurvivaltooneyearwaslowerforseedsathighdensitythanlowdensity,outside cagesthaninsidecages,andunderparentsthanaway(Figures5.6b–5.6d). Threemodelsforkarakasurvivalthroughthesecondyearhadsubstantialsupport (AppendixII).Karakaseedlingrecruitmentfromonetotwoyearswaslowerathigh densitythanlowdensityandunderparentscomparedto20maway(Figure5.7).Density dependenteffectsweregreaterunderneathparentswith48%survivalathighdensity

74 comparedto71%atlowdensity.Atlocations20mawaysurvivalwas75%and87%at highandlowdensityrespectively. Eightmodelsfortaraireseedlinggrowthduringyearonehadsubstantialsupport (AppendixII)andthefinalmodelisshowninTable5.4a.Taraireseedlingheightafterone yearwasgreaterinsidecagesthanoutside(Figure5.8a).Uncagedseedlingsweretallerat lowdensitythanhigh,whiletherewasnoeffectofdensityforcagedseedlings(Table 5.4a).Whiletaraireseedlinggrowthwasalwaysgreaterforhandcleanedseedsthanwhole fruits,thedifferencewasgreaterunderparentsthan20maway(Table5.4a). Sitehadasignificanteffectonvariationinkarakaseedlinggrowthduringboth years.Foreachsite,threemodelsforgrowthduringyearonehadsubstantialsupport (AppendixII)andthefinalmodelsareshowninTables5.4band5.4c.Karakaseedling growthduringthefirstyearwaslowerunderparentsthan20mawayatbothsites(Figures 5.8b–5.8d;Tables5.4band5.4c).AtMtTiger,seedlinggrowthforwholefruitswas greaterincagesthanintheopen,whiletherewasnodifferenceforprocessedseeds.At Wenderholm,seedlinggrowthathighdensitywasgreaterawayfromparentsthanunder. ThreemodelsofkarakagrowthduringyeartwoforMtTiger,andtwomodelsfor Wenderholmhadsubstantialsupport(AppendixII)andthefinalmodelsareshownin Tables5.4band5.4c.Karakaseedlinggrowthduringthesecondyearwasgreaterforcaged seedlingsthanuncagedseedlingsandawayfromparentsthanunderatbothsites(Figure 5.9).Notethatthecageshadbeenremovedbythistime,butcontinuedtohaveaneffect (justaspulpremovalwasstillhavinganeffectontarairesurvivalwellaftergermination). AtWenderholm,seedlinggrowthwasgreaterforseedlingsathighdensitythanlow.

75

(a) (b) 1 yrsurvival (%) 1yr survival (%) 0 20 40 60 80 100 0 10 20 30

fruit location cage density fruit location cage density (c) (d) 1 yrsurvival (%) 1yr survival (%) 0 20 40 60 80 100 0 20 40 60 80 100

fruit location cage density fruit location cage density Figure 5.6Maintreatmenteffectsonmeansurvivaltooneyearfor(a)taraire,(b)karaka atbothsites,(c)karakaatMtTiger,and(d)karakaatWenderholm.Opencirclesrepresent prehumantreatmentlevels(processedseeds,20maway,caged,andlowdensity),while filledcirclesrepresentposthumantreatmentlevels(wholefruits,underparents,outside cages,andhighdensity).Errorbarsare95%confidenceintervals.Notethedifferentyaxis scaleingraph(a).

76

(a) Yr2 survival (%) 0 20 40 60 80 100

fruit location cage density (b) (c) 2 yrsurvival (%) Yr 2survival (%) 0 20 40 60 80 100 0 20 40 60 80 100

fruit location cage density fruit location cage density Figure 5.7Maintreatmenteffectsonmeansurvivalthroughthesecondyearforkarakaat (a)bothsites,(b)MtTiger,and(c)Wenderholm.Opencirclesrepresentprehuman treatmentlevels(processedseeds,20maway,caged,andlowdensity),whilefilledcircles representposthumantreatmentlevels(wholefruits,underparents,outsidecages,andhigh density).Errorbarsare95%confidenceintervals.

77

Table 5.3Survivalofgerminatedseedstooneyearparameterestimatesandstandard errors(s.e.)fromGLMMsfor(a)taraire( Beilschmiedia tarairi ),(b)karaka( Corynocarpus laevigatus )atMtTiger,and(c)karakaatWenderholm,and(d)survivalofkaraka seedlingsfromonetotwoyearsatbothsites(dataforbothsiteswerecombinedassitewas notsignificantinthefinalmodel).Foreachresponsevariableonlythefinalmodelis shown. (a)Taraire parameter level estimate s.e. intercept –0.76 0.42 fruit wholefruit –0.49 0.28 density low –1.50 0.55 cage uncaged –0.97 0.29 location under –1.13 0.62 fruit:location whole:under –0.99 0.55 density:cage low:uncaged 1.49 0.74 cage:location uncaged:under 0.73 0.48

(b)KarakaatMtTiger parameter level estimate s.e. intercept 2.03 0.46 fruit wholefruit 1.36 0.52 density low 0.74 0.29 cage uncaged –1.89 0.30 location under –2.16 0.60 fruit:cage whole:uncaged –0.90 0.54 fruit:location wholefruit:under –1.04 0.54

78

Table 5.3 cont. (c)KarakaatWenderholm parameter level estimate s.e. intercept 2.25 0.42 fruittreatment wholefruit 1.09 0.44 density low –0.48 0.42 cage uncaged –0.32 0.29 location under –1.25 0.53 fruit:cage whole:uncaged –1.17 0.42 fruit:location wholefruit:under –1.00 0.44 density:location low:under 0.87 0.55

(d)Karakaatbothsites parameter level estimate s.e. intercept 1.25 0.30 density low 0.82 0.23 location under –1.20 0.43

79

(a) (b) 1 yrseedling height (mm) 1yr seedlingheight (mm) 0 50 100 150 200 250 100 120 140 160 180 200

fruit location cage density fruit location cage density (c) (d) 1 yrseedling height(mm) 1yr seedlingheight (mm) 100 120 140 160 180 200 100 120 140 160 180 200

fruit location cage density fruit location cage density Figure 5.8Maintreatmenteffectsonmeanseedlingheight(mm)atoneyearfor(a) taraire,(b)karakaatbothsites,(c)karakaatMtTiger,and(d)karakaatWenderholm. Opencirclesrepresentprehumantreatmentlevels(processedseeds,20maway,caged, andlowdensity),whilefilledcirclesrepresentposthumantreatmentlevels(wholefruits, underparents,outsidecages,andhighdensity).Errorbarsare95%confidenceintervals.

80

(a) Yr2 seedling growth (mm) -10 0 10 20 30 40 50 60

fruit location cage density (b) (c) Yr 2seedling growth(mm) Yr2 seedlinggrowth (mm) -10 0 10 20 30 40 50 60 -10 0 10 20 30 40 50 60

fruit location cage density fruit location cage density Figure 5.9Maintreatmenteffectsonmeanseedlingheightgrowth(mm)duringyeartwo for(a)karakaatbothsites,(b)karakaatMtTiger,and(c)karakaatWenderholm.Open circlesrepresentprehumantreatmentlevels(processedseeds,20maway,caged,andlow density),whilefilledcirclesrepresentposthumantreatmentlevels(wholefruits,under parents,outsidecages,andhighdensity).Errorbarsare95%confidenceintervals.

81

Table 5.4Seedlingheightgrowthparameterestimatesandstandarderrors(s.e.)from GLMMsfor(a)taraire( Beilschmiedia tarairi),(b)karaka( Corynocarpus laevigatus )atMt Tigerand(c)karakaatWenderholm.Foreachresponsevariableonlythefinalmodelis shown. (a)Taraire parameter level estimate s.e. 1 yr growth intercept 222.9324.23 fruit wholefruit –25.3123.44 density low –18.5328.69 cage uncaged –49.8021.13 location under 9.1033.54 fruit:location whole:under –57.1835.79 density:cage low:uncaged 63.1840.27

(b)KarakaatMtTiger parameter level estimate s.e. 1 yr growth intercept 168.59 16.25 fruit wholefruit 30.4916.83 cage uncaged –3.3117.55 location under –39.8619.58 fruit:cage whole:uncaged –45.1225.32 2 yr growth intercept 49.7511.99 cage uncaged –26.3913.47 location under –24.0118.50 cage:location uncaged:under 37.5025.68

82

Table 5.4 cont. (c)KarakaatWenderholm parameter level estimate s.e. 1 yr growth intercept 162.2511.12 density low 13.4013.46 location under –29.0816.04 density:location low:under 28.3619.86 2 yr growth intercept 39.649.88 density low –15.5512.76 cage uncaged 4.6412.48 density:cage low:uncaged –29.6518.39

5.4.4 Overall effects

Seeddispersalhadagreatereffectthanexclusionofintroducedmammalsontaraire survivalduringearlystagesofrecruitment.Dispersalfailuredecreasedtheprobabilityof tarairesurvivalduringthefirstyearby60%forcagedseedsand73%foruncagedseeds. Fruitpulpremovaldecreasedtarairemortalityatallrecruitmentstages(Table5.5a;Figures 5.4–5.6).Oneyearaftersowing,tarairesurvivalwasgreaterforhandcleanedseeds(13%) thanwholefruits(5%),athighdensity(12%)thanlow(6%),insidecages(11%)than outsidecages(8%),andawayfromparents(13%)thanunder(6%).Thecombined cumulativeeffectsofdispersalfailureandintroducedmammalsdecreasedtarairesurvival afteroneyearfrom15%fordispersedseedsprotectedfrommammalsto2%for undispersedseedswithaccessbymammals(an87%reduction;Figure5.10). Dispersalfailuredecreasedtheprobabilityofkarakasurvivaltwoyearsafter sowingby62%(insidecages)and93%(outsidecages)atMtTigerand47%(insidecages) and58%(outsidecages)atWenderholm.Forkarakaseeds,movementawayfromthe parenthadthegreatesteffect,increasingsurvivalatallrecruitmentstages(Table5.5b). Karakacumulativesurvivalafteroneyearwasgreaterforseedsinsidecages(56–65%,Mt TigerandWenderholmrespectively)thanoutside(27–47%),andawayfromparents(59–

83

65%)thanunder(24–46%).AtMtTiger,karakaseedsatlowdensityhadgreatersurvival (46%)thanathighdensity(37%),whiletherewasnodifferenceatWenderholm(56%at bothhighandlowdensity).Survivalwassimilarforprocessedkarakaseeds(42–57%)and wholefruits(40–55%)atbothsites. Aftertwoyears,karakacumulativesurvivalwasgreaterforseedsatlowdensity (3646%)thanhigh(25–37%),insidecages(41–50%)thanoutside(21–33%),andaway fromparents(47–54%)thanunder(15–29%).Survivalwassimilarforprocessedkaraka seeds(29–44%)andwholefruits(36–39%).Combinedcumulativeeffectsofdispersal failureandintroducedmammalsdecreasedkarakasurvivalaftertwoyearsfrom50–70% fordispersedseedsincagesto3–19%forundispersedseedsoutsidecages(a73–94% reduction;Figure5.10).Forbothtaraireandkaraka,thesurvivalbenefitsofdispersaland mammalexclusionweregreatestattheseedpredationandoneyearsurvivalstagesof recruitment(Table5.5;Figure5.10).Seeddispersalhadtheleasteffectongermination success.

84

Table 5.5Summaryofmaineffectsofseeddispersalandmammalexclusiononmean percentchangeinsurvivalandgrowthcomparedtoundispersedseedswithoutmammal exclusionateachrecruitmentstage.Nonsignificanteffectsareindicatedbyzero.(a) taraire,(b)karaka(wheremeansdifferbetweensites,thefirstnumberisforMtTigerand thesecondisforWenderholm). (a)Taraire %changeinmeansurvivalandgrowth recruitmentstage pulpremoval awayfromparent caged lowdensity predation +18 0 +27 –5 germination +14 0 — 0 survivalyr1 +117 +134 +23 –50 heightyr1 +24 0 0 +15 (b)Karaka %changeinmeansurvivalandgrowth recruitmentstage pulpremoval awayfromparent caged lowdensity predation +23,0 +22,0 +28,+21 0 germination 0 +24,+5 — 0 survivalyr1 0 +122,+31 +82,+18 +28,0 survivalyr2 0 +35,+48 0 +26,+31 heightyr1 –8,0 +25,+10 +12,0 0,+19 heightyr2 0 +43,+14 +52,+46 0,–76

85

(a) (b) Cumulative survival (%) Cumulative survival(%) 1 2 5 10 20 50 100 1 2 5 10 20 50 100

predation germination 1 yr seedling predation germination 1 yr 2 yr Recruitment stage Recruitment stage (c) (d) Cumulative survival (%) Cumulative survival(%) 1 2 5 10 20 50 100 1 2 5 10 20 50 100

predation germination 1 yr 2 yr predation germination 1 yr 2 yr Recruitment stage Recruitment stage Figure 5.10 Observedmeancumulativesurvivalratesunderfourscenarios:(1)prehuman (bestcasescenario—dispersalofseedswithoutintroducedmammals,representedby filledcircles),(2)posthuman(worstcasescenario—dispersalfailurewithmammals, representedbyfilledtriangles),(3)dispersalwithmammals(representedbyopencircles), and(4)dispersalfailurewithoutmammals(opentriangles).Treatmentlevelsfordispersal arecleanseeds,20mawayfromparent,andlowdensity.Treatmentlevelsfordispersal failurearewholefruits,underparents,andhighdensity.(a)taraire,(b)karakaatbothsites, (c)karakaatMtTiger,(d)karakaatWenderholm.Notetheyaxislogscale.

86

5.5 Discussion

Myresultsillustratefivemainpoints:(1)Seeddispersalgreatlyenhancedsurvivalofboth karakaandtaraireduringearlyrecruitmentstages;(2)distanceanddensitydependent effectsbothcontributedtoincreasedmortalityofundispersedtaraireandkarakaseeds,as predictedbytheJanzenConnellhypothesis(Janzen1970;Connell1971);(3)fruitpulp removalincreasedgerminationsuccessonlyfortaraire,butdecreasedseedpredationfor bothspeciesand(surprisingly)taraireseedlingmortality;(4)introducedmammalsalso decreasedtheprobabilityofrecruitmentthroughpredationofseedsandseedlings;(5)the combinedeffectsofdispersalfailureandintroducedmammalscouldhaveserious consequencesfortheregenerationofbothtaraireandkaraka.

5.5.1 Janzen-Connell effects

TheJanzenConnellhypothesispredictsthatmortalityofseedsandseedlingswilldecrease withincreasingdistancefromparenttrees,duetodistanceordensitydependenthost specificenemies(Janzen1970;Connell1971).Althoughalargebodyofresearchhasbeen devotedtotestingtheJanzenConnellhypothesisinthetropics(e.g.Augspurger1984; Howeetal.1985;Schupp1992;Hyattetal.2003),JanzenConnelleffectshaverarely beendemonstratedintemperateareas(butseePacker&Clay2000). Ifoundpositivedistancedependenteffectsonsurvivalintaraireandkarakaat multiplerecruitmentstages(Table5.5).Severalfactorsareprobablyresponsiblefor increasedmortalityunderparentsinthesespecies.Highertaraireseedlingmortalityunder parentsmaybeduetothedeep,persistentlitterlayerthatformsbeneathtarairetrees,rather thanhostspecificenemies(Myers1984).Rodentsmayuseparenttreesassignals indicatingthepresenceofjuveniles(Janzen1970).Ifrodentsactasdistanceresponsive predators,searchingforseedsshouldbeconcentratedonareasaroundfruitingtrees.AtMt Tiger,karakaseedsweremorelikelytobeeatenbymammals(butnotinsects)whenunder parentsthan20maway(Figure5.3;Table5.1),andparenttreesatthissitewerefruiting heavilywhenIsetuptheexperiment.Thiseffectwasnotobservedinkarakaat Wenderholmorintaraire,wheremost“parent”treeswerenotfruitingorproducedvery fewfruits.Hostspecificinsectsfeedingintheparentcanopycanalsoactasdistance responsiveseedlingpredators.Iobservedinsectherbivoryonkarakaseedlings,which sufferedhighermortalityunderparents.Allelopathiceffectsandpathogensmayalsohave

87 contributedtolowerkarakagerminationsuccessandhighermortalityforeitherspecies underparents(Augspurger1984;Traveset1998;Packer&Clay2000). Densitydependenteffectsonsurvivaldifferedbetweenkarakaandtaraire.The increasedgerminationsuccessofwholetarairefruitsathighdensitycomparedtolow density(Table5.2a)iscontrarytowhatmightbeexpected.Detrimentalpathogenstendto increaseathighdensities(Janzen1970),andfruitpulpcanbecomeinfectedwithfungior bacteriathatmaypreventgermination(Traveset1998).Reducedtaraireseedpredationand seedlingmortalityathighdensity(Table5.5a)maybeduetosatiationofmammalianseed predatorsoutsidecagesandofinsectseedlingpredatorsinsidecages(Janzen1970).In contrast,karakaseedlingsexhibitednegativedensitydependentmortality(Table5.5b).

5.5.2 Fruit pulp removal

Fruitpulpremovalwasmoreimportantfordecreasingseedpredationthanincreasing germinationsuccess,particularlyforkaraka(Table5.5).Germinationexperimentsare oftenconductedunderartificialconditions(inglasshousesorlaboratories),wherethe breakdownoffruitpulpandleachingofpulpinhibitorsisprobablylowerthanunder naturalconditions(Kellyetal.2004).Burrows(1996)testedkarakagerminationsuccess onfilterpaperinpetridishesandfoundzerogerminationinwholefruits.Burrows(1996) resultsindicatedthatkarakacouldbehighlydependentonkererutoingestfruits(Kellyet al.2004).Whentestedinthefieldhowever,germinationsuccesswashighforbothwhole karakafruitsandprocessedseeds(Robertsonetal.2006).Karakaseedscommence germinatingsomemonthsaftersowing,allowingtimeforinsectsandmammalstoremove thefruitpulppriortogermination.Thesefindingsreinforcerecentrecommendationsto conductgerminationexperimentsinthefield(Traveset&Verdú2002;Kellyetal.2004; Robertsonetal.2006). Tarairefruitpulpremovalatthestartoftheexperimentincreasednotonly germinationsuccess,butalsoseedlingsurvivalandgrowth(Table5.5a),whichmayhave beenduetohigherlevelsofseedpredation(whichcontinuespostgermination)inwhole fruits.Seedlingsoflargeseededspeciessuchastarairedrawonseedreservesformany monthsaftergermination,andseedattackisprobablydetrimentaltosurvival.Higherlevels ofpathogensandfungicanalsooccurinwholefruits(Traveset1998),whichmayincrease seedlingmortality.

