Hadron Collider Physics 2005

Total Page:16

File Type:pdf, Size:1020Kb

Hadron Collider Physics 2005 springer proceedings in physics 108 springer proceedings in physics 87 Proceedings 99 Cosmic Explosions of the 25th International Conference On the 10th Anniversary of SN1993J on the Physics of Semiconductors (IAU Colloquium 192) Editors: N. Miura and T. Ando Editors: J. M. Marcaide and K. W. Weiler 88 Starburst Galaxies 100 Lasers in the Conservation of Artworks Near and Far LACONA V Proceedings, Editors: L. Tacconi and D. Lutz Osnabruck,¨ Germany, Sept. 15–18, 2003 Editors: K. Dickmann, C. Fotakis, 89 Computer Simulation Studies and J.F. Asmus in Condensed-Matter Physics XIV Editors: D.P. Landau, S.P. Lewis, 101 Progress in Turbulence and H.-B. Schuttler¨ Editors: J. Peinke, A. Kittel, S. Barth, and M. Oberlack 90 Computer Simulation Studies in Condensed-Matter Physics XV 102 Adaptive Optics Editors: D.P. Landau, S.P. Lewis, for Industry and Medicine and H.-B. Schuttler¨ Proceedings of the 4th International Workshop 91 The Dense Interstellar Medium Editor: U. Wittrock in Galaxies Editors:S.Pfalzner,C.Kramer, 103 Computer Simulation Studies C. Straubmeier, and A. Heithausen in Condensed-Matter Physics XVII Editors: D.P. Landau, S.P. Lewis, 92 Beyond the Standard Model 2003 and H.-B. Schuttler¨ Editor: H.V. Klapdor-Kleingrothaus 104 Complex Computing-Networks 93 ISSMGE Brain-like and Wave-oriented Experimental Studies Electrodynamic Algorithms Editor:T.Schanz Editors: I.C. Goknar¨ and L. Sevgi 94 ISSMGE 105 Computer Simulation Studies Numerical and Theoretical Approaches in Condensed-Matter Physics XVIII Editor:T.Schanz Editors: D.P. Landau, S.P. Lewis, 95 Computer Simulation Studies and H.-B. Schuttler¨ in Condensed-Matter Physics XVI 106 Modern Trends in Geomechanics Editors: D.P. Landau, S.P. Lewis, Editors: W. Wu and H.S. Yu and H.-B. Schuttler¨ 107 Microscopy of Semiconducting Materials 96 Electromagnetics in a Complex World Proceedings of the 14th Conference, Editors: I.M. Pinto, V. Galdi, April 11–14, 2005, Oxford, UK and L.B. Felsen Editors: A.G. Cullis and J.L. Hutchison 97 Fields, Networks, 108 Hadron Collider Physics 2005 Computational Methods and Systems Proceedings of the 1st Hadron in Modern Electrodynamics Collider Physics Symposium, A Tribute to Leopold B. Felsen Les Diablerets, Switzerland, July 4–9, 2005 Editors: P. Russer and M. Mongiardo Editors: M. Campanelli, A. Clark, 98 Particle Physics and the Universe and X. Wu Proceedings of the 9th Adriatic Meeting, Sept. 2003, Dubrovnik Editors: J. Trampeti´candJ.Wess Volumes 60–86 are listed at the end of the book. M. Campanelli A. Clark X. Wu (Eds.) Hadron Collider Physics 2005 Proceedings of the 1stHadron Collider Physics Symposium, Les Diablerets, Switzerland, July 4–9, 2005 With 441 Figures 123 Mario Campanelli Allan Clark Xin Wu Universit`e de Geneve 24, qai Ernest-Ansermet CH-1211 Gen`eve 4, Switzerland ISSN 0930-8989 ISBN-10 3-540-32840-8 Springer Berlin Heidelberg New York ISBN-13 978-3-540-32840-7 Springer Berlin Heidelberg New York Library of Congress Control Number: 2006925168 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplicationof this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media. springer.com © Springer-Verlag Berlin Heidelberg 2006 PrintedinGermany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Prodcution: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig Cover concept: Frido Steinen, eStudio Calamar, Spain Cover production: design & production GmbH, Heidelberg Printed on acid-free paper SPIN: 11681991 54/3100/LeTeX 5 4 3 2 1 0 Preface The first Hadron Collider Physics Symposium (HCP2005) the Tevatron and LHC experiments. Summary talks from was held