Frogs and Toads Emerge from Two Summers As Tadpoles, Overwintering Under the These Spots in Great Numbers to Converge in Ice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conservation Planning for Amphibian Species with Complex Habitat Requirements: a Case Study Using Movements and Habitat Selection of the Wood Frog Rana Sylvatica
Journal of Herpetology, Vol. 40, No. 4, pp. 442–453, 2006 Copyright 2006 Society for the Study of Amphibians and Reptiles Conservation Planning for Amphibian Species with Complex Habitat Requirements: A Case Study Using Movements and Habitat Selection of the Wood Frog Rana sylvatica 1,2,3 1,4 2,5 ROBERT F. BALDWIN, ARAM J. K. CALHOUN, AND PHILLIP G. DEMAYNADIER, 1Department of Plant, Soil and Environmental Sciences, University of Maine, Orono, Maine 04469, USA 2Maine Department of Inland Fisheries and Wildlife, 650 State Street, Bangor, Maine 04401, USA ABSTRACT.—Conservation of fauna breeding in vernal pools is challenging given their complex life histories. Many species, including the widespread North American Wood Frog (Rana sylvatica), require both aquatic and terrestrial habitat, yet insufficient information exists about movements between these environments, nor fine-scale selection patterns within them. To inform conservation planning, we conducted a radio-telemetry study of seasonal patterns of Wood Frog movements and habitat selection in southern Maine. Forty-three frogs were tracked an average of 25.6 days each, April to November 2003. In early spring, Wood Frogs generally selected damp leaf litter retreats on the margins of breeding pools. Following breeding, frogs selected forested wetlands (9.3% of the landscape) over forested uplands (90.7% of the landscape) in 75.3% of radio locations (N 5 544). Postbreeding movements from breeding pools to nearby, closed-canopy, forested wetlands ranged from 102–340 m (median 169m, N 5 8) and included stopovers in upland forest floors ranging from one to 17 days (median two days, N 5 7). -
Amphibian Identification Guide
Amphibian Migrations & Road Crossings Amphibian Identification Guide The NYSDEC Hudson River Estuary Program and Cornell University are working with communities to conserve forests, woodland pools, and the wildlife that depend on these critical habitats. This guide is designed to help volunteers of the Amphibian Migrations & Road Crossings Project identify species they observe during spring migrations, when many salamanders and frogs move from forest habitat to woodland pools for breeding. For more information about the project, visit http://www.dec.ny.gov/lands/51925.html. spotted salamander* (Ambystoma maculatum) Black to dark gray body with two rows of yellow spots. Widespread distribution in the Hudson Valley. Total length 5.0-8.0 in. Jefferson/blue-spotted salamander complex* (Ambystoma jeffersonianum x laterale) Brown to grayish black with blue-silver flecking. Less common. Note: Hybridization between Jefferson and blue-spotted salamander has created very variable appearances and individuals may have features of both species. Because even experts have difficulty distinguishing these two species in the field, we consider any sightings to be the ‘complex.’ Total length 3.0-7.5 in. marbled salamander* (Ambystoma opacum) Black or grayish-black body with white or gray crossbars along length of body. Stout body with wide head. Less common. (Breeds in the fall.) Total length 3.5-5.0 in. *Woodland pool breeding species. 0 inches 1 2 3 4 5 6 7 Amphibian Migrations & Road Crossings: Amphibian Identification Guide Page 2 of 4 eastern newt (Notophthalmus viridescens) Terrestrial “red eft” stage of newt (above) is reddish-orange with two rows of reddish spots with black borders. -
Red-Legged Frog Rana Aurora
COSEWIC Assessment and Update Status Report on the Red-legged Frog Rana aurora in Canada SPECIAL CONCERN 2004 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2004. COSEWIC assessment and update status report on the Red-legged Frog Rana aurora in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 46 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report: Waye, H. 1999. COSEWIC status report on the red-legged frog Rana aurora in Canada in COSEWIC assessment and status report on the red-legged frog Rana aurora in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-31 pp. Production note: COSEWIC would like to acknowledge Kristiina Ovaska and Lennart Sopuck for writing the status report on the Red-legged Frog Rana aurora. This report was prepared under contract with Environment Canada and was overseen and edited by David Green, the COSEWIC Amphibians and Reptiles Species Specialist Subcommittee Co-chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Ếgalement disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la situation de Grenouille à pattes rouges (Rana aurora) au Canada — Mise à jour. -