88

5.5.3 The role of introduced mammals

Separatingtheeffectsofintroducedmammalsanddispersalfailureisdifficult,as mammalscanaffectplantregenerationinnumerousways.Nevertheless,myresultsshow thatsurvivalofbothtaraireandkarakawasgreaterwhenmammalswereexcluded(Table 5.5;Figure5.10).Theeffectwasgreaterinkaraka,wheresurvivaltobothoneandtwo yearsincreasedbyuptotwofoldwhenmammalswereexcluded(Figure5.10).Evenat Wenderholm,wherepestcontrolisintensive,introducedmammalsdecreasedkaraka survivalby28%afteroneyearand34%aftertwoyears.Tarairesurvivaltooneyear decreasedby27%whenmammalswerenotexcluded. Shiprats( Rattus rattus )andkiore( Rattus exulans )eatthepulpanddestroythe seedsofmanynativeNewZealandplantsspecies(Beveridge1964;Daniel1973;Williams etal.2000).Shipratswereprobablyresponsiblefortherodentseedpredationatsitesused inthisstudy.KiorearenowlargelyabsentfromtheNewZealandmainland,whileshiprats arethemostwidespreadrodentinlowandmidaltitudenativeforests(King1995,pp.178 &213;Campbell&Atkinson2002).Onoffshoreislands,kioredepresskarakaseedling recruitmentcomparedtoseedlingestablishmentinratproofexclosures(Campbell& Atkinson2002).Someseedpredationinthisstudywasprobablyalsoduetopossums, whichareknowntoeatthefruitpulpanddestroyseedsofbothkarakaandtaraire(Cowan 1990;Dijkgraaf2002). Karakaandtaraireseedpredationlevelswereextremelylowcomparedtopredation levelsmeasuredelsewhere(e.g.Wenny2000).Theproportionofcleanedkarakaseeds removedoreatenbymammals(9%ofuncagedseeds)wasalsolowercomparedtoasite withoutmammalcontrol(19%removaloveratwoweekperiod;Moles&Drake1999). However,becausemammalseedpredationcanoccurovermanymonths,MolesandDrake (1999)probablyseriouslyunderestimatedtheactuallevelsofseedpredation,andhencethe impactofpredationonforestregeneration. Kererudensitiesarelowerinthepresenceofintroducedmammals,becauserats, possums,stoats,andcatspreyonadults,chicks,and/oreggs(Cloutetal.1995b;Pierce& Graham1995;Innesetal.2004),andpossumscompetewithkereruforfood.Possumsand ratsalsolimitseedavailabilitybydestroyingunripeandripefruitsinthecanopypriorto dispersal(Campbell&Atkinson2002;Dijkgraaf2002).Whenpossumdensitiesarehigh, almostalltarairefruitsaredestroyedbeforeripening(Dijkgraaf2002,p.180).

89

5.5.4 Reproductive dependence on seed dispersal

Karakaandtaraireprovideaninterestingcomparisonofthepotentialrisk(thecombined likelihoodandimpact)ofdispersalfailure.Survivalofdispersed(excludingtheeffectsof caging)taraireseedsisaround3–4timesgreaterthanundispersedseedsafteroneyear. Taraireoftenfailstoregenerateunderitsowncanopy,andseedlingsarerarecomparedto othercanopyspecies(Dawson&Sneddon1969).Thethick,persistentlitterlayerthat formsbeneathtarairetreesmayinhibitregenerationoftaraireseedlings,alongwith browsingbyintroducedmammalsanddestructionofseedsbypigs,possums,shiprats,and insects(Dawson&Sneddon1969;Myers1984;Dijkgraaf2002).Becausetarairehasa muchhigheroverallmortalityratethankaraka,thecontrastbetweendispersedand undispersedseedsislessstriking.Tarairefruitsareapreferredfoodinthedietofkereru (McEwen1978),soprobablyhavehighdispersalrateswhenkereruarepresent. KarakaissometimesconsideredaweedinsomeareasofNewZealandwhereithas beenintroducedoutsideofitsnaturalrangeandoutcompetesothercanopyspecies(Costall etal.2006).Denseswardsofkarakaseedlingsareoftenfoundbeneathadulttrees, particularlyfollowingexclusionoflivestock.Nevertheless,survivalofdispersedkaraka seedsisupto15timeshigherthanundispersedseedsatbothoneandtwoyears.Thehigh densitiesofkarakaseedlingsunderneathconspecificadultsareprobablyduetopoor dispersal,askarakaisnotafavouredfoodofkereru(Powleslandetal.1997;Dijkgraaf 2002).Karakawasalsodispersedhistoricallythroughcultivationbyhumans(Costalletal. 2006),whichmayhaveenabledittopersistdespitelowpalatabilitytofrugivorescombined withpoorsurvivalofundispersedseeds.Seedsmayalsobedispersedbygravityandin streamsorotherwatersources,whichmaycontributetokarakaregeneration.Because survivalratesfordispersedkarakaseedsarehigh,raredispersaleventsmaybesufficient forpopulationmaintenanceorsuccessfulcolonisationofnewsites.Karakaaremore vulnerabletomammalpredationthantaraire;thus,thecombinedbenefitsofseeddispersal andmammalexclusionincreasedtarairesurvivalbymorethansevenfoldandkaraka survivalbyfourtoseventeenfold. Inoneofthefewsystemswheretheconsequencesofdispersalfailurehavebeen testedexperimentally,BondandSlingsby(1984)showedthatinadequatedispersal increasedpostdispersalseedpredationofProteaceousplants.TheintroducedArgentine ( Iridomyrmex humilis )displacesnativeantspeciesinSouthAfricanfynbos.Inareas withoutnativeants,Argentineantsarepoordispersersofnativeandseeds

90 suffermuchhigherlevelsofpredation(Bond&Slingsby1984).Inaddition,seedburialby nativeantsbuffersProteaceaepopulationsfromextinctionafterfire.Argentineantsfailto buryseeds,causingregenerationfailureinProteaceaeafterfireinareaswithoutnativeants (Christian2001). Someplantspeciesmaybebufferedfromextinctionbytraitsincludingvegetative reproduction,persistentseedbanks,orstoragestructures(Bond1994).Thereisno evidenceforpersistentseedbanksineithertaraireorkaraka,butkarakatreesproduce basalstemsproutsthatappeartobecapableofreplacingthemainstemsoftheparenttree iftheydie(Burrows1994b).

5.5.5 Consequences of dispersal failure

Tomyknowledge,thisisonlythesecondstudyofdispersalfailuretodemonstrate experimentallythatrecruitmentofundispersedseedsislowerthandispersedseeds,andthe firstwasinaspecialisedantfiresystem(Christian2001).Moststudieshaveinferreda detrimentaleffectofdispersalfailureonrecruitmentusingobservationalmethods,which areunabletodistinguishbetweentheeffectsofdispersalandothercauses(e.g.Chapman &Chapman1995;Cordeiro&Howe2003;Traveset&Riera2005).Theconsequencesof seeddispersaldisruptionmaynotbecomeevidentforalongtime,especiallyinlonglived treespecies.Forestsmaycontainadulttreesthatareunabletoreproduceduetothelossof orseeddispersers—thesocalled“livingdead”(Janzen1986).Anexampleof thismayoccuronsomePacificIslands,whereseeddispersingpigeonsarenowextinctand fruitbatshavedeclinedsubstantiallyduetohunting,predation,andhabitatloss (McConkey&Drake2002).Onislandswherefruitbatsstillpersist,thebatsareineffective dispersersatlowpopulationdensitiescomparedtohighdensities(McConkey&Drake 2002). Thedisruptionofseeddispersalmutualismsmayhavenotonlyecological,butalso evolutionaryconsequences(Rieraetal.2002).Legitimateseeddisperserscanexert selectionpressureonplantpopulations,forexamplebyselectingforparticulartraitssuch asfruitsizeorcolour(Lordetal.2002;Rieraetal.2002).Frugivoreactivitycanalso stronglyinfluencethelocalgeneticstructureofplantpopulations(Shapcott2000;Jordano &Godoy2002).Metapopulationeffectswerenotmeasuredinthisstudy,butmaybe extremelyimportantforforestmaintenanceinafragmentedlandscape.Dispersalfailure andintroducedmammalsbothhavenegativeconsequencesfortheregenerationoftaraire

91 andkaraka.Theeffectsofkereruseeddispersalareunexpectedlylargeandpersistfor surprisinglylongperiods,beyondthedispersalandgerminationstages.

92

93 Chapter 6. Seed size variation, potential replacement dispersers, and effects on seedling size

Karaka( Corynocarpus laevigatus )fruits

6.1 Abstract

TheNewZealandpigeon(kereru, Hemiphaga novaeseelandiae )isreportedtobethesole remainingwidespreaddisperseroflargeseededfruits.Manyauthorsassumethattheloss ofkererufromnativeforestswillhaveseriousconsequencesfortheregenerationoflarge seededtrees.However,remaininganimalspeciesmayreplacekereruasseeddispersersif itbecomes(locally)extinct.Iaskedthefollowingquestions:(1)Dolargeseededfruits varysufficientlyindiameterwithinaspeciesforfrugivoresotherthankererutopotentially dispersethesmallerfruits?(2)Havefrugivoresotherthankererubeenrecordedeating fruitsoflargeseededspecies?(3)Ifonlysmallfruitswithinaspeciesaredispersed,willit affectseedlingsize? Fruitdiameterwithinaspeciesvariedconsiderablyforthreelargeseededspecies measured,withinpopulations,betweensites,andbetweenyears.Birdsotherthankereru havebeenobservedfeedingonfruitsofnearlyalllargeseededspecies.Birdsroutinely swallowfruitslargerthantheirmeangapesize,duetofruithandlingmethods,

94 discrepanciesbetweenmeasuredgapewidthandactualbillcapacity,andvariationingape widthwithinabirdspecies. Aglasshouseexperimentwithtawa( Beilschmiedia tawa )showedthatlargeseeds producedlargerseedlings,withasimilarmeaneffectsizeafterbothoneandtwoyears. Smallseededtawaseedlingsdidnotcompensatefortheinitialdisadvantageofsmallsize withhigherrelativegrowthrates.

6.2 Introduction

Theextinctionofanimalseeddisperserscanhavemajorconsequencesforplant populationsandcommunities(Christian2001).Theextenttowhichdispersersare ecologicallyredundantwillinfluencehowgreataneffecttheirdisappearancewillhave (Christian2001;Loiselle&Blake2002).Ifmultipledispersersareperformingthesame ecologicalrole,thenthelossofonedisperserwillprobablynothaveanoticeableimpacton plantpopulations(Loiselle&Blake2002).However,wheredispersalinteractionsaremore specialised,otherfrugivoresmaybeunabletoprovideeffectivedispersalservices(Loiselle &Blake2002).Dispersaloflargeseededspeciesismorevulnerabletodisruptionthan smallseeds,asfeweranimalspeciesarelargeenoughtodisperselargeseeds(Wheelwright 1985;Kitamuraetal.2002). Followingtheextinctionofadisperser,remainingornewlyintroducedspeciesmay shifttheirbehaviourandactasecologicalsubstitutesinseeddispersal(Loiselle&Blake 2002).Forexample,McConkeyandDrake(2002)suggestthatflyingfoxeshavereplaced anextinctpigeonindispersinglargeseedsinTonga.Introducedspeciescanalsoactas seeddispersersinplaceofthelostnativemutualists(Loiselle&Blake2002),although theymaynotprovideeffectivedispersalservices(Bond&Slingsby1984;Rieraetal. 2002;Ness2004). Gapewidthtendstolimitthesizeoffruitsavianfrugivorescanswallow, particularlyforsingleseededfruits(Wheelwright1985).Asaresult,birdsthatactas replacementdispersersforlargeseededspeciesmayselectsmallerthanaveragefruits. Largerseedsoftenhaveahigherprobabilityofseedlingsurvivalandestablishmentunder stressfulconditions,bothamong(Leishman&Westoby1994;Westobyetal.1997;Moles &Westoby2004)andwithinspecies(Howe&Richter1982;Vaughton&Ramsey1998; Paz&MartínezRamos2003;Baralotoetal.2005).However,seedlingsfromsmallseeds tendtohavehigherrelativegrowthratesthanlargeseededseedlings,especiallywhen

95 resourcesarenotlimiting(Bloor&Grubb2003;Baralotoetal.2005).Thistradeoff betweensurvivalandgrowthratecouldresultinsimilarestablishmentprobabilitiesfor smallandlargeseeds. FollowingthearrivalofhumansinNewZealand,anumberofbirdspecieswere driventoextinction(Holdawayetal.2001).TheNewZealandpigeon(kereru, Hemiphaga novaeseelandiae )isreportedtobethesoleremainingwidespreaddisperseroffivelarge seededplantspecieswithfruitsgreaterthan14mmindiameter(Clout&Hay1989). Kererupopulations,however,arethreatenedbyillegalhunting,habitatloss,andintroduced predators(McEwen1978;Cloutetal.1995a;Cloutetal.1995b).The(local)extinctionof kererucouldhaveseriousconsequencesforlargeseededtreesifseedsarenotdispersed. Othernativeandintroducedbirdsmaybeabletoactasdispersersifsomefruits withinaspeciesaresmallenoughforthemtoswallow.However,therearenopublished dataonfruitsizedistributionsforanyofthelargeseededspecies,whicharemost vulnerabletodispersalfailure.Iaskedthefollowingquestions:(1)Dolargeseededfruits varysufficientlyinsizewithinaspeciesforfrugivoresotherthankererutopotentially dispersethesmallerfruits?(2)Havefrugivoresotherthankererubeenrecordedeating fruitsoflargeseededspecies?(3)Ifonlysmallfruitswithinaspeciesaredispersed,willit affectseedlingsize(thebestavailablemeasureofseedlingfitness)?

6.3 Methods

6.3.1 Study sites and species

Clout&Hay(1989)reportedthatthefruitsofkaraka( Corynocarpus laevigatus ),tawa (Beilschmiedia tawa ),andtaraire( B. tarairi )areallgreaterthan14mmindiameter,and consequentlykereruaretheonlybirdcapableofswallowingfruitsofthesespecies.Karaka isacanopytreethatgrowsupto20mtallandoccursasfarsouthasBanksPeninsulain theSouthIslandofNewZealand(Costalletal.2006).Tawagrowsupto30mtalland occursthroughouttheNorthIslandofNewZealand,whereitisoneofthemaincanopy treespeciesinlowlandforests.TawaisalsofoundintheSouthIsland,whereitoccursto around42°S(Knowles&Beveridge1982).Taraireisacanopytreethatgrowsupto20m ormoretallandisfoundinlowlandandcoastalforestfromthenorthoftheNorthIslandto latitude38°S(Allan1961).Taraireandtawafruitsareimportantinthedietofkereru

96

(McEwen1978),butkarakafruitsarenotfavouredbykereru(Powleslandetal.1997; DMWpersonalobservation). IcollectedkarakafruitsfromOtariWilton’sBush,(41°15′57″S,174° 45′18″E)in2004(n=40)and2005(n=92)andfromMtTigerBush,Whangarei(35° 45′04″S,174°23′20″E;n=100)in2005.TawafruitswerecollectedfromOtari Wilton’sBush(n=167)andTeMarua,Wellington(41°06′34″S,175°09′12″E;n=59) in2004andfromOtariWilton’sBush(n=100)andBlueDuckReserve,Kaikoura(42° 14′10″S,173°46′59″E;n=100)in2005.Icollected100tarairefruitsfromNgunguru Rd,Whangarei(35°40′08″S,174°21′36″E)in2005.Allsiteswerelocatedinnative forestwithinthedistributionalrangeofthespeciesstudied.Foreachspecies,Icollected wholefruitsdirectlyfromtreeswherepossible,orelsefromtheground.Fruitswere collectedfromand/orbeneathanaverageof13treesandthediameteroffruitsmeasured withdigitalcallipers.

6.3.2 Tawa seedling size experiment

IconductedaseedlinggrowthexperimentinaglasshouseattheUniversityofCanterbury, ChristchurchusingtawaseedscollectedinWellingtonin2004.Iweighedcleanedseedsto anaccuracyof0.01gtoobtainfreshweightsandplacedeachseedinaseparatelabelled, sealedplasticbaguntilsowing.Isowed225tawaseedsindividuallyinfour60cellseed 1 1 1 traysinseedsowingmix(containing /3peat, /3sand, /3finebark,superphosphate,and dolomitelime).Iplacedseedsrandomlybothwithincellsandtraysandlabelledeachcell withtheseednumber.Seedswerepressedlightlyintotheseedsowingmix,sprinkledwith additionalmixandcoveredwithfinegraveltopreventpredatoryfliesfromlayingeggson theseeds.Trayswereplacedintheglasshousewheretemperaturewasmaintainedabove5° Cbutotherwiseunheated. Measuringdrymassrequiresdestructivesampling;Ithereforeestimatedtawaseed initialdrymassusing20seedscollectedfromBlueDuckReserve,Kaikourain2005and notusedinthegrowthexperiment.Iweighedtheseseeds,driedthemat70°Cfor72hours inpaperenvelopesandreweighedthem.Ithenreturnedtheseedstotheovenforafurther 24hoursandreweighedthemtoconfirmtheyhaddriedtoaconstantweight.This relationshipwasusedtoestimatethedryweightsoftheseedsatthestartoftheexperiment fromtheirfreshweights. Atoneyear,Imeasuredseedlingheightfromthefirstleafnodetothestemtip.The firstleafnodeprovidesaneasyandconsistentguidetodecidingwhererootsendandthe

97 stembegins(Evans1972).Measuringseedlingheightfromthesoilsurfacemay accidentallyallocatetissuefromthestemtotherootorviceversa,duetovariationinseed depthatgermination(Evans1972).Ialsomeasuredthelengthofthelongestleaf,and countedthenumberofleavesforeachseedling.Tomeasureseedlingbiomass,Iharvested tawaseedlingsatoneandtwoyearsaftersowing.Atoneyear,Iharvestedseedlingsofthe 25lightestand25heaviestseedsand50randomlyselectedotherseedsbycuttingthestem atthefirstleafnodeusingsecateurs.Iplacedtheshoot(stemandleaves)ofeachharvested seedlinginaseparate,labelledpaperbagandplacedtheminadryingovenwithin2.5 hoursofharvesting.Afterdryingat70°Cfor48hoursIcooledseedlingsinadesiccatorin batchestopreventmoistureabsorptionandweighedthem.Ireturnedseedlingstothe dryingovenforafurther24hoursat70°C,andthenreweighedtenseedlingstoconfirm thattheyhaddriedtoaconstantweight. Itransplantedallremainingseedlings(n=100)intolargerindividualpotswith pottingmixcontaining9monthslowreleasefertiliser.Attwoyears(oneyearafter repotting),Iharvestedboththeshootsandrootsofafurther70seedlings.Althoughthere wasnomortalitybetweenoneandtwoyears,someseedlingshadbrownleavesandso werenotharvested.Icutseedlingstemsatthefirstleafnodeandplacedtheshootofeach seedlingintoaseparate,labelledpaperbag.Irepeatedthedryingandweighingprocess carriedoutatoneyear(describedabove),placingshootsinadryingovenwithin2.5hours ofharvesting.Ithengentlyseparatedseedlingrootsfromthepottingmix,rinsedthem undertapwatertoremoveanyremainingparticles,andplacedtherootsofeachseedling intoaseparate,labelledpaperbag.Seedshaddisintegratedbythisstage.Rootswere placedinadryingovenwithinfivehoursofharvesting.

6.3.3 Statistical analysis

Ianalysedtherelationshipbetweentawafreshanddryseedmassusinglinearregression.I thenestimatedthedrymassofseedsusedinthegrowthexperimentusingthisregression equation.Ianalysedtheeffectofestimatedinitialseeddrymassongerminationsuccess, andsurvivalofgerminatedseedstooneyear,usingbinomialgeneralisedlinearmodels. Foralltawaseedlingssurvivingatoneyear,Iusedlinearregressiontoanalysethe relationshipbetweenestimatedinitialseeddrymassand(1)thenumberofleaves(log transformed),(2)longestleaflength,and(3)seedlingheight.Fortawaseedlingsharvested atoneyear,Ialsoanalysedtherelationshipbetweenestimatedinitialseeddrymassand finalaboveground(shoot)drymass,usinglinearregression.Fortwoyearoldseedlings,I

98 usedlinearregressiontoanalysetherelationshipbetweenestimatedinitialseeddrymass and(1)shootdrymass,(2)rootdrymass,and(3)totalseedlingdrymass.Ialsoanalysed therelationshipbetweenestimatedseeddrymassandrelativegrowthrateintawa seedlingsaftertwoyearsusinglinearregression.Relativegrowthrate(RGR)was calculatedusingtheequation: log(finalseedlingdrymass(g))–log(seeddrymass(g)) RGR=——————————————————————— numberofdaysaftersowing whichgivesseedlinggrowthrate(ingg –1day –1)overthetwoyearperiodofthe experiment.IcarriedoutallanalysesusingRversion2.4.1(RDevelopmentCoreTeam 2006).