in Les Diablerets, Switzerland from 4-9 July the RHIC, HERA and b-factory experiments (BELLE and 2005. With data samples exceeding 1 fb−1 collected by BABAR) complemented the relevant sessions. In addition, the CDF and D0 experiments at the Fermilab Tevatron, specific sessions were devoted to experimental issues such and with the projected commissioning of CERN’s Large as particle identification or tracking and b-tagging, where Hadron Collider (LHC) in 2007, the Hadron Collider Con- experts from both communities could present their solu- ference (HCP) series was merged with the LHC Sym- tions and exchange ideas. posium series and renamed the Hadron Collider Physics A special guest at the symposium, 10 years after the Symposium. discovery of the top quark by the CDF and D0 experi- The Symposium was attended by more than 150 physi- ments, was Alvin Tollestrup (Fermilab) who played a cru- cists and was jointly organized by the Swiss Institute for cial role in the machine, detector and analysis activities Particle Physics (CHIPP) and CERN. Previously, the 15th leading to its discovery. HCP Conference (HCP2004) had been held at Michigan The local organizing committee from CERN and State University in June, 2004, and the 4th. LHC Sympo- CHIPP, together with the ATLAS and CMS secretaries sium was held at Fermilab in May 2003. (Jodie Hallman and Nadejda Bogolioubova) and the local Following an introductory theoretical overview focus- hotel staff made this Symposium a real success. Only the ing on the Higgs sector of the Standard Model and the role unpredictable factor, weather, played foul. Those fortu- of hadron colliders in its study, the first major session was nate participants who remained an extra day discovered devoted to the machine and detector status at the Teva- the beauty of Les Diablerets in brilliant sunshine. tron and LHC. Historically, a major function of hadron The next meeting of the series will be hosted by Duke colliders has been to probe physics at the high-energy University in May 2006, and in Summer 2007 the meeting frontier. At the Tevatron, the CDF and D0 experiments will be hosted by INFN Pisa in or near Pisa. are operating well and an integrated luminosity exceed- ing1fb−1 has already been delivered to each experiment. Allan Clark, Prior to LHC turn-on, one can expect to probe the Stan- University of Geneva, dard Model at the TeV (atto-metre) scale. At the same December 2005. time, there has been impressive construction progress on the LHC and the associated experiments (ATLAS, CMS, LHCb and TOTEM). Indeed, the new phase of detector integration and commissioning at the LHC has started. With the goal of maximizing the shared experience of the Tevatron and LHC communities, sessions were then organized around the key physics directions of experimen- tal hadron collider research: – QCD physics; – Precision electroweak physics; – Results on c-quark, b-quark, and t-quark physics; – Probing for physics beyond the Standard Model; and – Heavy Ion physics (RHIC and LHC). Each session was introduced with a theoretical overview of the subject and followed by experimental talks from Committee Scientific Program Committee Organizing Committee J.Blazey (NIU) H.P. Beck (Bern) A.Clark (chair) (Geneva) M.Campanelli (Geneva) M.Della Degra (CERN) G.Dissertori (ETH Zurich) D.Green (FNAL) W.Erdmann (PSI) R.K.Ellis (FNAL) D.Jacobs (co-chair) (CERN) J.Engelen (CERN) F.Lehner (Zurich) L.Foa’ (Pisa) T.Schietinger (EPF Lausanne) R.Fleischer (CERN) X.Wu (co-chair) (Geneva) H.Frisch (Chicago) F.Gianotti (CERN) A.Goshaw (Duke) H.A.Gustafsson (Lund) J.Hobbs (Stony Brook) D.Jacobs (CERN) P.Jenni (CERN) Y.K. Kim (Chicago) T.Kobayashi (Tokyo) A.Kotwal (Duke) K.Maeshima (FNAL) M.Mangano (CERN) H.Montgomery (FNAL) T.Nakada (CERN/EPFL) J.Schukraft (CERN) A.Seiden (Santa Cruz) P.Sphicas (CERN/Athens) M.Spira (PSI) S.Stone (Syracuse) U.Straumann (Zurich) I.Tikhonov (Novosibirsk) J.Virdee (CERN/IC) H.Weerts (MSU) X.Wu (Geneva) T.Wyatt (Manchester) Summary of the Program Committee meeting for future HCP Symposia On Thursday 7 July, 2005, those members of the HCP The meeting agreed that: Symposium Scientific Program Committee who attended – The HCP2007 Symposium would be hosted by INFN the meeting met to discuss future meetings of the se- (Pisa), in the period May-June 2007. R. Castaldi ries. (Present: A. Clark, R. Ellis, J. Engelen, H. Frisch, (INFN Pisa) agreed to submit a detailed planning at A. Goshaw, H.-A. Gustafsson, P. Jenni, M. Mangano, H. the HCP2006 Symposium at Duke University. Montgomery, A. Seiden, U. Straumann, X. Wu. Invited: – The HCP2008 Symposium would be organized by R. Castaldi, D. Rousseau, M. Lancaster, N. Russakovich) CERN and the LHC experiments at a location near It was confirmed that the HCP2006 Symposium would CERN. The symposium would be timed to present be hosted by Duke University in the period May 22-26, initial LHC results. CERN and the LHC experiments 2006. A. Kotwal (Duke) will coordinate the Symposium. were invited to present a definite proposal at the Following a call for possible venues of the HCP2007 HCP2006 Symposium at Duke University. Symposium, the following proposals were received. – The other submitted proposals should be reconsidered 1. University of Oklahoma, USA, 10-15 December, 2007, for future Symposia at the HCP2006 meeting, and that contact: P. Gutierrez, C. Kao in future regional rotations of the venue should be at- 2. Dubna, Russia, late in 2007, contact: N. Rusakivich tempted. 3.
Recommended publications
  • Fabiola Gianotti
    Fabiola Gianotti Date of Birth 29 October 1960 Place Rome, Italy Nomination 18 August 2020 Field Physics Title Director-General of the European Laboratory for Particle Physics, CERN, Geneva Most important awards, prizes and academies Honorary Professor, University of Edinburgh; Corresponding or foreign associate member of the Italian Academy of Sciences (Lincei), the National Academy of Sciences of the United States, the French Academy of Sciences, the Royal Society London, the Royal Academy of Sciences and Arts of Barcelona, the Royal Irish Academy and the Russian Academy of Sciences. Honorary doctoral degrees from: University of Uppsala (2012); Ecole Polytechnique Federale de Lausanne (2013); McGill University, Montreal (2014); University of Oslo (2014); University of Edinburgh (2015); University of Roma Tor Vergata (2017); University of Chicago (2018); University Federico II, Naples (2018); Université de Paris Sud, Orsay (2018); Université Savoie Mont Blanc, Annecy (2018); Weizmann Institute, Israel (2018); Imperial College, London (2019). National honours: Cavaliere di Gran Croce dell'Ordine al Merito della Repubblica, awarded by the Italian President Giorgio Napolitano (2014). Special Breakthrough Prize in Fundamental Physics (shared, 2013); Enrico Fermi Prize of the Italian Physical Society (shared, 2013); Medal of Honour of the Niels Bohr Institute, Copenhagen (2013); Wilhelm Exner Medal, Vienna (2017); Tate Medal of the American Institute of Physics for International Leadership (2019). Summary of scientific research Fabiola Gianotti is a particle physicist working at high-energy accelerators. In her scientific career, she has made significant contributions to several experiments at CERN, including UA2 at the proton-antiproton collider (SpbarpS), ALEPH at the Large Electron-Positron collider (LEP) and ATLAS at the Large Hadron Collider (LHC).