Wood Frog (Rana Sylvatica): a Technical Conservation Assessment
Wood Frog (Rana sylvatica): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project March 24, 2005 Erin Muths1, Suzanne Rittmann1, Jason Irwin2, Doug Keinath3, Rick Scherer4 1 U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Ave. Bldg C, Fort Collins, CO 80526 2 Department of Biology, Bucknell University, Lewisburg, PA 17837 3 Wyoming Natural Diversity Database, University of Wyoming, P.O. Box 3381, Laramie, WY 82072 4 Colorado State University, GDPE, Fort Collins, CO 80524 Peer Review Administered by Society for Conservation Biology Muths, E., S. Rittman, J. Irwin, D. Keinath, and R. Scherer. (2005, March 24). Wood Frog (Rana sylvatica): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/projects/scp/assessments/woodfrog.pdf [date of access]. ACKNOWLEDGMENTS The authors would like to acknowledge the help of the many people who contributed time and answered questions during our review of the literature. AUTHORS’ BIOGRAPHIES Dr. Erin Muths is a Zoologist with the U.S. Geological Survey – Fort Collins Science Center. She has been studying amphibians in Colorado and the Rocky Mountain Region for the last 10 years. Her research focuses on demographics of boreal toads, wood frogs and chorus frogs and methods research. She is a principle investigator for the USDOI Amphibian Research and Monitoring Initiative and is an Associate Editor for the Northwestern Naturalist. Dr. Muths earned a B.S. in Wildlife Ecology from the University of Wisconsin, Madison (1986); a M.S. in Biology (Systematics and Ecology) from Kansas State University (1990) and a Ph.D. -
A Guide to Amphibians of British Columbia North of 50
• Skin smooth, without longitudinal folds, and • Red tint to underside of legs and lower abdomen, and • Light patch between the eyes across the snout, and • Skin smooth, without longitudinal folds, and • Longitudinal fold (dorsolateral fold) on each side, and • Red tint to underside of legs/lower abdomen, and NO NO • Dark stripe extending from the nostril across the eye to NO NO NO • Groin mottled with yellowish green and black (seen when • Solid colouration with no distinct markings • Enlarged adhesive toe-pad at the end of each digit • White, mottled underside of body and legs • Back with distinct dark spots with a light center the groin on each side the hind leg is extended) YES YES YES YES YES YES Pacific (Coastal) Tailed Frog Ascaphus truei Pacific Chorus Frog Pseudacris (Hyla) regilla Boreal Chorus Frog Pseudacris maculata Wood Frog Lithobates sylvaticus (Rana sylvatica) Columbia Spotted Frog Rana luteiventris Northern Red-legged Frog Rana aurora StatUS Special Concern (Canada); Blue list (B.C.) StatUS Yellow List (B.C.) StatUS Yellow List (B.C.) StatUS Yellow List (B.C.) StatUS Yellow List (B.C.) StatUS Special Concern (Canada); Blue List (B.C.) A Guide to AddItIonAl feAtuRes Slender body without a longitudinal fold of skin along the sides; AddItIonAl feAtuRes Slender body; tympanum (eardrum) clearly visible; a dark eye stripe AddItIonAl feAtuRes Slender frog with pointed snout; tympanum (eardrum) clearly visible; AddItIonAl feAtuRes Distinct dark facial mask, extending from nostril across the eye to the AddItIonAl feAtuRes Longitudinal -
DNR Letterhead
ATU F N RA O L T R N E E S M O T U STATE OF MICHIGAN R R C A P DNR E E S D MI N DEPARTMENT OF NATURAL RESOURCES CHIG A JENNIFER M. GRANHOLM LANSING REBECCA A. HUMPHRIES GOVERNOR DIRECTOR Michigan Frog and Toad Survey 2009 Data Summary There were 759 unique sites surveyed in Zone 1, 218 in Zone 2, 20 in Zone 3, and 100 in Zone 4, for a total of 1097 sites statewide. This is a slight decrease from the number of sites statewide surveyed last year. Zone 3 (the eastern half of the Upper Peninsula) is significantly declining in routes. Recruiting in that area has become necessary. A few of the species (i.e. Fowler’s toad, Blanchard’s cricket frog, and mink frog) have ranges that include only a portion of the state. As was done in previous years, only data from those sites within the native range of those species were used in analyses. A calling index of abundance of 0, 1, 2, or 3 (less abundant to more abundant) is assigned for each species at each site. Calling indices were averaged for a particular species for each zone (Tables 1-4). This will vary widely and cannot be considered a good estimate of abundance. Calling varies greatly with weather conditions. Calling indices will also vary between observers. Results from the evaluation of methods and data quality showed that volunteers were very reliable in their abilities to identify species by their calls, but there was variability in abundance estimation (Genet and Sargent 2003). -