6.4 Results

6.4.1 Fruit size variation

Meanfruitdiameteracrosssitesandyearsrangedfrom16.8mm(±1.6SD)fortawa,to 19.1mm(±2.4)forkaraka,and19.4mm(±1.3)fortaraire.Fruitdiametervaried considerablywithinpopulationsforallthreespecies,andbetweenyearsandsitesfor karakaandtawa(Figure6.1).TawafruitscollectedfromtwositesinWellington(Otari Wilton'sBushandTeMarua)in2004didnotdiffersignificantlyinfruitdiameter,andare showncombinedinFigure6.1(twosamplettest,t=–0.41,d.f.=224,P=0.68).Karaka fruitswerethemostvariable,rangingindiameterfrom12.0–31.1mm.

99 Cumulative % 0 20 40 60 80 100

10 15 20 25 30 Fruit diameter (mm)

Figure 6.1 Variationinfruitdiameteramongsitesandyearsforthelargeseededtrees karaka( Corynocarpus laevigatus ),tawa( Beilschmiedia tawa ),andtaraire( B. tarairi ). Karakafruitsareshowninorange(Wellington2004=solidline,Wellington2005=dotted line,Whangarei2005=dashedline).Tawafruitsareshowninpurple(Wellington2004= solidline,Wellington2005=dottedline,Kaikoura2005=dashedline).Tarairefruitsare showninlightblue.

100

6.4.2 Potential replacement dispersers

BasedonbirdgapesizesofmuseumspecimensreportedbyClout&Hay(1989),noneof thefruitsmeasuredweresmallenoughtobeswallowedbybirdsotherthankereru. However,Anderson(1997,andpersonalcommunication)measuredgapesizesinlivebirds fortui(n=2),blackbirds(n=9),saddlebacks(n=14),(n=3),bellbirds(n= 22),and(n=22).Forsomespecies,gapessizeswerelargerinAnderson(1997) comparedtothosereportedbyClout&Hay(1989;Table6.1).Anderson(1997)also reportedthemeanandstandarderroraboutthemean,andthemaximuminhersamples (Table6.1).BasedonAnderson’s(1997)data,the95 th percentileforbellbirdgapewidthis 8.2mm,whichcorrespondswellwiththemaximumobserved(8.5mm).Fortuithereare fewdata,butthelargerofthetwomeasuredwas11.0mm,andfromthissmallsamplethe 95thpercentilewouldbearound12.7mm,whichmightallowthelargesttuitoswallow fruitsupto14mmindiameter.Forkaraka,0–2.5%offruitsfromWellington(in2004and 2005respectively)and1%offruitsfromWhangareiwere14mmorlessindiameter.A greaterproportionoftawafruitswerelessthanorequalto14mmindiameter(3.5%and 11%ofWellingtonfruitsin2004and2005respectively,and1%ofKaikourafruits).No tarairefruitscollectedwere14mmorlessindiameter. Thereareisolatedreportsofnativebirdsotherthankererueatingfruitsofall specieswithfruitsgreaterthan14mmindiameter,exceptfortawapou( Planchonella costata ;Table6.1),whichisrare.Tuihavebeenreportedeatingfruitsofmostofthelarge seededtreespecies(Table6.1),includingoneobservationofaflockofaround12 individualsfeedingontawafruits(Booth1984).Kokakoeattawaandtarairefruitsand stitchbirdshavebeenreportedeatingfruitsofkaraka,althoughbothofthesebirdsare extremelyrare(Table6.1).Higginsetal.(2001)alsolistedstitchbirdsfeedingonkaraka fruits,butIwasunabletofindthisintheircitedreference(Gravatt1969),andhave thereforenotincludeditinTable6.1.Therearenoknownpublishedrecordsofintroduced birdseatingfruitsinthecategory>14mmindiameter(Table6.1). Allreportsofbirdsfeedingonlargeseededfruitswerefromfeedingobservations, ratherthandefecationofseeds,andfruithandlingmethodswereusuallynotreported. Dijkgraaf(2002)diddistinguishfruitswallowingfrompulptheft,notingthatsilvereyes peckedkarakafruitpulpratherthanswallowingfruitswhole(notincludedinTable6.1). Dijkgraaf(2002)observedtuiswallowingpuririfruitsonthreeoccasions(11%oftui frugivoryobservations),andmynaononeoccasion(10%ofmynafrugivoryobservations).

101

However,birdsforaginginthecanopyareoftendifficulttoobserve,andforsomeofthe recordsinTable6.1itispossiblethatthebirdswerefeedingoninsectsorflowers,or peckingatfruitpulp.

102 Table 6.1Birdspecies †recordedfeedingonfruitsoflargeseededplantspeciesinNewZealand.AdaptedfromClout&Hay(1989=a)with additionalbirdfeedingobservationscollatedbyJennyLadleyandDMW(b=Oliver1955,p.503;c=Gibb1970;d=Fallaetal.1978,p.204;e =Stewart1980,p.26;f=Booth1984;g=Myers1984,p.55;h=Flux1994;i=O'Donnell&Dilks1994;j=Anderson1997,p.87;k=Higgins etal.2001,p.957;l=Dijkgraaf2002,p.145;m=Williams2003).Ablankindicatesnodata.

Common Fruitdiameter 1 Plantspecies name Myna* Bellbird Stitchbird Saddleback Starling* Blackbird* Tui * Kokako Kereru Brownkiwi >14mm Corynocarpus laevigatus karaka b,d,e a Vitex lucens puriri l e,l a Beilschmiedia tarairi taraire ga B. tawa tawa f f,h a Planchonella costata tawapou a >10mm Prumnopitys ferruginea miro i a a a a a a Syzygium maire swampmaire a a Dysoxylum spectabile kohekohe j j,k j e,j a a a Litsea calicaris mangeao a a dentatus hinau a a a a Ripogonum scandens supplejack i i k a a a a a Clout&Hay(1989) 5 6 7 8 9 9 9 10 13 13 14 24 Gapesize(mm) Anderson(1997)and mean 5.1 6.5 7.6 7.1 10.7 10.8 11.8 Andersonpers.comm. SD 0.37 1.03 1.32 1.26 n 22 22 3 14 9 2 1 maximum 6.3 8.5 8.6 9.0 13.0 11.0 Largestfruitdiameter(mm)reportedswallowing 9.9 m 9.7 m 14 ‡ 25 c †ForfullbirdnamesseeHeatherandRobertson(2000);*indicatesintroducedspecies; ‡extrapolatedfromminimumkarakafruitdiameter.

103

6.4.3 Effect of seed size on seedling size

Freshmassforseedsusedinthetawagrowthexperimentvariedmorethansevenfold, rangingfrom0.5–3.8g(Figure6.2a).Therewasastrongcorrelationbetweenwetseed massanddryseedmassintawa(R 2=0.92,F=218.48,d.f.=18and1,P<0.0001), describedbythelinearregressionequation: Seeddrymass(g)=0.43xseedwetmass(g)–0.0074 Seedmasshadnoeffectongerminationsuccess(d.f.=1and223,deviance=69.1, residuald.f.=223,residualdeviance=68.44,Z=0.81,P=0.42),with96%ofallseeds sowngerminating.Seedmassalsohadnoeffectonsurvivaltooneyear(d.f.=1and215, deviance=114.22,residuald.f.=215,residualdeviance=114.1,Z=0.35,P=0.72),with 93%ofgerminatedseedssurviving.Tawaseedlingswerestillattachedtotheseedatone year,whichappearedtoberelativelyintact(Figure6.2b).

104

(a) (b)

Figure 6.2(a)Tawa( Beilschmiedia tawa )seedsvariedconsiderablyinsize,withseeds usedintheseedlinggrowthexperimentranginginwetmassfrom0.5–3.8g(Photo:Matt Walters);(b)Tawa( Beilschmiedia tawa )seedlingharvestedoneyearaftersowing.The relativelyintactseedisstillattachedtotheseedling. Afteroneyear,smallertawaseedshadproducedsmallerseedlingsthanlargerseedswith estimatedseeddrymasspositivelycorrelatedwithallmeasuresofseedlingsize(Figure 6.3).Seedmassexplained29%ofthevarianceinleafnumber(R 2=0.29,F=84.33,d.f.= 1and199,P<0.0001;regressionequation=1.7191+0.69634x)and33%ofthevariance inlongestleaflength(R 2=0.33,F=100,d.f.=1and199,P<0.0001;regressionequation =49.266+24.548x).Seedmasswasmorestronglyrelatedtoseedlingheightthanleaf numberorlength,explaining48%ofthevariance(R2=0.48,F=187.2,d.f.=1and199,P <0.0001;regressionequation=19.283+64.209x).Estimatedseeddrymasswasmost stronglycorrelatedwithshootbiomass,explaining58%ofthevarianceinseedlingabove groundbiomassatoneyear(R 2=0.58,F=138.3,d.f.=1and98,P<0.0001;regression equation=0.02338+0.41381x).

105

Althoughtherelationshipbetweenseedmassandseedlingsizewasstillsignificant aftertwoyears,therewasmuchmorevariationamongindividualseedlings(Figure6.4). Aftertwoyears,estimatedseeddrymassexplainedonly18%ofthevarianceinbothshoot drymass(R 2=0.18,F=16.44,d.f.=1and68,P=0.0001;regressionequation=2.4054x –0.2758)androotdrymass(R 2=0.18,F=15.83,d.f.=1and68,P=0.0002),and19% ofthevarianceintotalseedlingdrymass(R 2=0.19,F=17.51,d.f.=1and68,P< 0.0001;regressionequation=3.3779869x–0.0009248). Theeffectofseedmassonseedlingbiomassattwoyearswasdominatedbyfive largeseedsthatproducedlargeseedlings(Figure6.4).Whenthesefiveseedlingswere removedfromthetotalbiomassanalysis,theeffectwasstillsignificantbuttheamountof varianceexplainedwasmuchsmaller(R 2=0.08,F=5.251,d.f.=1and63,P=0.025). Seedlingsharvestedatoneyearhadamuchwiderseedmassrangethanthoseharvestedat twoyears(becausetheseedlingsfromthesmallestandlargestseedswereharvestedatone year).Whentherelationshipbetweenseeddrymassandshootdrymassatoneyearwas reanalysedusingonlythoseseedsinthesizerangeofseedsharvestedattwoyears,the amountofvarianceexplainedwasreducedby50%(R 2=0.29,F=21.23,d.f.=1and49,P <0.0001). Usingtheregressionequationsfortherelationshipbetweenseeddrymassand shootdrymass,an8foldincreaseinseedmass(from0.75to1.35g)confersaseedling sizeadvantageof1.7foldatoneyearand1.9foldattwoyears.Hence,therewasno evidencethatthemeaneffectofseedsizeonseedlingsizehadbecomeweakerwitha longergrowthinterval,eventhoughthevariancehadincreased.Therewasnorelationship betweenestimatedseeddrymassandrelativegrowthrateintawaseedlingsoverthetwo yearperiodoftheexperiment(R 2<0.001,F=4.1,d.f.=1and68,P=0.995;Figure6.4).

106

(a) (b) Log number ofleaves Longest leaflength (mm) 1.0 1.5 2.0 2.5 3.0 20 40 60 80 100

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Estimated seed dry mass (g) Estimated seed dry mass (g) (c) (d) Shootdry mass (g) Seedling height(mm) 50 100 150 0.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Estimated seed dry mass (g) Estimated seed dry mass (g) Figure 6.3Relationshipbetweenseeddrymassandseedlingsizeintawa( Beilschmiedia tawa )seedlingsatoneyear.(a)numberofleaves(R 2=0.29,P<0.0001);(b)lengthof longestleaf(R 2=0.33,P<0.0001);(c)seedlingheight(R 2=0.48,P<0.0001);(d)above grounddrymass(R 2=0.58,P<0.0001).Iestimatedseeddrymassfromseedwetmass usingaregressionequationderivedfrom20tawafruitswithknownwetanddryweights.

107

(a) (b) Root drymass (g) Shootdry mass (g) 0.5 1.0 1.5 2.0 1 2 3 4 5

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 Estimated seed dry mass (g) Estimated seed dry mass (g) (c) (d) Total dry mass(g) Relativegrowth rate 0.0005 0.0010 0.0015 0.0020 1 2 3 4 5 6 7 8

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 Estimated seed dry mass (g) Estimated seed dry mass (g) Figure 6.4Relationshipbetweenseeddrymassandseedlingsizeandgrowthratesintawa (Beilschmiedia tawa )seedlingsattwoyears.(a)aboveground(shoot)drymass(R 2=0.18, P=0.0001);(b)rootdrymass(R 2=0.18,P=0.0002);(c)totalseedlingdrymass(R 2= 0.19,P<0.0001);(d)relativegrowthrate(gg –1day –1;R2<0.0001,P=0.995).Iestimated seeddrymassfromseedwetmassusingaregressionequationderivedfrom20tawafruits withknownwetanddryweights.

108

6.5 Discussion

6.5.1 Seed size variation and potential replacement dispersers

Largeseededfruitsvariedconsiderablyinsizeandinmostspeciesfewerthan5%offruits were14mmorlessindiameter,whichtuicouldpotentiallyswallow.Birdsotherthan kereruhavebeenobservedoccasionallyeatingfruitsofkaraka,tawa,taraire,andother largeseededspecies(Table6.1).Althoughgapewidthgenerallylimitsthesizeoffruits thatcanbeswallowed(Wheelwright1985),somebirdsavoidgapelimitationbysquashing fruitsinthebillbeforeswallowingthem(Levey1987).Silvereyeshaveevenbeen observedwhackingmistletoefruitsagainstbranchestoforcethemdowntheirthroats (Ladley&Kelly1996).Measuredgapewidthsareonlyaroughestimateofbillcapacity (Clout&Hay1989),andgapewidthalsodiffersamongindividualbirdswithinaspecies (Anderson1997). Kereruareanextremeexampleofgapelimitationavoidance,foralthoughtheir gapewidthis14mm,thedistensiblegapeenablesthemtoswallowfruitsupto25mmin diameter(Gibb1970).Clout&Hay(1989)reportedthatblackbirds,tui,andthrushes dispersefruitsbetween10–14mmdiameter,eventhoughthesebirdshavemeasuredgapes of9–10mm.Multipleauthorshavereportedtuifeedingonkarakafruits(Oliver1955; Fallaetal.1978;Stewart1980),whichaveragearound19mmindiameter,thoughtui mightbeexpectedtotakemainlythesmallestfruit.Silvereyesdispersedseedsfrom severalspecieswithameanfruitdiameterofnearly10mm,almosttwicetheirmeangape widthof5mm,andbellbirds(withamean6–7mmgapewidth)alsoswallowedfruitsof thissize(Williams&Karl1996).Anderson's(personalcommunication)workshowsthat partofthismaybeduetolargerindividualbirds,whichoftenhavegapesizes2530% largerthanthemean. Whileseedsizewithinaplantspeciesgenerallydecreaseswithincreasinglatitude (Moles&Westoby2003),birdmass(andpresumablygapewidth)increases(Ashton 2002).However,asmostofthespecieswiththelargestfruitsarerestrictedtonorthern NewZealand(Allan1961),anyadditionaloverlapintheuppergapelimitofalternative dispersersandthelowerlimitinfruitdiametermaybelimited.Specieswithmedium seizedfruits(10–14mmdiameter)suchasmiro( Prumnopitys ferruginea ),hinau ( ),andsupplejack( Ripogonum scandens )arefoundfurthersouth, whereawiderrangeofpotentialdispersersmaybeavailable.

109

Althoughspeciessuchastuimaydisperselargeseededtreespeciesonly occasionally,raredispersaleventscanhaveadisproportionateeffect(Clarketal.1998b). Forexample,carnivorousmammalsremovedonlyaround15%of Prunus mahaleb fruits, butwereresponsiblefor67%oflongdistancedispersalevents(Jordanoetal.2007). Nevertheless,frugivoresmayavoidtreeswheretheyareabletoswallowonlyasmall proportionofavailablefruits. Basedonpublishedfeedingobservations,introducedbirdsdonotappeartobe potentialreplacementdispersersforthelargestofthelargeseededspecies.Although blackbirdsandthrusheseatmediumsizedfruitssuchassupplejackandmiro,introduced birdsdonoteatlargequantitiesoffruitsfromnativeplants(Kellyetal.2006).Inareview ofavianfruitvisitorstonativeplantsinNewZealand,introducedbirdscontributedon average5%tofruitvisits(Kellyetal.2006).Blackbirdswerethemostimportant introducedbirdcontributing3.9%toallfruitvisits,butcontributionsbytherare saddlebackwerenearlyashigh,eventhoughitwaspresentatonlyoneofthetenstudy sites(Kellyetal.2006). Introducedmammalsmayhavethepotentialtoactasreplacementseeddispersers inNewZealand,althoughsmallmammalsareunlikelytodisperselargeseededspecies. Miceandkioregenerallydestroyallseedseaten,whileshipratsdisperseonlysomesmall seededspecies(Williamsetal.2000).Possumsactasbothseeddispersersandseed predators,butapparentlydonotswallowfruits>10mmindiameter(Cowan1990; Williamsetal.2000;Dunganetal.2002).Pigsareprimarilyseedpredators,destroying seedsoftaraire(Dawson&Sneddon1969),hinau,matai( ),andmiro (Beveridge1964),butcandispersesomeseedsintact(Beveridge1964;Williams2003). Knowles&Beveridge(1982)reportedthatpigseatlargequantitiesoftawafruits,butdid notcommentonwhetheranyoftheseedswereintact.Thepotentialforotherlargebodied introducedmammalsincludinggoatsanddeertodisperseseedsisunknown.Quantitative studiesarerequiredtoascertainwhetheranybirdsandintroducedmammalsareimportant alternativedispersersoflargeseededtreesinNewZealand.

6.5.2 Effects of seed size on seedling size

Dispersalofonlysmallseedsbyreplacementfrugivoresmaybedetrimentaltoseedling growth,andconsequentlyseedlingfitness.Intawa,smallerseedsproducedsmaller seedlingswhengrowninaglasshouse,evenaftertwoyears.Themeaneffectofseedsize onseedlingsizewascomparableatbothoneandtwoyears.Importantlyhowever,evenin

110 theglasshousethevarianceexplainedbyseedsizedecreasedovertime,asotherfactors affectingseedlinggrowthaccumulated(takingabovegrounddrymassandasimilarrange ofpredictorsizes,theR 2wentdownfrom0.29to0.18fromthefirstyeartothesecond). HoweandRichter(1982)foundastrongeffectofseedmasson Virola surinamensis seedlingsizeafter15weekswhenseedlingsweregrownintheglasshouse. V. surinamensis seedlingsalsoappearedtodobetterwithasmallseededconspecificcompetitorthana largeseededone(Howe&Richter1982).Forsevenspeciesof Psychotria testedinthe field,seedmasshadapositiveeffectonseedlingbiomassinfivespeciesandonsurvivalin sixspeciesafteroneyear(Paz&MartínezRamos2003). Tawaseedlingsfromsmallseedsdidnotcompensatefortheinitialsize disadvantagesofsmallseedmassbyhavingahigherrelativegrowthratethanlargeseeded seedlings.Higherrelativegrowthratesinsmallseededseedlingsappeartobecommon, bothwithin(Paz&MartínezRamos2003;Baralotoetal.2005)andamongspecies(Bloor &Grubb2003). Undernaturalconditions,environmentalfactorsthatareabsentintherelatively benignconditionsinaglasshousecouldhaveasignificanteffectonseedlingmortality. Largerseedscanhaveanestablishmentadvantageunderarangeofenvironmental stressors,includingshade(Leishman&Westoby1994),herbivoryorseedlingdamage (Green&Juniper2004),anddeeplitter(Molofsky&Augspurger1992).Greaterseed resourcescanincreasetheabilityofseedlingstosupportmetaboliccarbondemandsinlow lightlevelsortoresproutafterdamage(Green&Juniper2004).PazandMartínezRamos (2003)foundthatpositiveeffectsofseedmassonsurvivalandgrowthwerestrongerunder naturalconditionsthaninaglasshouse,wheretheyweremostlyrestrictedtoseedlingsat lowlightlevels.However,environmentaldisturbancesuchasheavyrainfalleventsand branchortreefallcouldsignificantlyaffectsurvivalandareprobablyindependentofseed orseedlingsize.Hence,inthefieldsmallerseedlingsmaysometimesoutlivelarger conspecificsbychancealone.Toconfirmtheeffectofseedmassonseedlingsizeintawa, experimentsshouldbeconductedinthefield.Fieldexperimentswillalsoclarifywhether largerseedlingsizeconfersasurvivaladvantageundernaturalconditions,where environmentalstochasticitymayoverrideanybenefitsoflargesize.