    [Show full text]
  • Direct Search for Standard Model-Like Higgs Boson And
    Facult´edes Sciences de Base Institut de Physique de l’Energie´ et des Particules Laboratoire de Physique des Hautes Energies´ Direct Search for Standard Model-Like Higgs Boson and Software Integration of Data Acquisition Cards Th`ese de Doctorat pr´esent´ee `ala Section de Physique de la Facult´edes Sciences de Base de l’Ecole´ Polytechnique F´ed´erale de Lausanne pour l’obtention du grade de Docteur `es Sciences par C´edric Potterat Ing´enieur Physicien diplˆom´ede l’Ecole´ Polytechnique F´ed´erale de Lausanne, Suisse CERN-THESIS-2010-074 06/05/2010 Jury Prof. Nadine Baluc, Pr´esidente du jury Prof. Aurelio Bay, Directeur de th`ese Prof. Minh Quang Tran, Rapporteur Dr. Niko Neufeld, Rapporteur Dr. Tara Shears, Rapporteur CH - Lausanne 2010 R´esum´e Le Grand Collisionneur de Hadrons (LHC) au CERN, pr`es de Gen`eve, est con¸cu pour faire entrer en collision des protons `aune ´energie dans le centre de masse de 14 TeV. Il a ´et´etest´e `aplus faible ´energie en novembre 2009. Durant ces premiers jours, le LHC a ´etabli un nouveau record du monde avec ces deux faiseaux de protons `al’´energie de 1180 MeV. Le LHC a quatre points d’interaction pour les quartes grandes exp´eriences que sont : ALICE, ATLAS, CMS et LHCb. Le d´etecteur LHCb est situ´eau point d’interaction P8 (France). C’est un spectrom`etre `abras unique d´edi´e`ala physique des hardons contenant un quark b. Son but est l’´etude des processus qui ne conservent pas la sym´etrie CP et ainsi que certaines d´esint´egrations rares.
    [Show full text]
  • The Discovery of the Higgs Boson at the LHC
    Chapter 6 The Discovery of the Higgs Boson at the LHC Peter Jenni and Tejinder S. Virdee 6.1 Introduction and the Standard Model The standard model of particle physics (SM) is a theory that is based upon principles of great beauty and simplicity. The theory comprises the building blocks of visible matter, the fundamental fermions: quarks and leptons, and the fundamental bosons that mediate three of the four fundamental interactions; photons for electromag- netism, the W and Z bosons for the weak interaction and gluons for the strong interaction (Fig. 6.1). The SM provides a very successful description of the visible universe and has been verified in many experiments to a very high precision. It has an enormous range of applicability and validity. So far no significant deviations have been observed experimentally. The possibility of installing a proton-proton accelerator in the LEP tunnel, after the e+e− programme, was being discussed in the 1980’s. At the time there were many profound open questions in particle physics, and several are still present. In simple terms these are: what is the origin of mass i.e. how do fundamental particles acquire mass, and why do they have the masses that they have? Why is there more matter than anti-matter? What is dark matter? What is the path towards unification of all forces? Do we live in a world with more space-time dimensions than the familiar four? The LHC [1, 2] was conceived to address or shed light on these questions. P. Jenni CERN, Geneva, Switzerland Albert-Ludwigs University Freiburg, Freiburg im Breisgau, Germany T.
    [Show full text]
  • Calorimetry for Particle Physics
    REVIEWS OF MODERN PHYSICS, VOLUME 75, OCTOBER 2003 Calorimetry for particle physics Christian W. Fabjan and Fabiola Gianotti CERN, 1211 Geneva 23, Switzerland (Published 15 October 2003) Calorimetry has become a well-understood, powerful, and versatile measurement method. Besides perfecting this technique to match increasingly demanding operation at high-energy particle accelerators, physicists are developing low-temperature calorimeters to extend detection down to ever lower energies, and atmospheric and deep-sea calorimeters to scrutinize the universe up to the highest energies. The authors summarize the state of the art, with emphasis on the physics of the detectors and innovative technologies. CONTENTS VI. Citius, Altius, Fortius 1280 A. Introduction 1280 B. Atmospheric calorimeters 1280 I. Introduction 1243 1. Setting the energy scale 1283 II. Electromagnetic Calorimetry 1244 2. Energy resolution 1283 A. Physics of the electromagnetic cascade 1244 C. Deep-water calorimeters 1283 B. Energy resolution of electromagnetic VII. Conclusions 1284 calorimeters 1246 Acknowledgments 1284 1. Stochastic term 1247 References 1284 2. Noise term 1247 3. Constant term 1247 4. Additional contributions 1248 C. Main techniques and examples of facilities 1249 I. INTRODUCTION 1. Homogeneous calorimeters 1249 a. Semiconductor calorimeters 1249 Calorimetry is an ubiquitous detection principle in b. Cherenkov calorimeters 1250 particle physics. Originally invented for the study of c. Scintillation calorimeters 1251 cosmic-ray phenomena, this method was developed and d. Noble-liquid calorimeters 1254 perfected for accelerator-based particle physics experi- 2. Sampling calorimeters 1256 mentation primarily in order to measure the energy of a. Scintillation sampling calorimeters 1257 electrons, photons, and hadrons. Calorimeters are b. Gas sampling calorimeters 1257 blocks of instrumented material in which particles to be c.