Sideration of the Population Sizes of Associated Pond Breeding Species
Adult Survivorship and Juvenile Recruitment in Populations of Crawfish Frogs (Lithobates Areolatus), with Additional Consideration of the Population Sizes of Associated Pond Breeding Species Item Type Thesis Authors Kinney, Vanessa C. Download date 01/10/2021 16:58:19 Link to Item http://hdl.handle.net/10484/1808 ADULT SURVIVORSHIP AND JUVENILE RECRUITMENT IN POPULATIONS OF CRAWFISH FROGS (LITHOBATES AREOLATUS), WITH ADDITIONAL CONSIDERATION OF THE POPULATION SIZES OF ASSOCIATED POND BREEDING SPECIES _______________________ A thesis Presented to The College of Graduate and Professional Studies Department of Biology Indiana State University Terre Haute, Indiana ______________________ In Partial Fulfillment of the Requirements for the Degree Master of Science _______________________ by Vanessa C. Kinney May 2011 Vanessa C. Kinney 2011 Keywords: amphibian breeding, Lithobates areolatus, drift fences - i - COMMITTEE MEMBERS Committee Chair: Michael J. Lannoo, Ph.D. Professor of Anatomy and Cell Biology Indiana University Committee Member: William A. Mitchell, Ph.D. Associate Professor of Biology Indiana State University Committee Member: John O. Whitaker, Jr., Ph.D. Professor of Biology Indiana State University Committee Member: John C. Maerz, Ph.D. Associate Professor of Vertebrate Ecology The University of Georgia - ii - ABSTRACT Crawfish Frog populations have declined significantly in both the northeastern and southwestern portions of their range, and are listed as state endangered in both Iowa and Indiana. They are animals with a secretive nature, and comparatively little is know about their basic life history and natural history. To address this gap, and to obtain the information necessary to manage for this species in areas of decline, I studied the breeding biology of two Crawfish Frog populations during 2009 and 2010. -
California Red-Legged Frog (Rana Aurora Draytonii) and Delta Smelt (Hypomesus Transpacificus)
Potential Risks of Atrazine Use to Federally Threatened California Red-legged Frog (Rana aurora draytonii) and Delta Smelt (Hypomesus transpacificus) Pesticide Effects Determinations Environmental Fate and Effects Division Office of Pesticide Programs Washington, D.C. 20460 February 19, 2009 Primary Authors: Mark Corbin, Senior Scientist Brian Anderson, Biologist Secondary Review: Paige Doelling, Ph.D., Acting Risk Assessment Process Leader James Hetrick, Ph.D., Senior Environmental Scientist Branch Chief, Environmental Risk Branch 3: Dana Spatz 2 Table of Contents 1. Executive Summary..............................................................................................................7 1.1. Purpose of Assessment ..................................................................................................7 1.2. Assessed Chemicals.......................................................................................................7 1.3. Assessment Procedures..................................................................................................7 1.4. Atrazine Uses Assessed .................................................................................................9 1.5. Summary of Conclusions.............................................................................................10 2. Problem Formulation .........................................................................................................13 2.1 Purpose...........................................................................................................................13 -
Missouri's Toads and Frogs Booklet
TOADSMissouri’s andFROGS by Jeffrey T. Briggler and Tom R. Johnson, Herpetologists www.MissouriConservation.org © 1982, 2008 Missouri Conservation Commission Equal opportunity to participate in and benefit from programs of the Missouri Department of Conservation is available to all individuals without regard to their race, color, national origin, sex, age or disability. Questions should be directed to the Department of Conservation, P.O. Box 180, Jefferson City, MO 65102, (573) 751-4115 (voice) or 800-735-2966 (TTY), or to the U.S. Fish and Wildlife Service Division of Federal Assistance, 4401 N. Fairfax Drive, Mail Stop: MBSP-4020, Arlington, VA 22203. Cover photo: Eastern gray treefrog by Tom R. Johnson issouri toads and frogs are colorful, harmless, vocal and valuable. Our forests, prairies, rivers, swamps and marshes are Mhome to a multitude of toads and frogs, but few people know how many varieties we have, how to tell them apart, or much about their natural history. Studying these animals and sharing their stories with fellow Missourians is one of the most pleasurable and rewarding aspects of our work. Toads and frogs are amphibians—a class Like most of vertebrate animals that also includes amphibians, salamanders and the tropical caecilians, which are long, slender, wormlike and legless. frogs and Missouri has 26 species and subspecies (or toads have geographic races) of toads and frogs. Toads and frogs differ from salamanders by having an aquatic relatively short bodies and lacking tails at adulthood. Being an amphibian means that tadpole stage they live two lives: an aquatic larval or tadpole and a semi- stage and a semi-aquatic or terrestrial adult stage. -