111 Chapter 7. Fruit size preference in the New Zealand pigeon (Hemiphaga novaeseelandiae )2

Kereruhaveadistensiblegape,enablingthemto swallowlargefruitssuchastawa(Photo:MattWalters).

7.1 Abstract

WeinvestigatedwhethertheNewZealandpigeon Hemiphaga novaeseelandiae (Columbidae)exhibitssizebasedpreferencesforfruits.Wetestedthehypothesisthatin smallfruitedspecies,pigeonswouldpreferlargerfruits,butinlargerfruitedspecies,this preferencewouldreverseasthepigeonsbecomeincreasinglylimitedbytheirgapesize. Wecollectedundispersedfruitsandbirddispersedseedsoftenplantspecies,someover severalsitesoryears(13datasetsintotal).Weestimatedthefruitsizeofdispersedseeds byfittingregressionsoffruitdiametertoseeddiameterinintactfruits.Wewereableto predictfruitdiameterfromseeddiameterin12ofthe13populations,althoughthe relationshipwasstrongerinsingleseededspeciesthaninmultiseededspecies.Sevenof thetwelvepopulationstestedshowedasignificantdifferenceinseeddiameteramong undispersedanddispersedseeds.However,ourresultsshowednoconsistentpatterninfruit

2Thischapterhasbeenacceptedforpublication(Wotton&Ladleyinpress).Contributions:JJL&DMW collecteddata;DMW&JJLanalyseddata;DMWwrotemanuscript.

112 sizepreferencebytheNewZealandpigeonanddidnotsupportourhypothesis.Thelarge bodiedNewZealandpigeonisgenerallynotgapelimitedandfruitsizepreferencesappear tobeindependentofmeanfruitsize.

7.2 Introduction

Variationinfruitsizehasimportantimplicationsfortheevolutionoffruiteatinganimals andtheplantstheydisperse.Inorderfordisperserstoinfluencetheevolutionoffruittraits, frugivoresmustbeabletodiscriminatebetweenandhavepreferencesforparticularfruit characteristics.Iffrugivoresshowedsizebasedpreferences,therecouldbeimportant consequencesforplantfitnessandevolution.Nonrandomremovaloffruitsbyanimal frugivorescanaffectplantfitnessifitchangestheprobabilityofrecruitment.Thisinturn mayinfluencetheevolutionoffruittraitswheresomeofthevariationinthattraitis heritable(Wheelwright1993). Anumberoffactorsinfluencefruitchoiceinfruiteatinganimals,includingfruit colour,fecundity,andfruitsize.Althoughthesetraitsvaryconsiderablyamongdifferent plantspecies,therecanalsobesubstantialvariationwithinaspecies.Fruitsizeisaprime candidateforcoevolutionbetweenplantsandtheirdispersers,asitiscorrelatedwith dispersertype(Jordano1995a),canbehighlyvariablewithinaspecies(Michaelsetal. 1988),andisheritableinatleastsomespecies(Wheelwright1993;Chengetal.2004). Recentresearchalsoindicatesanassociationbetweenevolutionarydivergencesinseed massanddivergencesinseeddispersalsyndrome(Molesetal.2005). Fruitorseedsizecandifferamongyears,amongpopulations,amongplantswithin apopulation,andamongfruitswithinanindividualplant(Howe&VandeKerckhove 1981;Jordano1984;Michaelsetal.1988;Obeso1993;Wheelwright1993;Jordano 1995b;Parciak2002).Althoughthisvariationinfruitsizemayshapetheinteraction betweenfrugivoresandtheirfoodplants,selectionforcesmaybeactinginopposing directions.Fruitsizeisgenerallycloselycorrelatedwithseedsize(Wheelwright1993; Alcantara&Rey2003),andbothlargeandsmallseedshavedifferingadvantages. Althoughlargefruitsprovideagreaterreward,frugivorescanbelimitedbytheirgape widthinthemaximumsizeoffruitstheycanswallow(Wheelwright1985;Jordano1987). Thisisparticularlytrueforsingleseededfruits,whichusuallyhavetobeswallowedwhole tobedispersed.Inmultiseededspecies,frugivoresmayavoidgapelimitationbybitingoff piecesofthefruitormashingfruitspriortoswallowing(Levey1987).Fleshyfruited

113 plantswithsmallerseedsthereforetendtohavemorespeciesofpotentialdispersers (Wheelwright1985;Kitamuraetal.2002),andsmallerseedsmaybemorelikelytobe dispersed(Howe&VandeKerckhove1981).Largerseedsarebeneficialduringseedling establishmentunderawiderangeofconditions(Howe&Richter1982;Howeetal.1985; Leishman&Westoby1994;Westobyetal.1997;Moles&Westoby2004).Therefore selectionineitherdirectioncouldhaveimportantconsequencesforplantrecruitment. Bothphysicallimitstofruithandlingoringestion(includinggapelimitation),and profitabilitymayinfluencefruitsizeselectionbyfrugivores.Foraginganimalsusedecision cuessuchasfruitsizeasanindicatorforthemostprofitablefooditem(Barnard&Brown 1981).Fruitsizepreferencebybirdswithinaplantspecieshasbeenmeasuredinonlya fewstudies(Howe&VandeKerckhove1981;Sallabanks1993;Wheelwright1993; Parciak2002;Alcantara&Rey2003).Thesestudiesallmeasuredfruitsizepreferencefor asingleplantspecies,andresultsamongthemareinconsistent.Formultiseededspecies,a lackoffruitsizepreferencesinatleastsomefrugivorespeciesmaybeaccountedforby fruithandlingtechniquesthatenablegapelimitationavoidance(Levey1987).Forspecies withsingleseededfruits,wepredictthatbirdsarelikelytoconsumelargerthanaverage fruitswhen(1)fruitsaresmallrelativetothesizeofthebirdandgapesizeisnotalimiting factor;and(2)whenallfruitsareequallyaccessible,orlargefruitsaremoreaccessible,or therewardforlargerfruitsoutweighsthecosttofrugivoresinsearchingforthem.In contrast,birdsarelikelytoconsumesmallerthanaveragefruitswhen(1)fruitsarelargein comparisontothesizeofthebirdsogapesizelimitsconsumptionoflargerfruits;or(2) smallfruitsaremoreaccessibleorpalatablethanlargefruits.Theaimofthisstudywasto investigatewhetherthereisaconsistentpatterninfruitsizeselectionbyasingleavianseed disperseracrossseveralplantspecies. InthispaperwetestedwhetheranimportantNewZealandfrugivore,theNew Zealandpigeon( Hemiphaga novaeseelandiae ,Columbidae)selectsfruitsnonrandomlyby sizefromthefruitsonoffer.TheNewZealandpigeonisvirtuallythesoledisperserof fruitsgreaterthan10mmindiameterinNewZealand(Clout&Hay1989).Other frugivoresthatpreviouslydispersedlargefruitedspeciesinNewZealandareeitherextinct orsorestrictedindistributionthattheynolongerprovideeffectivedispersal(Clout&Hay 1989).NewZealandpigeonsconsumefruitsofatleast70differentplantspecies(Clout& Hay1989),acrossawiderangeoffruitsizes.ThegapewidthoftheNewZealandpigeon is14mm(Clout&Hay1989),althoughitsdistensiblegapeenablesittoswallowfruitsup to25mmdiameter(Gibb1970).Therearenoprecisedataonfruitsizedistributionsfor

114 largefruitedspeciesinNewZealand.Therefore,wedonotknowhowmanyspecieshave fruitsofadiameterabovethepigeon’sgapelimit.Ifsomefruitsarelargerthanthe swallowingcapacityofthepigeon,gapelimitationwilloccur.Wetestedthehypothesis thatinsmallfruitedspeciespigeonswillpreferlargerthanaveragefruits,butinlarge fruitedspeciesthispreferencewillreverseasthepigeonsbecomeincreasinglygape limited.

7.3 Methods

7.3.1 Study sites and species

TheNewZealandpigeonisalarge(c.650g)pigeon(Cloutetal.1995b)thateatsonly fruits,flowers,and(whenfruitisscarce)leaves(McEwen1978).NewZealandpigeons swallowfruitswholeanddefecatetheseedsintact.Althoughregurgitationiscommonfor manyavianfrugivores(Levey1986),thishasbeenreportedonlyonasingleoccasionfor theNewZealandpigeon(McEwen1978).Althoughthepigeoniswidespreadthroughout NewZealandandrelativelycommon,itisthreatenedbyhabitatloss,predationby introducedmammalianpests,andillegalhunting(McEwen1978;Cloutetal.1995a;Clout etal.1995b). ThisstudywascarriedoutateightsitesfromaroundNewZealandwithinthe distributionalrangeoftheplantspeciesstudied(Table7.1).Allsiteswerelocatedinnative forest.WecollecteddatafortenplantspeciesknowntobeconsumedbytheNewZealand pigeon(McEwen1978).Priortoourstudy,itwasunknownwhichofthestudyspecieshad fruitsgreaterindiameterthantheswallowinglimitofpigeons(25mm).Weincludedfour specieswithafruitdiametergreaterthan14mm(thelimitabovewhichtheNewZealand pigeonistheonlyknowndisperser;Clout&Hay1989),threespecieswithadiameter between10mmand14mm(forwhichtheNewZealandpigeonistheonlywidespread disperser;Clout&Hay1989),andthreespecieslessthan10mminfruitdiameter. Foreachspecies,wecollected100fallenintactfruits(hereafterreferredtoas “undispersed”)frombeneathanaverageofeleventrees.Atthesametimewecollected between41and100dispersedseedsofthesamespecies.Birddispersedseedswereeasily recognisable,withthefruitpulpcleanlyremoved,andseedsoftendepositedbeneath perches.Eachspecieswascollectedatoneortwositesandforonetothreeyears(Tables

115

7.1and7.2).Thelengthandwidthoffruitsandseedsweremeasuredwithdigitalcallipers andthenumberofseedswithineachfruitwasalsorecorded. Althoughwegenerallydidnotseebirdsdefecatingthedispersedseeds,weare confidentthattheNewZealandpigeonwastheprimaryfrugivoreforthedispersedseeds wecollectedforthisstudy.Themajorityofthespeciesstudiedweretoolargeforother frugivorestoswallow(Clout&Hay1989).Inaddition,wemadedirectobservationsofthe NewZealandpigeonfeedingonfruitsanddefecatingseedsofthestudyspeciesata numberofthesitesatthetimeofcollection.Atmanyofthesites,theZealandpigeonwas themostabundantortheonlyfrugivorousbirdobserved.Forthethreespecieswithafruit diameterlessthan10mm(pigeonwood (Hedycarya arborea ),ngaio (Myoporum laetum ), andnikau (Rhopalostylis sapida ))therewasarangeofpotentialdispersersinadditionto pigeons.However,pigeonwoodseedsatKaikourawerecollectedfromlargepilesofseeds typicallyfoundbeneathpigeonroosts.Pigeonsweretheonlybirdsweobservedfeedingon pigeonwoodfruitsattheNorthlandsite,andalsoonnikaufruitsintreesbeneathwhichwe collectedseedsinCanterbury.WeobservedpigeonsfeedingonngaiofruitsinAkaroaon otheroccasions,butfruitsmayalsohavebeeneatenbynativebellbirds( Anthornis melanura )andsilvereyes( Zosterops lateralis ),orintroducedstarlings( Sturnus vulgaris ) andblackbirds( Turdus merula ).Kohekohe( Dysoxylum spectabile )andsupplejack (Ripogonum scandens )fruitsmayhavebeeneatenbybothtui( Prosthemadera novaeseelandiae )andpigeons,althoughpigeonsaremostcommonlyobservedfeedingon thesefruits.

116 Table 7.1 Theplantspeciesandsitesforwhichundispersedandbirddispersedfruitsandseedswerecollected.Latitudeandlongitudearegiven asdegrees,minutes,andseconds. Plantspecies Commonname Region Site Latitude(S) Longitude(E) Elevation(m) Corynocarpus laevigatus karaka Northland MtTigerRd 35 ° 45′04″ 174 ° 23′20″ 180 Dysoxylum spectabile kohekohe Northland WhaleBay 35 ° 33′29″ 174 ° 30′04″ 40 Myoporum laetum ngaio Canterbury Akaroa 43 ° 48′11″ 172 ° 58′16″ 40 Rhopalostylis sapida nikau Canterbury NikauPalmGully 43 ° 52′01″ 172 ° 57′36″ 160 Hedycarya arborea pigeonwood Kaikoura BlueDuckReserve 42 ° 14′10″ 173 ° 46′59″ 420 Hedycarya arborea pigeonwood Northland MtTigerRd 35 ° 45′04″ 174 ° 23′20″ 180 Ripogonum scandens supplejack Kaikoura BlueDuckReserve 42 ° 14′10″ 173 ° 46′59″ 420 Syzygium maire swampmaire Kapiti NgaManuReserve 40 ° 51′47″ 175 ° 0 3′36″ 10 Beilschmiedia tarairi taraire Northland NgunguruRd 35 ° 40′08″ 174 ° 21′36″ 115 Beilschmiedia tawa tawa Kaikoura BlueDuckReserve 42 ° 14′10″ 173 ° 46′59″ 420 Planchonella costata tawapou Northland WhaleBay 35 ° 33′29″ 174 ° 30′04″ 40

117

7.3.2 Statistics

Fordispersedseedsweknewonlytheseedsize,notthefruitsizebeforeingestion. Therefore,wefirstanalysedwithinspeciestherelationshipbetweenseeddiameterand fruitdiameterforundispersedseedsusinglinearregression,toestablishwhetherseedsize couldbeusedtopredictfruitsize.Next,weusedANOVAtodeterminewithinspecies whethermeanseeddiameterdifferedamongdispersedandundispersedseedsforeach speciesateachsiteandyearofcollection. Finally,weanalysedtheeffectofmeanfruitdiameteracrossplantspeciesonfruit sizepreferencewithinspeciesusinglinearregression.Fruitsizepreferencewascalculated foreachspeciesasthemeandiameterofundispersedfruitsminusthemeanestimated diameterofdispersedfruits(calculatedusingregressionequationsderivedabove,Table 7.2).AlldatawereanalysedusingRversion2.1.1(RDevelopmentCoreTeam2005).

7.4 Results

Meanfruitdiameterrangedfrom8.0–20.1mm(Table7.3).Onlyonespecies(karaka, Corynocarpus laevigatus )hadfruitslargerthan25mmdiameter(Table7.4).Seed diameterinsingleseededspeciesexplainedbetween42–82%ofthevarianceinfruit diameter(Table7.2).Weusedtheseeddiameterofdispersedseedstopredictthesizeof fruitsthatwereconsumedforsingleseededspecies. Thecorrelationwasmuchweakerformultiseededspecies.AlthoughPvalues werestatisticallysignificantfortwoofthethreemultiseededspecies,seeddiameter explainedonly24–25%ofthevarianceinfruitdiameterinthesetwospecies(Table7.2). Formultiseededspecieswesearchedforabetteralternativepredictoroffruitdiameter. Therewasasignificantandpositivecorrelationbetweenseedlengthandfruitdiameterin supplejack(R 2=0.654,F=220.6,P<0.001),asignificantbutextremelyweakcorrelation inkohekohe(R 2=0.029,F=4.96,P=0.027),andnocorrelationintawapou (Planchonella costata ;R2=0.002,F=0.227,P=0.635).Forsupplejack,weusedseed lengthtopredictfruitdiameter(regressionequation:1.2160+1.7092 x).Forkohekohe seeddiameterwasthebestpredictoravailable.Wewereunabletopredicttawapoufruit diameterfromundispersedtawapouseeds.Wethereforeexcludedtawapoufromthe ANOVAfordifferencesinseeddiameteramongdispersedandundispersedfruitsandfrom

118 theanalysisoftheeffectofmeanseeddiameteronfruitsizepreferenceacrossplant species. Sevenofthe12species/site/yearcollectionstestedshowedastatisticallysignificant differenceinseeddiameteramongdispersedandundispersedfruits(Table7.3).The diameterofdispersedseedswassmallerthanaverageinfourplantspecies,andlargerthan averageinthreespecies.Measureddifferencesbetweendispersedandundispersedseeds weregenerallylessthanonemillimetre. Althoughdispersedsupplejackseedsweresignificantlysmallerindiameterthan undispersedseeds,theywerealsosignificantlylonger(F=51.22,P<0.001,Table7.3). Seedlengthwasmorestronglycorrelatedwithfruitdiameterthanwasseeddiameter,so birdsappeartohaveselectedlargerfruits. Acrossallplantspecieswefoundnosupportforourhypothesisthatthedegreeof preferenceforlargefruitsinpigeonswasnegativelycorrelatedwithspeciesmeanfruit size.Therewasnocorrelationbetweenmeanfruitdiameterandfruitsizepreference(R 2 = 0.00427,F=1.047,P=0.3303,Figure7.1).Wealsoexaminedtherelationshipusingthe measuredsizeofdispersedseedsandresultsagreedwiththoseusingestimatedfruitsize (R 2=0.01031,F=0.1042,P=0.7535).

119

Table 7.2Relationshipbetweenfruitdiameterandseeddiameterofundispersedfruitsin allofthestudiedplantspecies.Formultiseededspeciesregressionswerecarriedoutusing allseedsfrombothsingleseededandmultiseededfruits.Pvaluesinboldindicatea regressionslopesignificantlydifferentfromzero.Regionabbreviations:1=Northland,2= Canterbury,3=Kaikoura,4=Kapiti. Species Region Year Regressionequation R2 F df P Single- seeded spp. karaka 1 2005 0.4923+1.2213 x 0.677 205.2 98 0.0001 ngaio 2 2005 2.9434+1.1847 x 0.541 115.7 98 0.0001 nikau 2 2005 4.1739+0.6562 x 0.417 69.94 98 <0.001 pigeonwood 3 2005 1.7260+0.9279 x 0.821 450.4 98 0.0001 pigeonwood 1 2005 0.6518+1.0823 x 0.803 399.9 98 0.0001 swamp 4 2006 6.52555+0.72883 x 0.527 109.1 98 0.0001 maire taraire 1 2005 5.9194+0.8640 x 0.652 183.5 98 0.0001 tawa 3 2004 3.6326+0.9821 x 0.526 108.7 98 0.0001 tawa 3 2005 1.9714+1.5249 x 0.697 341.4 148 0.0001 tawa 3 2006 5.9860+0.8295 x 0.529 110.0 98 0.0001 Multi- seeded spp. kohekohe 1 2005 4.2983+0.6834 x 0.244 52.9 164 <0.001 supplejack 3 2005 3.8720+0.9121x 0.254 39.84 117 <0.001 tawapou 1 2005 22.8780.3837 x 0.009 1.166 123 0.282

120 Table 7.3Comparisonofseedsizesfordispersedandundispersedfruits.Wepresentthemeandiameterandlengthofseeds(and,for undispersedfruits,offruits),andresultsofANOVAcomparingseeddiameterinundispersedvs.dispersedseeds.Allmeasurementsarein millimetres.TheANOVAexcludedtawapou,forwhichtherewasnosignificantcorrelationbetweenseeddiameterandfruitdiameter.Pvalues inboldindicateasignificantdifferencebetweendispersedandundispersedseeddiameters.WheretheFtestwassignificantthelargermeanseed diameterisindicatedinbold.Regionabbreviations:1=Northland,2=Canterbury,3=Kaikoura,4=Kapiti. Undispersed Dispersed ANOVA comparing seed diameters Species Region Year No. Fruit Fruit Seed Seed Seed Seed F df P seeds diam. length diam. length diam. length per fruit karaka 1 2005 1 20.1 28.2 16.1 24.8 15.1 23.3 9.72 1,139 0.002 kohekohe 1 2005 1–3 9.0 18.4 7.2 11.3 8.0 11.3 65.47 1,264 <0.001 ngaio 2 2005 1 8.0 8.8 4.3 7.7 4.4 8.0 3.00 1,198 0.085 nikau 2 2005 1 9.5 13.5 8.1 13.3 7.5 12.6 77.32 1,156 <0.001 pigeonwood 1 2005 1 9.7 13.8 8.3 12.0 8.6 12.0 7.52 1,198 0.007 pigeonwood 3 2005 1 9.2 13.6 8.1 12.2 7.3 11.1 121.32 1,198 <0.001 supplejack 3 2005 1–4 10.8 12.0 8.1 7.3 6.9 8.2 109.45 1,217 <0.001 swampmaire 4 2006 1 13.1 13.1 9.0 11.9 9.3 11.8 2.26 1,163 0.134 taraire 1 2005 1 19.4 31.6 15.6 29.3 15.5 28.6 0.14 1,168 0.707 tawa 3 2004 1 14.5 24.5 11.1 23.5 11.3 23.3 1.45 1,159 0.231 tawa 3 2005 1 15.7 24.3 11.6 22.6 12.2 24.3 8.54 1,248 <0.001 tawa 3 2006 1 16.1 27.4 12.1 26.5 11.9 25.4 3.54 1,198 0.061 tawapou 1 2005 1–5 17.5 29.5 10.3 23.8 10.4 24.2 — — —

Table 7.4Fruitdiameter,dispersergapewidthsandrelativesizeofdispersedversusundispersedfruitsforpublishedstudiesinvestigatingfruit sizepreferencesinaviandispersers.