    [Show full text]
  • Review of Literature Relating to Lhcb 2 Sin (✓W ) Measurement
    University of Liverpool Department of Physics Faculty of Science and Engineering Review of Literature Relating to LHCb 2 sin (✓W ) Measurement Author: Abbie Jane Chadwick Supervisors: Prof. Tara Shears Dr. Stephen Farry Areportconcludingthefirstyearof PhD June 2020 Contents 1 The Standard Model 1 1.1 TheBasics .................................................. 1 1.2 TheUnderlyingPhysics ........................................... 2 1.3 TheDownfalls ................................................ 2 2 Collider Physics 4 2.1 ProbingtheStandardModel ........................................ 4 2.2 WorldColliderOverview........................................... 4 + 2.2.1 e e− .................................................. 4 2.2.2 pp and pp ............................................... 4 2.2.3 e±p .................................................. 5 2.2.4 Heavyions .............................................. 5 2 3 Sin (✓w) Measurement Survey 6 3.1 CMS...................................................... 6 3.2 LEPandSLD................................................. 8 3.3 CDFandD0 ................................................. 9 3.4 ATLAS .................................................... 9 3.5 LHCb ..................................................... 10 1 1 The Standard Model 1.1 The Basics The Standard Model (SM) is the most complete description of known elementary particles and their interactions currently within physics. It combines electromagnetic, weak and strong interactions into a quantum field theory, with the notable
    [Show full text]
  • Department of Physics Review
    The Blackett Laboratory Department of Physics Review Faculty of Natural Sciences 2008/09 Contents Preface from the Head of Department 2 Undergraduate Teaching 54 Academic Staff group photograph 9 Postgraduate Studies 59 General Departmental Information 10 PhD degrees awarded (by research group) 61 Research Groups 11 Research Grants Grants obtained by research group 64 Astrophysics 12 Technical Development, Intellectual Property 69 and Commercial Interactions (by research group) Condensed Matter Theory 17 Academic Staff 72 Experimental Solid State 20 Administrative and Support Staff 76 High Energy Physics 25 Optics - Laser Consortium 30 Optics - Photonics 33 Optics - Quantum Optics and Laser Science 41 Plasma Physics 38 Space and Atmospheric Physics 45 Theoretical Physics 49 Front cover: Laser probing images of jet propagating in ambient plasma and a density map from a 3D simulation of a nested, stainless steel, wire array experiment - see Plamsa Physics group page 38. 1 Preface from the Heads of Department During 2008 much of the headline were invited by, Ian Pearson MP, the within the IOP Juno code of practice grabbing news focused on ‘big science’ Minister of State for Science and (available to download at with serious financial problems at the Innovation, to initiate a broad ranging www.ioppublishing.com/activity/diver Science and Technology Facilities review of physics research under sity/Gender/Juno_code_of_practice/ Council (STFC) (we note that some the chairmanship of Professor Bill page_31619.html). As noted in the 40% of the Department’s research Wakeham (Vice-Chancellor of IOP document, “The code … sets expenditure is STFC derived) and Southampton University). The stated out practical ideas for actions that the start-up of the Large Hadron purpose of the review was to examine departments can take to address the Collider at CERN.