Study Plantspecies Fruitdiam.range(mm) Dispersers(gapewidthinmm) Relativesize Wheelwright1993 Ocotea tenera 14.123.7 Pharomachrus mocinno (21.0 †) Larger Procnias tricarunculata (25.0 †) Aulacorhynchus prasinus (26.0 †) Ramphastos sulphuratus (31.0 †) Chamaepetes unicolor (31.0 †) Alcantara&Rey Olea europea var. sylvestris 5.2510.2 ‡ Turdus philomelos (13.7 §) Smaller 2003 Sylvia atricapilla (8.5 §) S. melanocephala (7.1 §) Erithacus rebecula (8.0 § ) Parciak2002 Prunus virginiana Notreported Bombycilla cedrorum (—) Smaller Turdus migratorius (—) HoweandVande Virola surinamensis Notreported Penelope purpurascens (—) Smaller Kerckhove1981 Trogon massena (—) Baryphthengus martii (—) Pteroglossus torquatus (—) Rhamphastos swainsonii (—) R. sulphuratus (31.0 †) Tityra semifasciata (18.0 †) Ateles geoffroyi (—) Sallabanks1993 Crataegus monogyna Notreported Turdus migratorius (—) Larger Thisstudy Beilschmiedia tawa (2004) 11.117.6 Hemiphaga novaeseelandiae (25.0 †† ) Nodifference B. tawa (2005) 11.520.3 Larger B. tawa (2006) 12.919.0 Nodifference B. tarairi 14.622.6 Nodifference Corynocarpus laevigatus 12.031.1 Smaller Hedycarya arborea (N) 8.111.4 Larger H. arborea (K) 8.010.5 Smaller Myoporum laetum 6.210.5 Nodifference Rhopalostylis sapida 8.39.5 Smaller Ripogonum scandens 6.213.0 Larger †GapewidthsfromWheelwright(1985); ‡fruitdimensionsfromReyetal.(1997),estimatedfromgraph; §gapewidthsfromHerrera(1984); †† swallowinglimitdueto 121 distensiblegape(Gibb1970).

122 Fruit size preference -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

8 10 12 14 16 18 20 Mean fruit diameter (mm)

Figure 7.1 Overallcorrelationbetweenmeanfruitdiameterandfruitsizepreferenceby NewZealandpigeons.Fruitsizepreferencewascalculatedbysubtractingthemean undispersedfruitdiameterfromthemeanestimateddispersedfruitdiameterforeachplant species.Valuesgreaterthanzeroindicateapreferenceforlargerthanaveragefruit,and valueslessthanzerorepresentapreferenceforsmallerthanaveragefruit.Allspeciesfor whichfruitdiametercouldbepredictedfromdispersedseedswereincludedintheanalysis. Singleseededspeciesarerepresentedbyfilledcircles,andmultiseededspeciesbyopen circles.Therelationshipwasnonsignificant(P=0.3303).

123

7.5 Discussion OurresultsdemonstratethattherewasnopatterntofruitsizepreferencesbytheNew Zealandpigeonacrossplantspecies,populations,andyears.Thisindicatesthatfactors otherthansizewerealso,ormainly,influencingfruitchoice.Gibb(1970)reportedthat accessibility,ripeness,andsizeallinfluencedfruitchoicebyNewZealandpigeonsfeeding onintroducedplums.Onepotentialbiasofourstudyisthatwecannotbecertainthatall dispersedseedsweredepositedbypigeons.Ifotherbirdsdispersedanyoftheseseedsit mayhaveinfluencedthesizeoffruitsselectedandanyinterferenceinselectionpatterns wouldbebiasedtowardsspecieswithsmallerfruits(forwhichmoredisperserswere available).However,basedonourobservationsandpublisheddataonavailabledispersers (Clout&Hay1989)webelievethatngaiowastheonlyspeciesthatmayhavebeen dispersedinanysignificantquantitybyalternativefrugivoresatthesiteandtimeof collection.Anotherpotentialsourceofbiasisthatwesampledundispersedfruitsfromthe groundratherthandirectlyfromtrees.Thismayhaveaffectedourresultsiffruitsfellor weredroppednonrandomly,comparedtoundispersedfruitsthatremainedonthetree. Althoughthedifferencesinfruitsizeweobservedamongdispersedand undispersedseedsweresmall,therelativedifferenceinrewardmayhavebeen disproportionate.Wheelwright(1993)reportedthata6%increaseinfruitdiameterresulted inan18%increaseinfruitpulp.However,thisdoesnotnecessarilycorrespondwitha directincreaseinthepulptoseedratio(Wheelwright1993),althoughitmaybemore likelyforsingleseededspecies(Jordano1992). Resultsfromtheliteratureappearedtobeconsistentwithouroverallhypothesis thatbirdswillpreferlargerfruitswhengapelimitationisabsentandsmallerfruitswhen gapelimitationispresent.Otherstudieshavereportedapreferencebyavianfrugivoresfor bothsmallerthanaveragefruits(Howe&VandeKerckhove1981;Jordano1995b;Parciak 2002;Alcantara&Rey2003)andlargerthanaveragefruits(Sallabanks1993; Wheelwright1993;Table7.4).Wewereunabletoassessthepresenceofgapelimitationin allofthesestudies,asgapewidthandfruitdiameterrangewerenotalwaysreported. Wherelargefruitsweredispersedmorefrequently(Wheelwright1993),frugivoreswere largerelativetofruitsandgapelimitationwaspresentinonlyoneofthefiveavailable dispersers(Wheelwright1985,1993).Wheresmallerfruitsweremorelikelytobe dispersed(Alcantara&Rey2003),thegapewidthsofthreeofthefouravailableavian

124 dispersersweretoosmalltoenablethemtoswallowthelargestfruits(Herrera1984;Rey etal.1997).Acrossplantspecies,consumptionratesbygapelimitedsylviidwarblers decreasedwithincreasingfruitsize(Jordano1987). Jordano(1995b)reportedthatdispersedseedshadasmallermassthanundispersed seeds.However,samplingwasundertakenatdifferenttimes,withundispersedseeds collectedatthestartofthefruitingseasonanddispersedseedsjustaftertheripefruitcrop hadbeenexhaustedbyfrugivores(Jordano1995b).Fruitsproducedlaterintheseasonare typicallysmallerthanthoseproducedearlier,asresourceavailabilitydeclines(references inParciak2002). TheNewZealandpigeonisgenerallynotgapelimitedwhenfeedingonthenative flora(thoughitcanbeforexampleonintroducedplums;Gibb1970).Thepigeon’sability toswallowfruitsupto25mmindiameter(Gibb1970)andtherelativelysmallsizeof fruitsintheNewZealandflora(Lord2004)meanthatlimitstoingestionaregenerally absent;onlyinthelargestfruitsofkarakadidgapelimitationoccur.Karakafruitsand seedswereusedhistoricallybyMaoriandplantedaroundsettlements(Costalletal.2006). Maorimayhavepreferentiallycultivatedkarakatreesthatproducedlargerfruits,providing acountervailingselectionforcetothatwhichmaybeimposedbypigeonpreferencesfor smallerfruit. Althoughfruitsizehasbeendemonstratedtobeheritableinatleastsomespecies (Wheelwright1993;Chengetal.2004),itisthoughttobeanhistoricadaptationto disperserselectionthatiscurrentlymaintainedbyphylogeneticinertiaand/or developmentalconstraints(Jordano1995a).NewZealandfruitsarerelativelysmall comparedtoAustralianandSouthAmericancongenerics,andbecomemoreellipticalwith increasingfruitsize(Lord2004).Boththesetraitsprovideevidenceforhistorical adaptationofNewZealandfruitstothecomparativelysmallbodiedaviandisperser assemblage(Lord2004).Thepigeonhasprobablyalwaysbeenthemostimportant frugivoreinNewZealand,duetoitslargesize,abilitytoflylongdistances,andhighly frugivorousdiet.However,thereisonlylimitedinformationonthedietofextinctbirds, anditisnotpossibletodeterminewhethertheyexertedanyselectionpressureonfruitsize evolutioninNewZealand.AsfruitselectionbytheNewZealandpigeonisgenerallynot constrainedbyfruitsize,anypreferencesshouldreflectvariationinotherfruitandplant traitspresentinindividualplantspecies.

125 Chapter 8. Synthesis

Themainobjectivesofthisthesisweretoassesstheeffectivenessofkereruasseed dispersers,andtodeterminetheimportanceofkereruseeddispersalforregenerationof largeseededtreespecies.Thischaptersynthesisesthemainresearchfindingswith informationfromotherstudiestoaddresstheseobjectives,anddiscussespotentialfuture researchdirections.

8.1 Effectiveness of kereru as seed dispersers

Seeddispersereffectivenessisdefinedasthecontributionadispersermakestoaplant’s futurereproduction,andhasbothquantitativeandqualitativecomponents(Schupp1993). Seeddispersalquantitydependsonthenumberofvisitsadispersermakes,andthenumber ofseedsdispersedpervisit(Schupp1993).Dispersalqualitydependsonthetreatmentof seedsinthedisperser’smouthandgut,andonseeddepositionpatterns(Schupp1993).

8.1.1 Dispersal quantity

Kereruareprimarilyfrugivorous,consumingfleshyfruitsfrommorethan70plantspecies (McEwen1978;Clout&Hay1989).KereruintheAucklandregionfedonfruitin90%of feedingobservations,whilefoliageandflowersmadeuptheremaining10%of observations(Dijkgraaf2002).Foreachspecies,theproportionofavailablefruitsthat kereruconsumeappearstodependondifferencesinfruitpalatabilityamongplantspecies. KereruatPelorusReserveinMarlboroughconsumedhugequantitiesofmirofruits(which areapreferredfood)overthecourseofthefruitingperiod(Clout&Hay1989).Onlya smallproportionofavailablekarakafruitsareeaten,indicatingthatkererudonotfavour thisspecies(Powleslandetal.1997;Dijkgraaf2002). Kererufruitremovalrateshavegenerallynotbeenquantified,althoughClout& Hay(1989)reportedonekereruthatremoved98mirofruitsperday(andnearly10,000 fruitsoverthefourmonthfruitingperiod)fromasinglemirotree.Thiskereruisestimated tohavetaken85%ofthetotalfruitcropfromonemirotree,whichitdefendedsuccessfully againstotherbirds(Clout&Hay1989).Kellyetal.(2006)foundthatkererumade17%of allfruitingplantvisitsacrossarangeofmostlysmallfruitedspecies.Theywerethethird mostimportantdispersernumericallyacrossallplantspecies,aftersilvereyesand bellbirds.Insevenof39caseskererumademorethan50%ofallvisits,includingformiro

126 inSouthWestland,wheretheymade93.7%ofvisits.Dijkgraaf(2002)reportedthe numberofingestedseedsandwholefruitscollectedfromseedtrapsbeneathparenttreesat sixAucklandsites.Kereruconsumed11%ofkarakafruitscollectedintraps,31%ofpuriri fruits,36%oftarairefruits,34%oftawafruits,and50%ofkohekohefruits(Dijkgraaf 2002).Theactualproportionofthetotalfruitcropconsumedwasprobablymuchhigher,as kererudeposit66–87%ofingestedseedsawayfromparenttrees(Table3.1,Chapter3), whichwouldnothavebeencollectedinseedtrapsbeneathparents.Nevertheless,thisdata maygiveanideaoftherelativefruitremovalratesamonglargeseededspecies,although theproportionofingestedseedsdepositedbeneathparentscandifferamongspecies(see below).

8.1.2 Dispersal quality

Kererudefecateseedsintactandseedtreatmentinthegutisgentle,sometimesenhancing germinationbyfruitpulpremovaland/orseedscarification(e.g.taraire;Chapter4;Myers 1984;Bell1996).Kereruingestionofmiroseedshadnoeffectongerminationsuccess comparedtowholefruits,butthisspecieshasrecalcitrantseedsthatcantakeoverfour yearstogerminate(Clout&Tilley1992). Althoughkereruwerehighlysedentaryattimes,remaininguptofiveandaquarter hoursatasinglelocationwithameanresidencetimeof32minutes(Chapter3),seed retentiontimeswererelativelylong(meanrange37–181minutes;Clout&Tilley1992; Wottonetal.inpress).Thus,formostplantspecieskererudefecatedthemajorityofseeds awayfromtheparenttree(Chapter3;Clout&Tilley1992;Bell1996),whichincreased theprobabilityofsurvivalinatleastsomelargeseededspecies(Table5.5,Chapter5). Kereruwereestimatedtodisperse66%offivefingerseeds,87%oftawaandpuririseeds (Table3.1,Chapter3),and65%ofmiroseedsawayfromparentplants(Clout&Tilley 1992). Bell(1996)quantifiedkereruseeddepositionpatternsfornikau,kahikatea,taraire, andpuriri.Kererudefecatednearly50%ofpuririseedsbeneathpuriritrees,butonly around10–20%ofnikau,kahikatea,andtaraireseedsbeneathconspecificadults(Bell 1996).Defecationpatternswererelatedtovariationinkererubehaviouramongtree species,withbirdsmostlikelytoremaininthesametreeafterfeedingonpuriri(63%of observations;Bell1996).Innikau,kereruremainedinthesametreeafterfeedingonly9% ofthetimeandrarelymovedtoanewnikautree(Bell1996).Bell’sfindingsareconsistent withtheresultsfrommyresearch,whichshowedvariationinresidencetimesamongtree

127 species(Table3.2,Chapter3).Fortaraireandkahikatea,kereruwerealsohighlylikelyto departtreesafterfeeding(69%and79%ofobservationsrespectively),andmovedto conspecifictreesonly13–14%ofthetime(Bell1996).Kererurestingsitesappeartobe influencedbytreearchitecture,andaregenerallyonlargebranches(presumablyfor increasedcomfortandstability)shelteredbythecanopy,whichmayreducetheriskof avianpredation(Bell1996).Kereruarealsomorelikelytodepositseedsofallspeciesin theforestinteriorthaningapsandforestedges(Bell1996). Inthisstudy,kererudispersed79–88%ofseedsupto100mfromthesourceand lessthan1%ofseedsuptoc.1,500m(Table3.1,Chapter3).Thesedispersaldistancesare comparabletothosereportedbyCloutandTilley(1992)foranindividualkereruthat dispersed40%ofseeds1030maway,and<2%over1kmfromthesource.Becauselarge seedstakelongertopassthroughthekereru’sgutthansmallseeds(Wottonetal.inpress), theyhavethepotentialtobedispersedlongerdistances(Chapter3).Kererucanmove distancesoftensofkilometres(Cloutetal.1986;Cloutetal.1991),sometimesinasingle flight(Harper2003),andprobablydisperseseedsthisfaronoccasion. Kereruappeartodepositseedsatvaryingdensities,dependingonthefruitspecies andindividualperchingpatterns,althoughseeddensitydepositionpatternshavenotbeen quantified.Thenumberofseedscontainedinadefecationappearstoincreasewith decreasingseedsize.Kererudefecatedthelargestseeds(e.g.tawa,taraire,andkaraka) singly,andtheslightlysmallerseedsofmiroandpuririonetothreeseedsatatime (Wottonetal.inpress).Mediumsizedseedssuchasnikauwereoftenfoundatmoderate densities(DMWpersonalobservation),whilemorethan60seedsofthesmallseeded mahoewerecountedinasingledefecation(DMWpersonalobservation).Somekereru havefavouredroostingorperchingsites,beneathwhichlargepilesofseedscan accumulate(DMWpersonalobservation;Figure8.1).Theeffectsofseeddensityon survivaldifferedbetweenspecies,withnegativedensitydependentmortalityinkarakaand positivedensitydependentmortalityintaraire(Table5.5,Chapter5).However,when kererudepositverylargepilesofconspecificseedsunderafavouredperchtheeffectson seedsurvivalseemcertaintobenegative. Kereruprovideeffectiveseeddispersalbyconsuminglargequantitiesoffruit, enhancingorhavingnoeffectongerminationsuccess,anddepositingmostseedsaway fromtheparent(whichenhancessurvivalinatleastsomespecies)atdistancesuptoat least1,500mandprobablyoccasionallytensofkilometres.Dispersaleffectivenessappears

128 todifferamongfruitspecies,reflectingdifferencesinboththetimekereruspendinfeeding treesandseedretentiontimes.

Figure 8.1 Largepileofseedsdefecatedbeneathakereruroost(Photo:DaveKelly).

8.2 Importance of kereru as dispersers of large- seeded trees

8.2.1 Consequences of dispersal failure

Kererudensitieshavedeclinedsignificantlysincethearrivalofhumans(Pierceetal. 1993),whichmayhavedecreasedboththeproportionofseedsdispersedanddispersal distances,andincreasedtheproportionofingestedfruitsdepositedbeneathparents.High kererudensitiesappeartodecreasekereruresidencetimesinfruitingtreesandincreasethe frequencyofmovementsbetweenforestpatchesduetoincreasedcompetitionforfruit (Cloutetal.1991). Therearefivewidelyrecognised,largeseededtreespeciesforwhichkereruare virtuallythesoledisperser:tawa,taraire,puriri,karaka,andtawapou(Clout&Hay1989). Dispersalfailuredecreasedtheprobabilityofsurvivalduringthefirsttwoyearsby60– 93%fortwoofthesespecies(karakaandtaraire,Figure5.10,Chapter5).Puririmayalso bevulnerabletodispersalfailure,asitappearsunabletoregeneratebeneathitsowncanopy (Campbell&Atkinson1999).Puririisbirdpollinatedaswell,whichmaymakeit

129 particularlysusceptibletomutualismdisruption.However,puririiscapableofproducing someviableseedsfromselfpollinatedflowers(Barrelletal.1997),andpuriripollination maybeadequatewheretuiarestillcommon,asseemslikelythroughmostoftheplant’s naturalrange(northernNewZealand;Higginsetal.2001).Therearenopublisheddataon pollinationratesinpuriri. Depressedseedlingrecruitmentresultingfromdispersalfailuremayultimatelylead toinadequateregenerationinlargeseededtreespeciesandsubsequentchangesinforest composition.AnyeffectswillbemostprevalentintheNorthIslandofNewZealand, wherelargeseededspeciesdominatemanyforests.

8.2.2 Potential replacement dispersers

Thefivelargeseededtreespeciesthatreportedlyrelyonkererufordispersalare sometimeseatenbyotherbirdspecies(Table6.1,Chapter6).Althoughdispersalbybirds otherthankereruislikelytobeuncommon,rareeventscanhaveadisproportionate influenceonplantrecruitment(Clarketal.1998b;Jordanoetal.2007).Tuimayprovide effectivedispersal,astheyaremuchmoremobilethankereru,withameanresidencetime ofonly11minutes(O'Connor2006).Tuiflycomparabledistancestokereru,withfrequent flightsof,andestimateddispersalofseedsto,1–200m(O'Connor2006)anddaily movementsofupto30km(Bergquist1985).Largeseededplantsalsomayhaverarelong distancedispersalbymeansotherthanbirds,includingwater,insideandoutside naturalisedmammalssuchaspigs,sheep,cattleandhorses,andaccidentaltransportby humans(e.g.indirtonvehicles).Suchprocessesarehardlystudied(Williamsetal.2000; Williams2003). Thedispersalofsmallerthanaveragetawaseeds(theonesalternativedispersers arecapableofswallowing)appearstoresultindecreasedseedlingsizethroughthefirst twoyears(Figures6.3and6.4,Chapter6).Towhatextentthisreducesthelongterm probabilityofseedlingsurvivalinthefieldremainstobeseen.

8.3 Future research directions

Tofullyassesstheeffectivenessofkereruasseeddispersers,quantitativedataonfruit removalratesandseeddepositiondensitiesshouldbecollected.Someofthemechanisms fordecreasedsurvivalofundispersedseedsinkarakaandtaraireremainunknown,and couldprovideaninterestingfollowuptothisstudy.Inparticular,althoughsomeofthe

130 reducedsurvivalunderparentswasexplainedbymammalstargetingfruitingtrees,the remainingdecreasewasunexplained.Arangeofpotentialfactorscouldhavecausedthis decrease,includinghostspecificpathogens,allelopathy,andthepresenceofdeepand persistentlitterbeneathparents.Theconsequencesofdispersalfailurealsoneedtobe assessedexperimentallyforotherlargeseededtreespecies,especiallypuriri,tawa,and tawapou. Thepotentialforotherbirdspeciesandintroducedmammalstoeffectivelydisperse largeseedsneedstobequantified.Systematicfeedingobservationscombinedwith collectionofdroppingswillenableanassessmentofdispersalquantitybyalternative species.Dispersalqualityshouldbedeterminedaswell,bycomparinggerminationsuccess ofingestedanduningestedseeds.Ifsomeviableseedsaredefecated,depositionpatterns (includingdispersaldistance),andtheireffectonsubsequentrecruitmentshouldalsobe quantified.Theconsequencesofdispersalofsmallerthanaverageseedsbypotential replacementdispersersshouldbetestedinthefield. Oneofthekeybenefitsofkereruseeddispersalmaybethemaintenanceof humanfragmentedmetapopulationsoflargeseededtreespecies.MuchofNewZealand’s remainingforesthabitatoccursinrelativelysmallandisolatedpatches.Becausetreesare relativelylonglived,amodellingapproachmaybethemostusefulinelucidatingthe effectsofkererudensityandlandscapestructureonseeddispersalbetweenpatchesand metapopulationmaintenance.Seeddispersalisalsoimportantforlocalgeneticstructure andgeneflowamongpopulations(Garcíaetal.2007)andgeneticmethodsmaybeuseful inestimatingpastratesofmovementofseedsamongpopulations.Inbreedingappearstobe particularlydetrimentalinlargestaturedplants(treesandshrubs),withcompletemortality ofinbredoffspringpriortomaturity(Scofield&Schultz2006).Thus,fragmentedtree populationsmaybeparticularlyvulnerabletoextinction(Scofield&Schultz2006)evenif thelonggenerationtimesmeanthatthiswouldtakemanyyearstoeventuate.Thegenetic consequencesofseeddispersalandforestfragmentationinNewZealandarecurrently unknown.Nevertheless,kererudispersalofseedsbetweenforestpatchesmaybeessential inmaintainingfragmentedmetapopulationsoflargeseededtrees.

131 Acknowledgements

AhugethankstoDaveKellyforbeingsuchawonderfulsupervisorandproviding encouragement,support,andadvicethroughoutmyPhD.Yourenthusiasm,insightful comments,andconfidenceinmearegreatlyappreciatedandIfeelprivilegedtohave workedwithyou.ThanksalsotomyassociatesupervisorMickCloutforallyouradvice duringplanningthethesisandfeedbackonchapters.Igreatlyappreciateyourtimeand expertise. ThanksheapstoJennyLadleyforallyourhelp,includingorganisingequipment, assistingwithfieldwork,andforprovidingadviceandmoralsupportthroughout.I’m gratefultoMaggieTischforprovidinglogisticalsupportandhelpingmewiththekereru radiotracking–thanksforyourenergy,positiveattitude,andwonderfulcompany.Thanks toMattWaltersforallyourhelpwithphotographyandgraphicaldesign,andtoDave Conderforassistanceattheglasshouses.ThanksalsotoRogerDunganformanyuseful discussionsandforprovidingstatisticaladvice. ThankstoChrisBerry,DeanBenvenuti,JaviRodríguez,Bev,Reuben Ferguson,andSueMolloyforassistancewithfieldwork.IamgratefultoRichardDuncan andAshleySparrowforstatisticaladviceontheseedfateexperiment,JohnThynefor calculatingthekererulocationdistancesinArcInfo,andRobbieHoldawaywhohelped writetheRcodefortheseeddispersalmodel. IamindebtedtotheAucklandRegionalCouncilforsupportingthisresearchinso manyways:forgivingpermissiontoconductresearchatWenderholmRegionalPark, funding,accommodation,andlogisticalsupport.ThanksinparticulartoTimLovegrove, NgaireSullivan,SueHill,RossGaastra,BarryGreen,andallthedutyrangersat Wenderholm.ThanksalsotoRayPierceforgivingpermissiontoconductresearchonhis propertyandforallthesupportprovided.WellingtonCityCouncil,KathyandDon Hutchinson,NgaManuReserve,DepartmentofConservation,BrianandFayeNarby,and otherlandownersaroundHinewai,Akaroa,andNewPlymouthalsogavepermissionto conductresearchontheirproperties.OranaWildlifeParkandWillowbankWildlife Reservekindlygavepermissiontoconductresearchonkereruintheiraviaries. ThankstoRalphPowleslandatDepartmentofConservationforallowingmeto radiotrackkereruinTaranakiandforadviceonkereru.ThanksalsotoKirstyMoranand SarahKiviatDoCforshowingmewheretofindradiotaggedkereruinTaranakiandall

132 yoursupportduringfieldworkthere.KirstenCampbellshowedmehowtoradiotrack kereruandletmefollowherradiotaggedbirds,forwhichIamgrateful.Thanksalsoto KerryJayneWilsonatLincolnUniversityforpermissiontotrackkereruonBanks Peninsulaandforusefuladvice.HughWilsonkindlygavepermissiontoconductresearch atHinewaiReserveandprovidedaccommodation.ThankstoJohnInnesatLandcare Researchfortheloanofradiotrackingequipment. DeanBenvenuti,RonnyGroenteman,MelissaHutchison,LauraYoung,andLisa BerndtprovidedmuchappreciatedmoralsupportandencouragementthroughoutmyPhD. KimMcConkey,AlistairRobertson,DougLeveyandananonymousreviewerprovided helpfulcommentsonearlierdraftsofthefruitsizepreferencechapter.Thankstoallthe peoplewhoprovidedinformationandshowedmearoundwhenIwaslookingforfield sites,especiallyNanPullmanofQEIITrust,andJohnandCathyHawleyforyour hospitalityatMarunui.SandraAndersonkindlyprovidedunpublisheddataonbirdgape widths,JoWardidentifiedcherrylaurel,RichardHoldawayprovidedinformationonmoa andotherbirdstuff,andRobertHoareidentifiedkarakainsectseedpredators. Iamgratefultoalltheorganisationsthatprovidedfinancialassistance,including grantsfromtheFoundationforResearchScienceandTechnology(contractC09X0503), AucklandRegionalCouncil,BrianMasonScientificandTechnicalTrust,Universityof Canterbury,RobertC.BruceTrust,andCanterburyBotanicalSociety.Iwassupportedby aUniversityofCanterburyDoctoralScholarship,aNewZealandFederationofGraduate WomenFellowship,andaRoyalForestandBirdProtectionSociety(NorthCanterbury Branch)StockerScholarship.ThisresearchwasconductedwithUniversityofCanterbury AnimalEthicsCommitteeapproval.

133 References

AfikD,KarasovWH1995.Thetradeoffsbetweendigestionrateandefficiencyin warblersandtheirecologicalimplications.Ecology76:2247–2257. AizenMA,FeinsingerP1994.Forestfragmentation,pollination,andplantreproductionin achacodryforest,Argentina.Ecology75:330–351. AlcantaraJM,ReyPJ2003.Conflictingselectionpressuresonseedsize:evolutionary ecologyoffruitsizeinabirddispersedtree, Olea europaea .Journalof EvolutionaryBiology16:1168–1176. AllanHH1961.FloraofNewZealandVolumeI.Wellington,P.D.Hasselberg.1085p. AndersonSH1997.Changesinnativeecosystemprocesses:thedynamicsofpollination anddispersalinNewZealandforests.UnpublishedMScthesis,Universityof Auckland,Auckland.171p. AshtonKG2002.Patternsofwithinspeciesbodysizevariationofbirds:strongevidence forBergmann'srule.GlobalEcologyandBiogeography11:505–523. AugspurgerCK1983.Seeddispersalofthetropicaltree, Platypodium elegans ,andthe escapeofitsseedlingsfromfungalpathogens.JournalofEcology71:759–771. AugspurgerCK1984.Seedlingsurvivaloftropicaltreespecies—interactionsofdispersal distance,lightgaps,andpathogens.Ecology65:1705–1712. BaralotoC,ForgetPM,GoldbergDE2005.Seedmass,seedlingsizeandneotropicaltree seedlingestablishment.JournalofEcology93:1156–1166. BarnardCJ,BrownCAJ1981.Preysizeselectionandcompetitioninthecommonshrew (Sorex araneus L.).BehavioralEcologyandSociobiology8:239–243. BarrellPJ,RichardsonTE,GardnerRC1997.Molecularmarkersandexperimental pollinationsrevealselffertilityandhighlevelsofnaturalinbreedingintheNew Zealandendemictree Vitex lucens (puriri).NewZealandJournalof35: 535–543. BellR1996.Seeddispersalbykereru( Hemiphaga novaeseelandiae )atWenderholm RegionalPark.UnpublishedMScthesis,UniversityofAuckland,Auckland.87p. BergquistCAL1985.Movementsofgroupsoftui( Prosthemadera novaeseelandiae )in winterandsettlementofjuveniletuiinsummer.NewZealandJournalofZoology 12:569–571.

134

BeveridgeAE1964.DispersalanddestructionofseedincentralNorthIslandpodocarp forest.ProceedingsoftheNewZealandEcologicalSociety11:48–55. BloorJMG,GrubbPJ2003.Growthandmortalityinhighandlowlight:trendsamong15 shadetoleranttropicalrainforesttreespecies.JournalofEcology91:77–85. BondW,SlingsbyP1984.Collapseofanantplantmutualism:theArgentineant (Iridomyrmex humilis )andmyrmecochorousProteaceae.Ecology65:1031–1037. BondWJ1994.Domutualismsmatter?Assessingtheimpactofanddisperser disruptiononplantextinction.PhilisophicalTransactionsoftheRoyalSocietyof LondonSeriesBBiologicalSciences:83–90. BoothDF1984.Classifiedsummarisednotes.Notornis31:40–85. BrookBW,BowmanDMJS2004.TheuncertainblitzkriegofPleistocenemegafauna. JournalofBiogeography31:517–523. BunceM,WorthyTHF,T.,HoppittW,WillerslevE,DrummondA,CooperA2003. ExtremereversedsexualsizedimorphismintheextinctNewZealandmoa Dinornis .Nature425:172–175. BurnhamKP,AndersonDR2001.KullbackLeiblerinformationasabasisforstrong inferenceinecologicalstudies.WildlifeResearch28:111–119. BurnsKC2006.WetaandtheevolutionoffleshyfruitsinNewZealand.NewZealand JournalofEcology30:405–406. BurrowsCJ1994a.Theseedsalwaysknowbest.NewZealandJournalofBotany32:349– 363. BurrowsCJ1994b.DoNewZealandforesttreesregeneratefromsprouts?Canterbury BotanicalSocietyJournal28:63–67. BurrowsCJ1996.GerminationbehaviourofseedsoftheNewZealandwoodyspecies , Corynocarpus laevigatus and Kunzea ericoides .NewZealand JournalofBotany34:489–498. BurrowsCJ,McCullochB,TrotterMM1981.Thedietofbasedongizzardcontents samplesfromPyramidValley,NorthCanterbury,andScaifesLagoon,Lake Wanaka,.RecordsoftheCanterburyMuseum9:309–336. CainML,MilliganBG,StrandAE2000.Longdistanceseeddispersalinplant populations.AmericanJournalofBotany87:1217–1227. CampbellDJ,AtkinsonIAE1999.Effectsofkiore( Rattus exulans Peale)onrecruitment ofindigenouscoastaltreesonnorthernoffshoreislandsofNewZealand.Journalof theRoyalSocietyofNewZealand29:265–290.

135

CampbellDJ,AtkinsonIAE2002.DepressionoftreerecruitmentbythePacificrat( Rattus exulans Peale)onNewZealand'snorthernoffshoreislands.Biological Conservation107:19–35. CampbellKL2006.Astudyofhomeranges,movements,dietandhabitatuseofkereru (Hemiphaga novaeseelandiae )inthesoutheasternsectorofBanksPeninsula,New Zealand.UnpublishedMScthesis,LincolnUniversity,Christchurch.116p. CardilloM,MaceGM,JonesKE,BielbyJ,BinindaEmondsORP,SechrestW,Orme CDL,PurvisA2005.Multiplecausesofhighextinctionriskinlargemammal species.Science309:1239–1241. ChapmanCA,ChapmanLJ1995.Survivalwithoutdispersers:seedlingrecruitmentunder parents.ConservationBiology9:675–678. CharalambidouI,SantamariaL,LangevoordO2003.Effectofingestionbyfiveavian dispersersontheretentiontime,retrievalandgerminationof Ruppia maritima seeds.FunctionalEcology17:747–753. ChengCH,SealAG,BoldinghHL,MarshKB,MacRaeEA,MurphySJ,FergusonAR 2004.Inheritanceoftastecharactersandfruitsizeandnumberinadiploid Actinidia chinensis (kiwifruit)population.Euphytica138:185–195. ChristianCE2001.Consequencesofabiologicalinvasionrevealtheimportanceof mutualismforplantcommunities.Nature413:635–639. ClarkJS,MacklinE,L1998a.Stagesandspatialscalesofrecruitmentlimitationin southernAppalachianforests.EcologicalMonographs68:213–235. ClarkJS,FastieC,HurttG,JacksonST,JohnsonC,KingGA,LewisM,LynchJ,Pacala S,PrenticeCandothers1998b.Reid'sparadoxofrapidplantmigration:dispersal theoryandinterpretationofpaleoecologicalrecords.BioScience48:13–24. CloutMN,HayJR1989.Theimportanceofbirdsasbrowsers,pollinatorsandseed dispersersinNewZealandforests.NewZealandJournalofEcology12 (Supplement):27–33. CloutMN,TilleyJAV1992.Germinationofmiro( Prumnopitys ferruginea )seedsafter consumptionbyNewZealandpigeons( Hemiphaga novaeseelandiae ).New ZealandJournalofBotany30:25–28. CloutMN,KarlBJ,GazePD1991.SeasonalmovementsofNewZealandpigeonsfroma lowlandforestreserve.Notornis38:37–47. CloutMN,GazePD,HayJR,KarlBJ1986.HabitatuseandspringmovementsofNew ZealandpigeonsatLakeRotoroa,NelsonLakesNationalPark.Notornis33:37–44.

136

CloutMN,DenyerK,JamesRE,McFaddenIG1995a.BreedingsuccessofNewZealand pigeons( Hemiphaga novaeseelandiae )inrelationtocontrolofintroduced mammals.NewZealandJournalofEcology19:209–212. CloutMN,KarlBJ,PierceRJ,RobertsonHA1995b.BreedingandsurvivalofNew Zealandpigeons Hemiphaga novaeseelandiae .Ibis137:264–271. ConnellJH1971.Ontheroleofnaturalenemiesinpreventingcompetitiveexclusionin somemarinemammalsandforesttrees.In:denBoerPJ,GradwellGRed. Dynamicsofpopulations.Wageningen,CentreforAgriculturalPublishingand Documentation.Pp.298–312. CordeiroNJ,HoweHF2003.Forestfragmentationseversmutualismbetweenseed dispersersandanendemicAfricantree.ProceedingsoftheNationalAcademyof SciencesoftheUnitedStatesofAmerica100:14052–14056. CostallJA,CarterRJ,ShimadaY,AnthonyD,RapsonGL2006.Theendemictree Corynocarpus laevigatus (karaka)asaweedyinvaderinforestremnantsof southernNorthIsland,NewZealand.NewZealandJournalofBotany44:5–22. CowanPE1990.Fruits,seeds,andflowersinthedietofbrushtailpossums, Trichosurus vulpecula ,inlowlandpodocarpmixedhardwoodforest,OrongorongoValley,New Zealand.NewZealandJournalofZoology17:549–566. CowanPE1991.EffectsofintroducedAustralianbrushtailpossums( Trichosurus vulpecula )onthefruitingoftheendemicNewZealandnikaupalm( Rhopalostylis sapida ).NewZealandJournalofBotany29:91–93. CowanPE,WaddingtonDC1990.Suppressionoffruitproductionoftheendemicforest tree, Elaeocarpus dentatus ,byintroducedmarsupialbrushtailpossums, Trichosurus vulpecula .NewZealandJournalofBotany28:217–224. DanielMJ1973.Seasonaldietoftheshiprat( Rattus R. Rattus )inlowlandforestinNew Zealand.ProceedingsoftheNewZealandEcologicalSociety20:21–30. DawsonJW,SneddonBV1969.TheNewZealandrainforest:acomparisonwithtropical rainforest.PacificScience23:131–147. DijkgraafAC2002.PhenologyandfrugivoryoflargefruitedspeciesinnorthernNew Zealandandtheimpactsofintroducedmammals.UnpublishedPhDthesis, UniversityofAuckland,Auckland.441p. DunganRJ,O'CainMJ,LopezML,NortonDA2002.Contributionbypossumstoseed rainandsubsequentseedgerminationinsuccessionalvegetation,Canterbury,New Zealand.NewZealandJournalofEcology26:121–128.