    [Show full text]
  • Die Entdeckung Des Higgs-Teilchens Am CERN
    Die Entdeckung des Higgs-Teilchens am CERN Prof. Karl Jakobs Physikalisches Institut Universität Freiburg From the editorial: “The top Breakthrough of the Year – the discovery of the Higgs boson – was an unusually easy choice, representing both a triumph of the human intellect and the culmination of decades of work by many thousands of physicists and engineers.” Nobel-Preis für Physik 2013: François Englert und Peter Higgs “ … for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of sub-atomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider.” EPS Prize 2013: The 2013 High Energy and Particle Physics Prize, for an outstanding contribution to High Energy Physics, is awarded to the ATLAS and CMS collaborations, “for the discovery of a Higgs boson, as predicted by the Brout-Englert-Higgs mechanism”, and to Michel Della Negra, Peter Jenni, and Tejinder Virdee, “for their pioneering and outstanding leadership rôles in the making of the ATLAS and CMS experiments”. Physik-Journal Februar 2015: “.. Obwohl in diesen großen Kollaborationen eine große Zahl von Forschern mitarbeitet, ist es möglich, einzelne Forscherpersönlichkeiten herauszuheben, deren Ideen und Arbeit für den Erfolg des Experiments von besonderer Bedeutung waren. Zu diesen gehört neben den Sprechern der Experimente Karl Jakobs.” The Standard Model of Particle Physics γ mW ≈ 80.4 GeV mZ ≈ 91.2 GeV (i) Matter particles: quarks and leptons (spin ½, fermions) (ii) Four fundamental forces: described by quantum field theories (except gravitation) à massless spin-1 gauge bosons (iii) The Higgs field à scalar field, spin-0 Higgs boson The Brout-Englert-Higgs Mechanism F.
    [Show full text]
  • PARTICLE PHYSICS 2013ª Highlights and Annual Report 2 | Contents Contentsª
    ª PARTICLE PHYSICS Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association PARTICLE PHYSICS 2013 2013ª The Helmholtz Association is a community grand challenges faced by society, science and of 18 scientific-technical and biological- industry. Helmholtz Centres perform top-class Highlights medical research centres. These centres have research in strategic programmes in six core been commissioned with pursuing long-term fields: Energy, Earth and Environment, Health, and Annual Report research goals on behalf of the state and Key Technologies, Structure of Matter, Aero- society. The Association strives to gain insights nautics, Space and Transport. and knowledge so that it can help to preserve and improve the foundations of human life. It does this by identifying and working on the www.helmholtz.de Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association Imprint Publishing and contact Editing Deutsches Elektronen-Synchrotron DESY Ilka Flegel, Manfred Fleischer, Michael Medinnis, A Research Centre of the Helmholtz Association Thomas Schörner-Sadenius Hamburg location: Layout Notkestr. 85, 22607 Hamburg, Germany Diana Schröder Tel.: +49 40 8998-0, Fax: +49 40 8998-3282 Production [email protected] Monika Illenseer Zeuthen location: Printing Platanenallee 6, 15738 Zeuthen, Germany Druckerei Heigener Europrint, Hamburg Tel.: +49 33762 7-70, Fax: +49 33762 7-7413 [email protected] Editorial deadline 28 February 2014 www.desy.de ISBN 978-3-935702-87-4 Editorial note doi: 10.3204/DESY_AR_ET2013 The authors of the individual scientific contributions published in this report are fully responsible for the contents. Cover A possible design of CTA, the Cherenkov Telescope Array.
    [Show full text]
  • Language and Materiality Ethnographic and Theoretical Explorations
    Language and Materiality Ethnographic and Theoretical Explorations Edited by Jillian R. Cavanaugh CUNY, New York Shalini Shankar Northwestern University University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India 79 Anson Road, #06-04/06, Singapore 079906 Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9781107180949 DOI: 10.1017/9781316848418 C Cambridge University Press 2017 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2017 Printed in <country> by <printer> A catalogue record for this publication is available from the British Library. Library of Congress Cataloging-in-Publication Data ISBN 978-1-107-18094-9 Hardback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. 4 Fontroversy! Or, How to Care about the Shape of Language Keith M. Murphy Introduction On July 4, 2012, standing in the well of a packed lecture hall on the cam- pus of the European Organization for Nuclear Research (CERN), just outside Geneva, particle physicist Joseph Incandela looked up at the hall’s projection screen and, with only a hint of nerves in his voice, uttered the following pro- nouncement: “If we combine the ZZ and gamma-gamma, this is what we get.
    [Show full text]
  • HUK+Adult+FW1920+Catalogue+-+
    Saving You By (author) Charlotte Nash Sep 17, 2019 | Paperback $24.99 | Three escaped pensioners. One single mother. A road trip to rescue her son. The new emotionally compelling page-turner by Australia's Charlotte Nash In their tiny pale green cottage under the trees, Mallory Cook and her five-year- old son, Harry, are a little family unit who weather the storms of life together. Money is tight after Harry's father, Duncan, abandoned them to expand his business in New York. So when Duncan fails to return Harry after a visit, Mallory boards a plane to bring her son home any way she can. During the journey, a chance encounter with three retirees on the run from their care home leads Mallory on an unlikely group road trip across the United States. 9780733636479 Zadie, Ernie and Jock each have their own reasons for making the journey and English along the way the four of them will learn the lengths they will travel to save each other - and themselves. 384 pages Saving You is the beautiful, emotionally compelling page-turner by Charlotte Nash, bestselling Australian author of The Horseman and The Paris Wedding. Subject If you love the stories of Jojo Moyes and Fiona McCallum you will devour this FICTION / Family Life / General book. 'I was enthralled... Nash's skilled storytelling will keep you turning pages until Distributor the very end.' FLEUR McDONALD Hachette Book Group Contributor Bio Charlotte Nash is the bestselling author of six novels, including four set in country Australia, and The Paris Wedding, which has been sold in eight countries and translated into multiple languages.
    [Show full text]
  • Prhep Hep2001
    International Europhysics Conference on HEP PROCEEDINGS Searches for new particles at Colliders Fabiola Gianotti∗ CERN, EP Division, 1211 Gen`eve 23, Switzerland E-mail: [email protected] Abstract: Most recent results from the searches for new particles at LEP, Tevatron and PrHEP hep2001 HERA, presented at the 2001 Summer Conferences, are reviewed. Prospects at future machines (LHC and Linear Colliders) are also discussed. The emphasis is put on the quest for Higgs bosons, Supersymmetry, Extra-dimensions and Flavour-Changing Neu- tral Current processes. In each case, the phenomenological framework, the experimental strategies, and the analysis methods are described, and the sensitivity and reach of the various machines are compared. 1. Introduction The search for new particles is one of the most exciting, rapidly-evolving and prolific fields in today’s high-energy experimental physics, motivated also by a rich spectrum of theoretical scenarios and predictions. Over the last years, the three operational high-energy Colliders, LEP, Tevatron and HERA, have explored the few hundred GeV energy range and set stringent bounds on various models. In addition, recently LEP has reported an exciting 2σ hint in the search for a Standard Model (SM) Higgs boson of mass about 115 GeV, and the H1 experiment at HERA has observed an excess of W ’s produced in association with a high transverse momentum hadronic system. Since 1996, i.e. since the beginning of its phase two, LEP has delivered an integrated 1 luminosity of about 700 pb− per experiment at a centre-of-mass energy above the W -pair production threshold. The machine performance in terms of both energy and luminosity went beyond any optimistic expectation.
    [Show full text]
  • Université Joseph Fourier Les Houches Session LXXXVII 2007
    houches87cov.tex; 12/05/2008; 18:25 p. 1 1 Université Joseph Fourier 1 2 2 3 Les Houches 3 4 4 5 Session LXXXVII 5 6 6 7 2007 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 String Theory and the Real World: 15 16 16 17 From Particle Physics to Astrophysics 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 houches87cov.tex; 12/05/2008; 18:25 p. 2 1 Lecturers who contributed to this volume 1 2 2 3 3 4 4 I. Antoniadis 5 5 J.L.F. Barbón 6 6 Marcus K. Benna 7 7 Thibault Damour 8 8 Frederik Denef 9 9 F. Gianotti 10 10 G.F. Giudice 11 11 Kenneth Intriligator 12 12 Elias Kiritsis 13 13 Igor R. Klebanov 14 14 Marc Lilley 15 15 Juan M. Maldacena 16 16 Eliezer Rabinovici 17 17 Nathan Seiberg 18 18 Angel M. Uranga 19 19 Pierre Vanhove 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 houches87cov.tex; 12/05/2008; 18:25 p. 3 1 ÉCOLE D’ÉTÉ DE PHYSIQUE DES HOUCHES 1 2 2 3 SESSION LXXXVII, 2 JULY–27 JULY 2007 3 4 4 5 5 6 6 COLE THÉMATIQUE DU 7 É CNRS 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 STRING THEORY AND THE REAL WORLD: 15 16 16 17 FROM PARTICLE PHYSICS TO ASTROPHYSICS 17 18 18 19 19 20 20 21 21 Edited by 22 22 23 C.
    [Show full text]