137

DuthieC,GibbsG,BurnsKC2006.Seeddispersalbyweta.Science311:1575–1575. EvansGC1972.TheQuantitativeAnalysisofPlantGrowth.AndersonDJ,GreigSmithP, PitelkaFAed,Blackwell.733p. FallaRA,SibsonRB,TurbottEG1978.TheNewGuidetotheBirdsofNewZealandand OutlyingIslands.Auckland,Collins.247p. FialhoRF1990.Seeddispersalbyalizardandatreefrog—effectofdispersalsiteonseed survivorship.Biotropica22:423–424. FisherBL1998.Insectbehaviourandecologyinconservation:preservingfunctional speciesinteractions.AnnalsoftheEntomologicalSocietyofAmerica91:155–158. FluxIA1994.SomepreliminaryresultsandobservationsonNorthIslandkokako productivityandecologyatMaparaWildlifeReserve,KingCountry,July1991 June1992.ScienceandResearchSeriesno.76.18p. FrenchK1996.ThegutpassagerateofSilvereyesanditseffectonseedviability.Corella 20:16–19. FukuiA2003.Relationshipbetweenseedretentiontimeinbird'sgutandfruit characteristics.OrnithologicalScience2:41–48. GarcíaC,JordanoP,GodoyJA2007.Contemporarypollenandseeddispersalina Prunus mahaleb population:patternsindistanceanddirection.MolecularEcology16: 1947–1955. GibbJA1970.Apigeon'schoiceofplums.Notornis17:239. GibsonJP,WheelwrightNT1995.Geneticstructureinapopulationofatropicaltree Ocotea tenera (Lauraceae)—influenceofavianseeddispersal.Oecologia103: 49–54. GodínezAlvarezH,ValienteBanuetA,RojasMartínezA2002.Theroleofseed dispersersinthepopulationdynamicsofthecolumnarcactus Neobuxbaumia tetetzo .Ecology83:2617–2629. GodleyEJ1971.Thefruitof Vitex lucens (Verbenaceae).NewZealandJournalofBotany 9:561–568. GodoyJA,JordanoP2001.Seeddispersalbyanimals:exactidentificationofsourcetrees withendocarpDNAmicrosatellites.MolecularEcology10:2275–2283. GravattDJ1969.Thefeedingecologyof(AvesMeliphagidae)onLittle BarrierIsland.UnpublishedMScthesis,UniversityofAuckland,Auckland.140p. GreenPT,JuniperPA2004.Seedmass,seedlingherbivoryandthereserveeffectin tropicalrainforestseedlings.FunctionalEcology18:539–547.

138

GreenRJ1993.Avianseeddispersalinandnearsubtropicalrainforests.WildlifeResearch 20:535–557. HamiltonMB1999.Tropicaltreegeneflowandseeddispersal.Nature401:129–130. HardestyBD,HubbellSP,BerminghamE2006.Geneticevidenceoffrequentlong distancerecruitmentinavertebratedispersedtree.EcologyLetters9:516–525. HarmsKE,WrightSJ,CalderonO,HernandezA,HerreEA2000.Pervasivedensity dependentrecruitmentenhancesseedlingdiversityinatropicalforest.Nature404: 493–495. HarperGA2003.NewZealandpigeon(kereru; Hemiphaga novaeseelandiae )crossing FoveauxStrait.Notornis50:174–175. HeatherBD,RobertsonHA2000.TheFieldGuidetotheBirdsofNewZealand.2nded. Auckland,Viking.440p. HerreraCM1984.AdaptationtofrugivoryofMediterraneanavianseeddispersers. Ecology65:609–617. HerreraCM2002.Seeddispersalbyvertebrates.In:HerreraCM,Pellmyred.Pp.185– 208. HigginsPJ,PeterJM,SteelWKed.2001.HandbookofAustralian,NewZealandand AntarcticBirds.Vol.5TyrantflycatcherstoChats.Melbourne,OxfordUniversity Press.1272p. HolbrookKM,SmithTB2000.Seeddispersalandmovementpatternsintwospeciesof Ceratogymna hornbillsinaWestAfricantropicallowlandforest.Oecologia125: 249–257. HoldawayRN,WorthyTH,TennysonAJD2001.Aworkinglistofbreedingbirdspecies oftheNewZealandregionatfirsthumancontact.NewZealandJournalofZoology 28:119–187. HoweHF1977.Birdactivityandseeddispersalofatropicalwetforesttree.Ecology58: 539–550. HoweHF1979.Fearandfrugivory.AmericanNaturalist114:925–931. HoweHF,VandeKerckhoveGA1981.Removalofwildnutmeg( Virola surinamensis ) cropsbybirds.Ecology62:1093–1106. HoweHF,RichterWM1982.Effectsofseedsizeonseedlingsizein Virola surinamensis awithinandbetweentreeanalysis.Oecologia53:347–351. HoweHF,SmallwoodJ1982.Ecologyofseeddispersal.AnnualReviewofEcologyand Systematics13:201–228.

139

HoweHF,SchuppEW,WestleyLC1985.Earlyconsequencesofseeddispersalfora neotropicaltree( Virola surinamensis ).Ecology66:781–791. HyattLA,RosenbergMS,HowardTG,BoleG,FangW,AnastasiaJ,BrownK,GrellaR, HinmanK,KurdzielJPandothers2003.Thedistancedependencepredictionofthe JanzenConnellhypothesis:ametaanalysis.Oikos103:590–602. InnesJ,NugentG,PrimeK,SpurrEB2004.Responsesofkukupa( Hemiphaga novaeseelandiae )andotherbirdstomammalpestcontrolatMotatau,Northland. NewZealandJournalofEcology28:73–81. JamesRE,CloutMN1996.NestingsuccessofNewZealandpigeons( Hemiphaga novaeseelandiae )inresponsetoarat( Rattus rattus )poisoningprogrammeat WenderholmRegionalPark.NewZealandJournalofEcology20:45–51. JanzenDH1970.Herbivoresandnumberoftreespeciesintropicalforests.American Naturalist104:501–508. JanzenDH1974.DefloweringofCentralAmerica.NaturalHistory83:49–53. JanzenDH1986.Thefutureoftropicalecology.AnnualReviewofEcologyand Systematics17:305–324. JohnsonRA,WillsonMF,ThompsonJN,BertinRI1985.Nutritionalvaluesofwildfruits andconsumptionbymigrantfrugivorousbirds.Ecology66:819–827. JordanoP1984.Seedweightvariationanddifferentialaviandispersalinblackberries Rubus ulmifolius .Oikos43:149–153. JordanoP1987.Frugivory,externalmorphologyanddigestivesysteminmediterranean sylviidwarblers Sylvia spp.Ibis129:175–189. JordanoP1992.Fruitsandfrugivory.In:FennerMed.Seeds:TheEcologyof RegenerationinPlantCommunities.Oxon,CABI.Pp.105–156. JordanoP1995a.Angiospermfleshyfruitsandseeddispersers—acomparativeanalysis ofadaptationandconstraintsinplantanimalinteractions.AmericanNaturalist145: 163–191. JordanoP1995b.Frugivoremediatedselectiononfruitandseedsize—birdsandSt LuciesCherry, Prunus Mahaleb .Ecology76:2627–2639. JordanoP,GodoyJA2002.Frugivoregeneratedseedshadows:alandscapeviewof demographicandgeneticeffects.In:LeveyDJ,SilvaWR,GalletiMed.Seed DispersalandFrugivory:Ecology,EvolutionandConservation.Oxon,CABI.Pp. 305–321.

140

JordanoP,GarciaC,GodoyJA,GarciaCastanoJL2007.Differentialcontributionof frugivorestocomplexseeddispersalpatterns.ProceedingsoftheNational AcademyofSciencesoftheUnitedStatesofAmerica104:3278–3282. KellyD,LadleyJJ,RobertsonAW2004.Isdispersaleasierthanpollination?Twotestsin NewZealandLoranthaceae.NewZealandJournalofBotany42:89–103. KellyD,RobertsonAW,LadleyJJ,AndersonSH,McKenzieRJ2006.Relative (Un)ImportanceofIntroducedAnimalsasPollinatorsandDispersersofNative Plants.In:AllenRB,LeeWGed.BiologicalInvasionsinNewZealand.Berlin Heidelberg,SpringerVerlag.Pp.227–245. KingCMed.1995.TheHandbookofNewZealandMammals.2nded.Auckland,Oxford UniversityPress.600p. KitamuraS,YumotoT,PoonswadP,ChuailuaP,PlongmaiK,MaruhashiT,NomaN 2002.Interactionsbetweenfleshyfruitsandfrugivoresinatropicalseasonalforest inThailand.Oecologia133:559–572. KnowlesB,BeveridgeAE1982.BiologicalfloraofNewZealand9. Beilschmiedia tawa (A.Cunn.)Benth.etHook.F.exKirk(Lauraceae)tawa.NewZealandJournalof Botany20:37–54. LadleyJJ,KellyD1996.Dispersal,germinationandsurvivalofNewZealandmistletoes (Loranthaceae):Dependenceonbirds.NewZealandJournalofEcology20:69–79. LeishmanM,WestobyM1994.Theroleoflargeseedsizeinshadedconditions: experimentalevidence.FunctionalEcology8:205–214. LeveyDJ1986.Methodsofseedprocessingbybirdsandseeddepositionpatterns.In: EstradaA,FlemingTHed.FrugivoresandSeedDispersal.Dordrecht,DrW.Junk Publishers.Pp.147–158. LeveyDJ1987.Seedsizeandfruithandlingtechniquesofavianfrugivores.American Naturalist129:471–485. LeveyDJ,GrajalA1991.Evolutionaryimplicationsoffruitprocessinglimitationsin CedarWaxwings.AmericanNaturalist138:171–189. LeveyDJ,TewksburyJJ,IzhakiI,TsaharE,HaakDC2007.Evolutionaryecologyof secondarycompoundsinripefruit:casestudieswithcapsaicinandemodin.In: DennisAJ,GreenRJ,SchuppEW,WestcottDAed.FrugivoryandSeedDispersal: TheoryandApplicationsinaChangingWorld.Wallingford,UK,CABI.Pp.37– 58.

141

LevineJM,MurrellDJ2003.Thecommunitylevelconsequencesofseeddispersal patterns.AnnualReviewofEcologyEvolutionandSystematics34:549–574. LloydBD2001.AdvancesinNewZealandmammalogy19902000:Shorttailedbats. JournaloftheRoyalSocietyofNewZealand31:59–81. LoiselleBA,BlakeJG2002.Potentialconsequencesofextinctionoffrugivorousbirdsfor shrubsofatropicalwetforest.In:LeveyDJ,SilvaWR,GalletiMed.Seed dispersalandfrugivory:Ecology,EvolutionandConservation,CABI.Pp.397–406. LordJM2004.Frugivoregapesizeandtheevolutionoffruitsizeandshapeinsouthern hemispherefloras.AustralEcology29:430–436. LordJM,MarkeyAS,MarshallJ2002.Havefrugivoresinfluencedtheevolutionoffruit traitsinNewZealand?In:LeveyDJ,SilvaWR,GalletiMed.SeedDispersaland Frugivory:Ecology,EvolutionandConservation.Oxon,CABIPublishing.Pp.55– 68. MazerSJ,WheelwrightNT1993.Fruitsizeandshape:allometryatdifferenttaxonomic levelsinbirddispersedplants.EvolutionaryEcology7:556–575. McConkeyKR,DrakeDR2002.Extinctpigeonsanddecliningbatpopulations:arelarge seedsstillbeingdispersedinthetropicalPacific?In:LeveyDJ,SilvaWR,Galleti Med.SeedDispersalandFrugivory:Ecology,EvolutionandConservation. Wallingford,CABI.Pp.381–395. McConkeyKR,DrakeDR2006.Flyingfoxesceasetofunctionasseeddisperserslong beforetheybecomerare.Ecology87:271–276. McConkeyKR,MeehanHJ,DrakeDR2004.SeeddispersalbyPacificPigeons( Ducula pacifica )inTonga,WesternPolynesia.EMU104:369–376. McEwenWM1978.ThefoodoftheNewZealandpigeon( Hemiphaga novaeseelandiae novaeseelandiae ).NewZealandJournalofEcology1:99–108. MeyerGA,WitmerMC1998.Influenceofseedprocessingbyfrugivorousbirdson germinationsuccessofthreeNorthAmericanshrubs.AmericanMidlandNaturalist 140:129–139. MichaelsHJ,WillsonMF,BennerB,BertinRI,HartgerinkAP,LeeTD,RiceS1988. Seedsizevariation:magnitude,distribution,andecologicalcorrelates.Evolutionary Ecology2:157–166. MolesAT,DrakeDR1999.Postdispersalseedpredationonelevenlargeseededspecies fromtheNewZealandflora:apreliminarystudyinsecondaryforest.NewZealand JournalofBotany37:679–685.

142

MolesAT,WestobyM2003.Latitude,seedpredationandseedmass.Journalof Biogeography30:105–128. MolesAT,WestobyM2004.Seedlingsurvivalandseedsize:asynthesisoftheliterature. JournalofEcology92:372–383. MolesAT,HodsonDW,WebbCJ2000.Seedsizeandshapeandpersistenceinthesoilin theNewZealandflora.Oikos89:541–545. MolesAT,AckerlyDD,WebbCO,TweddleJC,DickieJB,PitmanAJ,WestobyM2005. Factorsthatshapeseedmassevolution.ProceedingsoftheNationalAcademyof SciencesoftheUnitedStatesofAmerica102:10540–10544. MolofskyJ,AugspurgerCK1992.Theeffectofleaflitteronearlyseedlingestablishment inatropicalforest.Ecology73:68–77. MorpethDR,HallAM2000.Microbialenhancementofseedgerminationin Rosa corymbifera 'Laxa'.SeedScienceResearch10:489–494. MurphySR,ReidN,YanZG,VenablesWN1993.Differentialpassagetimeofmistletoe fruitsthroughthegutofhoneyeatersandflowerpeckers—effectsonseedling establishment.Oecologia93:171–176. MurrayKG1988.Avianseeddispersalofthreeneotropicalgapdependentplants. EcologicalMonographs58:271–298. MurrayKG,RussellS,PiconeCM,WinnettMurrayK,SherwoodW,KuhlmannML 1994.Fruitlaxativesandseedpassageratesinfrugivores—consequencesforplant reproductivesuccess.Ecology75:989–994. MyersSC1984.Studiesintheecologyof Beilschmiedia tarairi (A.Cunn.)Benth.et Hook.F.exKirk.UnpublishedMScthesis,UniversityofAuckland,Auckland.140 p. NathanR,MullerLandauHC2000.Spatialpatternsofseeddispersal,theirdeterminants andconsequencesforrecruitment.TrendsinEcology&Evolution15:278–285. NathanR,PerryG,CroninJT,StrandAE,CainML2003.Methodsforestimatinglong distancedispersal.Oikos103:261–273. NessJH2004.Forestedgesandfireantsaltertheseedshadowofanantdispersedplant. Oecologia138:448–454. NugentG,FraserW,SweetappleP2001.Topdownorbottomup?Comparingtheimpacts ofintroducedarborealpossumsand'terrestrial'ruminantsonnativeforestsinNew Zealand.BiologicalConservation99:65–79.

143

O'ConnorSJ2006.Modellingseeddispersalbytui.UnpublishedBSc(Hons)Project Reportthesis,UniversityofCanterbury,Christchurch.41p. O'DonnellCFJ,DilksPJ1994.Foodsandforagingofforestbirdsintemperaterainforest, SouthWestland,NewZealand.NewZealandJournalofEcology18:87–107. ObesoJR1993.Seedmassvariationintheperennialherb Asphodelus albus —sourcesof variationandpositioneffect.Oecologia93:571–575. OliverWRB1955.NewZealandBirds.2ndeditioned.Wellington,NewZealand,Reed. 661p. PackerA,ClayK2000.Soilpathogensandspatialpatternsofseedlingmortalityina temperatetree.Nature404:278–281. ParciakW2002.Environmentalvariationinseednumber,size,anddispersalofafleshy fruitedplant.Ecology83:780–793. PazH,MartínezRamosM2003.Seedmassandseedlingperformancewithineightspecies of Psychotria (Rubiaceae).Ecology84:439–450. PierceRJ,GrahamPJ1995.Ecologyandbreedingbiologyofkukupa( Hemiphaga novaeseelandiae )inNorthland.Science&Researchseriesno.91.29p. PierceRJ,AtkinsonR,SmithE1993.ChangesinbirdnumbersinsixNorthlandforests 1979–1993.Notornis40:285–293. PlattWJ1976.Naturalhistoryofafugitiveprairieplant( Mirabilis hirsuta (Pursh)Macm). Oecologia22:399–409. PooleAL,AdamsNM1990.TreesandShrubsofNewZealand.Wellington,NewZealand, DSIRPublishing.256p. PowleslandRG1979.PelletcastingbySouthIslandrobins.Notornis26:273–278. PowleslandRG,DilksPJ,FluxIA,GrantAD,TisdallCJ1997.Impactoffoodabundance, dietandfoodqualityonthebreedingofthefruitpigeon,Parea Hemiphaga novaeseelandiae chathamensis ,onChathamIsland,NewZealand.Ibis139:353– 365. PrattTK,StilesEW1983.Howlongfruiteatingbirdsstayintheplantswheretheyfeed— implicationsforseeddispersal.AmericanNaturalist122:797–805. PurvesDW,DushoffJ2005.Directedseeddispersalandmetapopulationresponseto habitatlossanddisturbance:applicationto Eichhornia paniculata .Journalof Ecology93:658–669. RDevelopmentCoreTeam2005.R:Alanguageandenvironmentforstatistical computing.Version2.1.1.Vienna,Austria,RFoundationforStatisticalComputing.

144

RDevelopmentCoreTeam2006.R:Alanguageandenvironmentforstatistical computing.Version2.4.1.Vienna,Austria,RFoundationforStatisticalComputing. ReidN1989.Dispersalofmistletoesbyhoneyeatersandflowerpeckers—componentsof seeddispersalquality.Ecology70:137–145. ReyPJ,GutierrezJE,AlcantaraJ,ValeraF1997.Fruitsizeinwild:implicationsfor avianseeddispersal.FunctionalEcology11:611–618. RickCM,BowmanRI1961.Galapagostomatoesandtortoises.Evolution15:407–417. RieraN,TravesetA,GarciaO2002.Breakageofmutualismsbyexoticspecies:thecaseof Cneorum tricoccon L.intheBalearicIslands(westernMediterraneanSea).Journal ofBiogeography29:713–719. RobertsonAW,KellyD,LadleyJJ,SparrowAD1999.Effectsofpollinatorlosson endemicNewZealandmistletoes(Loranthaceae).ConservationBiology13:499– 508. RobertsonAW,TrassA,LadleyJJ,KellyD2006.Assessingthebenefitsoffrugivoryfor seedgermination:theimportanceofthedeinhibitioneffect.FunctionalEcology20: 58–66. RufautCG,GibbsGW2003.Responseofatreewetapopulation( Hemideina crassidens ) aftereradicationofthePolynesianratfromaNewZealandIsland.Restoration Ecology11:13–19. RussoSE,PortnoyS,AugspurgerCK2006.Incorporatinganimalbehaviorintoseed dispersalmodels:Implicationsforseedshadows.Ecology87:3160–3174. SallabanksR1993.Hierarchicalmechanismsoffruitselectionbyanavianfrugivore. Ecology74:1326–1336. SamuelsIA,LeveyDJ2005.Effectsofgutpassageonseedgermination:doexperiments answerthequestionstheyask?FunctionalEcology19:365–368. SchuppEW1992.TheJanzenConnellmodelfortropicaltreediversity—population implicationsandtheimportanceofspatialscale.AmericanNaturalist140:526– 530. SchuppEW1993.Quantity,qualityandtheeffectivenessofseeddispersalbyanimals. Vegetatio108:15–29. SchuppEW,MilleronT,RussoSE2002.Disseminationlimitationandtheoriginand maintenanceofspeciesrichtropicalforests.In:LeveyDJ,SilvaWR,GalletiMed. SeedDispersalandFrugivory:Ecology,EvolutionandConservation.Oxon,CABI. Pp.19–33.

145

ScofieldDG,SchultzST2006.Mitosis,statureandevolutionofplantmatingsystems: lowPhiandhighPhiplants.ProceedingsoftheRoyalSocietyBBiological Sciences273:275–282. SekerciogluCH,DailyGC,EhrlichPR2004.Ecosystemconsequencesofbirddeclines. ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica 101:18042–18047. ShapcottA2000.Conservationandinthefragmentedmonsoonrainforestinthe NorthernTerritory,Australia:acasestudyofthreefrugivoredispersedspecies. AustralianJournalofBotany48:397–407. SimpsonMJA1971.Travellingseeds.WellingtonBotanicalSocietyBulletin37:63. SkarpaasO,SheaK,BullockJM2005.OptimizingdispersalstudydesignbyMonteCarlo simulation.JournalofAppliedEcology42:731–739. SnowDW1971.Evolutionaryaspectsoffruiteatingbybirds.Ibis113:194–202. SorensenAE1984.,energyandpassagetime—experimentswithfruit preferenceinEuropeanBlackbirds( Turdus merula ).JournalofAnimalEcology 53:545–557. StanleyMC,LillA2002.Doesseedpackaginginfluencefruitconsumptionandseed passageinanavianfrugivore?Condor104:136–145. StewartAM1980.Thesocialorganisationandforagingecologyofthetui Prosthemadera novaeseelandiae .UnpublishedMScthesis,UniversityofAuckland,Auckland.103 p. SunC,IvesAR,KraeuterHJ,MoermondTC1997.Effectivenessofthreeturacosasseed dispersersinatropicalmontaneforest.Oecologia112:94–103. TempleSA1977.Plantanimalmutualism—coevolutionwithdodoleadstonear extinctionofplant.Science197:885–886. TitusJH,HolbrookNM,PutzFE1990.Seedgerminationandseedlingdistributionof Ficus pertusa and F. tuerckheimii —arestranglerfigsautotoxic?Biotropica22: 425–428. TownsD,DaughertyC1994.PatternsofrangecontractionsandintheNew Zealandherpetofaunafollowinghumancolonization.NewZealandJournalof Zoology21:325–339. TravesetA1995.Seeddispersalof Cneorum tricoccon L.(Cneoraceae)intheBalearic Islands.ActaOecologia16:171–178.

146

TravesetA1998.Effectofseedpassagethroughvertebratefrugivores'gutson germination:areview.PerspectivesinPlantEcology,EvolutionandSystematics1: 151–190. TravesetA,VerdúMA2002.Ametaanalysisoftheeffectofguttreatmentonseed germination.In:LeveyDJ,SilvaWR,GalletiMed.Seeddispersalandfrugivory: Ecology,EvolutionandConservation.Oxon,CABI.Pp.339–350. TravesetA,RieraN2005.Disruptionofaplantlizardseeddispersalsystemandits ecologicaleffectsonathreatenedendemicplantintheBalearicIslands. ConservationBiology19:421–431. TravesetA,BermejoT,WillsonM2001.Effectofmanurecompositiononseedling emergenceandgrowthoftwocommonshrubspeciesofSoutheastAlaska.Plant Ecology155:29–34. VanderWallSB,KuhnKM,BeckMJ2005.Seedremoval,seedpredation,andsecondary dispersal.Ecology86:801–806. VaughtonG,RamseyM1998.Sourcesandconsequencesofseedmassvariationin Banksiamarginata(Proteaceae).JournalofEcology86:563–573. WebbCJ,SimpsonMJA2001.SeedsofNewZealandandDicotyledons.1 ed.Christchurch,ManukaPress.428p. WennyDG2000.Seeddispersal,seedpredation,andseedlingrecruitmentofaneotropical montanetree.EcologicalMonographs70:331–351. WennyDG2001.Advantagesofseeddispersal:Areevaluationofdirecteddispersal. EvolutionaryEcologyResearch3:51–74. WennyDG,LeveyDJ1998.Directedseeddispersalbybellbirdsinatropicalcloudforest. ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica 95:6204–6207. WestcottDA,GrahamDL2000.Patternsofmovementandseeddispersalofatropical frugivore.Oecologia122:249–257. WestcottDA,BentrupperbaumerJ,BradfordMG,McKeownA2005.Incorporating patternsofdisperserbehaviourintomodelsofseeddispersalanditseffectson estimateddispersalcurves.Oecologia146:57–67. WestobyM,LeishmanM,LordJ1997.Comparativeecologyofseedsizeanddispersal. In:SilvertownJ,FrancoM,HarperJLed.PlantLifeHistories:ecology,phylogeny andevolution.Cambridge,CambridgeUniversityPress.Pp.143–162.

147

WheelwrightNT1985.Fruitsize,gapewidth,andthedietsoffruiteatingbirds.Ecology 66:808–818. WheelwrightNT1991.Howlongdofruiteatingbirdsstayintheplantswheretheyfeed? Biotropica23:29–40. WheelwrightNT1993.Fruitsizeinatropicaltreespecies—variation,preferenceby birds,andheritability.Vegetatio108:163–174. WhitakerAH1987.TherolesoflizardsinNewZealandplantreproductivestrategies.New ZealandJournalofBotany25:315–328. WilliamsPA2003.Arepossumsimportantdispersersoflargeseededfruit?NewZealand JournalofEcology27:221–223. WilliamsPA,KarlBJ1996.Fleshyfruitsofindigenousandadventiveplantsinthedietof birdsinforestremnants,Nelson,NewZealand.NewZealandJournalofEcology 20:127–145. WilliamsPA,KarlBJ,BannisterP,LeeWG2000.Smallmammalsaspotentialseed dispersersinNewZealand.AustralEcology25:523–532. WillsonM,IrvineAK,WalshNG1989.Vertebratedispersalsyndromesinsome AustralianandNewZealandplantcommunities,withgeographiccomparisons. Biotropica21:133–147. WilsonDJ,LeeWG,WebsterRA,AllenRB2003.Effectsofpossumsandratsonseedling establishmentattwoforestsitesinNewZealand.NewZealandJournalofEcology 27:147–155. WitmerMC,ChekeAS1991.Thedodoandthetambalacoquetree—anobligate mutualismreconsidered.Oikos61:133–137. WitmerMC,VanSoestPJ1998.Contrastingdigestivestrategiesoffruiteatingbirds. FunctionalEcology12:728–741. WorthyTH,HoldawayRN2001.Thelostworldofthemoa:prehistoriclifeofNew Zealand.Bloomington,IndianaUniversityPress.718p. WorthyTH,TennysonAJD,ArcherM,MusserAM,HandSJ,JonesC,DouglasBJ, McNamaraJA,BeckRMD2006.MiocenemammalrevealsaMesozoicghost lineageoninsularNewZealand,southwestPacific.ProceedingsoftheNational AcademyofSciencesoftheUnitedStatesofAmerica103:19419–19423. WottonDM2002.EffectivenessofthecommongeckoasaseeddisperseronManaIsland, NewZealand.NewZealandJournalofBotany40:639–647.

148

WottonDM,LadleyJJinpress.FruitsizepreferenceintheNewZealandpigeon (Hemiphaga novaeseelandiae ).AustralEcology33. WottonDM,CloutMN,KellyDinpress.SeedretentiontimesintheNewZealandpigeon, Hemiphaga novaeseelandiae .NewZealandJournalofEcology32. YoungA,BoyleT,BrownT1996.Thepopulationgeneticconsequencesofhabitat fragmentationforplants.TrendsinEcology&Evolution11:413–418.

149 Appendix I. Dispersal model

WrittenbyRobbieHoldawayandDebraWotton # R script to estimate seed dispersal kernals, using kereru radio- tracking movement data and seed retention times.

# Four kereru tracking sessions (birddays) were excluded (one session was less than the longest seed retention time and has missing values, and three other birddays have missing values. The analysis uses 39 birddays. Each birdday is assigned a different sequential number from 1 to 39 ("bcount" in the model).

# the model randomly generates 100 seed retention times, from a normal distribution using a specified mean and standard deviation (from actual data for each plant species).

# The model then calculates the dispersal distance for each of the 100 seeds for each minute of each birdday.

# To start a session, bring up a function window: fix(disp.function)

# copy and paste function code in function(time = 180.8,timesd = 100.3,guttimerep=100){ # the default values are for tawa

# read in movement file. Note all data with NA time arrived/departed values (except at start and end of birdday should be removed from mvmt data file before loading into R setwd("D:\\PhD thesis\\kereru mvmts\\data") mvmt<-read.table("mvmt.no.na.txt", header=T, sep="\t") mvmt$bird<-factor(mvmt$bird) attach(mvmt)

# calculating the minutes spent in each location (aka the mins column of mvmt!!!) residence<-rep(NA,dim(mvmt)[[1]])

for(i in 1.:dim(mvmt)[[1]]){

# for the first location in each tracking session the residence time is the departure time minus the arrival time if(seq[i] == 1){ residence[i]<-mvmt$mins.dep[i]-mvmt$mins.loc[i] }

# for the last location in each tracking session, the residence time is time located minus the departure time from the previous location if(seq[i+1]==1 & i !=dim(mvmt)[1] & seq[i]!=1){ residence[i]<-mvmt$mins.loc[i]-mvmt$mins.dep[i-1] }

150

# for all other vlues the residence time is the time departed at that location minus the time departed from the previous location if(seq[i]!=1){ residence[i]<- mvmt$mins.dep[i]-mvmt$mins.dep[i-1] } }

# gut time distribution # randomly generate 100 seed retention times, from a normal distribution using a specified mean and standard deviation # the loops remove negative values guttime<-rnorm(guttimerep,mean=time, sd=timesd) for(i in 1:guttimerep){ if(guttime[i] <0){ guttime[i]<-rnorm(1,mean=time, sd=timesd) } } for(i in 1:guttimerep){ if(guttime[i] <0){ guttime[i]<-rnorm(1,mean=time, sd=timesd) } }

# for a set guttime, for each minute of each birdday, calcuate possible dispersal distances # First create the output array - note the final length varies so create it big enough to handle all possible values # rounding is used to get integers disp.kernal<-array(data = NA, dim = c(length(guttime),nlevels(bird.day),round(600-min(guttime))))

# set working directory to enable distance files to be read in: setwd("D:\\PhD thesis\\kereru mvmts\\data\\distances\\dist txt")

# The big loop... guttimecount<-0

# for each of the seed retention times for(j in 1:guttimerep){

# use the radmonly generated gut times, rounded to the nearest integer guttime.value<-round(guttime[j]) guttimecount<-guttimecount+1

# print the gut time count on screen so I know where the loop is up to print(guttimecount) bcount<-0

# for each of the bird days: for(b in levels(bird.day)){ bcount<-bcount+1 # print the bird count on screen so I know where the loop is up to print(bcount)

# calculate the number of minutes from start of tracking session residence.sum<-cumsum(residence[bird.day == b])

# the location where fruit is eaten

151

bird.location<-pt[bird.day == b]

# the end time for the bird day endtime<-max(residence.sum,na.rm=TRUE) # the final eating time for which seed dispersal distance will be calculated is the point at which the minutes remaining # for that bird day is less than or equal to the seed retention time for the jth seed. length.test<-residence.sum<=(endtime-guttime.value) if(length.test==TRUE){ final.eating.time<- residence.sum[max(which(residence.sum<=round(endtime-guttime.value)))]

# for each minute of each birdday for(t in 1:(final.eating.time-1)){ # determine the eating location bird.start.position<- bird.location[min(which(residence.sum>=t))] # determine the defecation location bird.end.position<- bird.location[min(which(residence.sum>=(t+guttime.value)))] # load the distance file for that bird dist.file<-read.table(b, header=T, sep="\t") # calculate the seed dispersal distance disp.kernal[j,bcount,t]<- dist.file$distance[dist.file$pt1==bird.start.position & dist.file$pt2==bird.end.position] } } } }

# create frequency distribution of seed dispersal distances dist.hist<-hist(disp.kernal,breaks=100) # and draw a scatterplot with a line from the frequency data plot(dist.hist$counts/(length(disp.kernal)- summary(disp.kernal)[7])~dist.hist$breaks[2:length(dist.hist$breaks)], xlab = "Distance dispersed (m)", ylab = "Probability", type="l")

# save the seed dispersal distances and gut times as objects list("disp.kernal" = disp.kernal,"guttimes"=guttime) }

# for each plant species type the following to change the default values for mean and standard deviation seed retention time, and number of seed retention times to use and run the function and save output to object.name: tawa<-disp.function(time =180.8,timesd =100.3, guttimerep = 100)

# to save the seed dispersal distances and gut times objects as an external file save(tawa, file = "D:\\PhD thesis\\kereru mvmts\\data\\tawa dispersal.Rdata")

# to reload the data load("D:\\PhD thesis\\kereru mvmts\\data\\tawa dispersal.Rdata")

152

153 Appendix II. Seed fate models

Generalisedlinearmixedmodelsexplainingvariationintotalseedpredation,germination, oneyearsurvival,twoyearsurvival,andseedlingheightgrowth.Theexplanatoryvariables werefruit(wholefruitorcleanseeds),density(seeddensityhigh,20seedsorlow,4 seeds),cage(mammalexclusionoropenaccess),andlocation(underparentor20m away).Allmodelsalsocontainedtherandomeffectsofplotsnestedwithinparenttrees. Foreachmodel,theloglikelihood,Akaikeinformationcriterion(AIC)and∆AIC(the differenceinAICbetweenamodelandthebestfittingmodelwiththelowestAICscore) areshown.Modelslistedarethosewithsubstantialsupport(∆AIC ≤2comparedtothe bestfittingmodel). Table 1. Modelsexplainingvariationintotalseedpredation(includinginsectpredation, mammalpredationandremovedseeds).Seedpredationwasmodelledusingabinomial distribution.(a)taraire,(b)karakaMtTiger,(c)karakaWenderholm. (a) model loglikelihood No. AIC ∆AIC fruit+density+cage+loc+fruit:density 77.891 14 173.782 0 +fruit:loc+density:cage fruit+density+cage+loc+fruit:density 79.037 18 174.073 0.291 +density:cage fruit+density+cage+loc+fruit:density 77.118 12 174.236 0.454 +fruit:cage+fruit:loc+density:cage fruit+density+cage+loc+fruit:density 78.274 15 174.547 0.765 +fruit:cage+density:cage fruit+density+cage+loc+fruit:loc+ 79.342 17 174.684 0.902 density:cage fruit+density+cage+loc+fruit:cage+ 78.769 13 175.538 1.756 fruit:loc+density:cage fruit+density+cage+loc+fruit:density 79.888 19 175.776 1.994 +fruit:loc

154

Table 1 cont. (b) model loglikelihood No. AIC ∆AIC fruit+cage+loc+fruit:cage+cage:loc 79.292 22 172.584 0 fruit+cage+loc+fruit:cage+fruit:loc+ 78.766 17 173.531 0.947 cage:loc fruit+density+cage+loc+fruit:cage+ 79.026 19 174.052 1.468 cage:loc (c) model loglikelihood No. AIC ∆AIC cage 79.494 31 164.988 0 fruit+cage 79.335 30 166.670 1.682 cage+loc 79.432 28 166.864 1.876 fruit+cage+loc+fruit:loc 78.74 23 169.5 4.512

155

Table 2. Modelsexplainingvariationingerminationsuccessforunpredatedseeds.Seed germinationwasmodelledusingabinomialdistribution.(a)taraire,(b)karakaMtTiger, (c)karakaWenderholm. (a) model loglikelihood No. AIC ∆AIC fruit+density+loc+fruit:density+ 41.041 3 96.081 0 density:loc fruit+density+loc+fruit:density+ 40.111 1 96.223 0.142 fruit:loc+density:loc fruit+density+loc+fruit:density 42.529 6 97.059 0.978 (b) model loglikelihood No. AIC ∆AIC fruit+density+loc+fruit:density 53.501 6 119.003 0 fruit+density+loc 54.650 8 119.300 0.297 fruit+density+loc+fruit:density+ 53.261 3 120.522 1.519 density:loc fruit+density+loc+fruit:density+ 53.378 4 120.755 1.752 fruit:loc fruit+density+loc+density:loc 54.443 5 120.886 1.883 (c) model loglikelihood No. AIC ∆AIC fruit 47.465 11 100.930 0 fruit+location 46.734 9 101.468 0.538 Intercept 48.740 12 101.480 0.55 location 48.001 10 102.003 1.073 fruit+location+fruit:loc 46.054 7 102.108 1.178

156

Table 3. Modelsexplainingvariationinsurvivaltooneyearforgerminatedseeds.One yearsurvivalwasmodelledusingabinomialdistribution.(a)taraire,(b)karakaMtTiger, (c)karakaWenderholm. (a) model loglikelihoodNo. AIC ∆AIC fruit+density+cage+loc+fruit:loc+ 47.464 13 112.929 0 density:cage+cage:loc fruit+density+cage+loc+fruit:loc+ 48.591 19 113.181 0.252 density:cage fruit+density+cage+loc+fruit:cage+ 47.942 16 113.884 0.955 fruit:loc+density:cage fruit+density+cage+loc+fruit:cage+ 47.079 8 114.158 1.229 fruit:loc+density:cage+cage:loc fruit+density+cage+loc+ 49.212 17 114.424 1.495 density:cage+cage:loc fruit+density+cage+loc+fruit:density 47.417 9 114.835 1.906 +fruit:loc+density:cage+cage:loc

(b) model loglikelihood No. AIC ∆AIC fruit+density+cage+loc+fruit:cage+ 94.305 20 204.610 0 fruit:loc fruit+density+cage+loc+fruit:loc 95.809 22 205.619 1.009 fruit+density+cage+loc+fruit:cage+ 94.079 13 206.159 1.549 fruit:loc+cage:loc fruit+density+cage+loc+fruit:density 94.142 16 206.284 1.674 +fruit:cage+fruit:loc fruit+density+cage+loc+fruit:cage 96.273 23 206.546 1.936

157

Table 3 cont. (c) model loglikelihood No. AIC ∆AIC fruit+density+cage+loc+fruit:cage+ 92.423 16 202.845 0 fruit:loc+density:loc fruit+density+cage+loc+fruit:cage+ 93.658 19 203.315 0.47 fruit:loc fruit+density+cage+loc+fruit:cage+ 91.723 10 203.446 0.601 fruit:loc+density:loc+cage:loc fruit+density+cage+loc+fruit:cage+ 92.937 15 203.875 1.03 fruit:loc+cage:loc fruit+density+cage+loc+fruit:cage+ 92.276 12 204.552 1.707 fruit:loc+density:cage+density:loc

Table 4. Modelsexplainingvariationinsurvivalfromonetotwoyearsforkarakaatboth sites.Twoyearsurvivalwasmodelledusingabinomialdistribution. model loglikelihood No. AIC ∆AIC density+loc 148.03 9 304.07 0 density+loc+density:loc 147.48 7 304.97 0.9 density+loc+site 148.03 8 306.06 1.99

158

Table 5. Modelsexplainingvariationinseedlingheighttooneyearforgerminatedseeds. SeedlingheightwasmodelledusingaGaussiandistribution.(a)taraire,(b)karakaMt Tiger,(c)karakaWenderholm. (a) model loglikelihood No. AIC ∆AIC fruit+density+cage+loc+fruit:loc+ 185.97 19 387.94 0 density:cage fruit+density+cage+loc+fruit:loc+ 185.24 13 388.48 0.54 density:cage+cage:loc fruit+density+cage+loc+fruit:loc 187.35 21 388.71 0.77 fruit+density+cage+loc+density:cage 187.46 20 388.91 0.97 fruit+density+cage+loc+density:cage 186.52 17 389.04 1.1 +cage:loc fruit+density+cage+loc+fruit:loc+ 186.58 18 389.16 1.22 cage:loc fruit+density+cage+loc+fruit:cage+ 185.77 16 389.55 1.61 fruit:loc+density:cage fruit+density+cage+loc+fruit:cage+ 184.86 11 389.71 1.77 fruit:loc+density:cage+cage:loc (b) model loglikelihood No. AIC ∆AIC fruit+cage+loc+fruit:cage 330.83 22 673.67 0 fruit+cage+loc 332.50 26 675.00 1.33 fruit+density+cage+loc+fruit:cage 330.79 21 675.58 1.91 (c) model loglikelihood No. AIC ∆AIC density+loc+density:loc 365.79 25 741.58 0 density+loc 366.91 27 741.82 0.24 fruit+density+loc+density:loc 365.73 23 743.47 1.89

159

Table 6. Modelsexplainingvariationinseedlinggrowthfromyearonetoyeartwofor karaka.GrowthwasmodelledusingaGaussiandistribution.(a)karakaMtTiger,(b) karakaWenderholm. (a) model loglikelihood No. AIC ∆AIC cage+location+cage:location 289.00 7 588.01 0 cage+location 290.13 9 588.25 0.24 density+cage+location+cage:location 288.98 5 589.95 1.94 (b) model loglikelihood No. AIC ∆AIC density+cage+density:cage 339.24 7 688.48 0 density+cage 340.55 9 689.11 0.63