THE AGILE FROG Species Action Plan Rana Dalmatina SUMMARSUMMARSUMMARYYY DOCUMENT
THE AGILE FROG Species Action Plan Rana dalmatina SUMMARSUMMARSUMMARYYY DOCUMENT The agile frog Rana dalmatina is Despite the efforts of these distributed widely throughout much of organisations, the future of Jersey’s southern and central Europe, but is agile frog is still far from secure. The found in only a few northern locations factors which probably played a key including Jersey - the frog is not found role in the frogs decline are still very anywhere else in the British Isles. The much in evidence: Jersey population of the agile frog has been declining in both range and •water quality and quantity, as a result SSSpppecial pointsss ofofof numbers since the early 1900’s. In the of intensive agriculture, are still below inininteresteresteresttt::: 1970’s only seven localities were listed EU standards in many areas; The agile frog is protected where the frog could still be found, and •the continuing alteration, disturbance, under schedule 1 of the by the mid 1980’s this had fallen to and loss of potentially suitable Conservation of Wildlife only two sites. In 1987 one of the amphibian habitat; (Jersey) Law 2000. remaining two populations was lost as a •the growing numbers of predatory result of a lethal spill of agricultural ducks, cats, and feral ferrets. DESCRIPTION pesticide into the breeding pond. The The agile frog Rana dalmatina species is now believed to be confined These and other factors have combined is a European brown frog, to a single vulnerable population in the to reduce the frog population to the growing up to 90 mm (snout south-west of the island. -
Deicing Salts Influence Ranavirus Outbreaks in Wood Frog (Lithobates Sylvaticus) Tadpoles Sarah Jacobson [email protected]
University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-2-2019 Deicing Salts Influence Ranavirus Outbreaks in Wood Frog (Lithobates sylvaticus) Tadpoles Sarah Jacobson [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Animal Diseases Commons, Animal Experimentation and Research Commons, Biodiversity Commons, Population Biology Commons, Terrestrial and Aquatic Ecology Commons, and the Virus Diseases Commons Recommended Citation Jacobson, Sarah, "Deicing Salts Influence Ranavirus Outbreaks in Wood Frog (Lithobates sylvaticus) Tadpoles" (2019). Honors Scholar Theses. 618. https://opencommons.uconn.edu/srhonors_theses/618 Jacobson 1 Deicing Salts Influence Ranavirus Outbreaks in Wood Frog (Lithobates sylvaticus) Tadpoles Sarah K. Jacobson Department of Natural Resources and the Environment, Center for Wildlife and Fisheries Conservation Center, University of Connecticut Tracy A. G. Rittenhouse Department of Natural Resources and the Environment, Center for Wildlife and Fisheries Conservation Center, University of Connecticut Jacobson 2 Abstract Ecosystems are increasingly being exposed to anthropogenic stressors that could make animals and thus populations more susceptible to disease. For example, the application of deicing salts to roads is increasing in the northeastern United States. Chronic stress that larval amphibians experience when living in vernal pools with high salinity may alter their susceptibility to ranavirus, a pathogen responsible for mass mortality events worldwide. This project quantifies the effects of road salts and ranavirus exposure on larval wood frog (Lithobates sylvaticus) growth and survival. Using outdoor mesocsoms, we raised wood frog tadpoles in salt treatments and then exposed them to the FV3 strain of ranavirus, with the hypothesis that individuals raised in salt treatments would have lower survival, and metamorph earlier at larger size when exposed to ranavirus than those from no salt treatments. -
Investigations Into the Life History Stages of the Common Frog (Rana Temporaria) Affected by an Amphibian Ranavirus in the United Kingdom
260 AMPHIBIAN DISEASES Herpetological Review, 2013, 44(2), 260–263. © 2013 by Society for the Study of Amphibians and Reptiles Investigations into the Life History Stages of the Common Frog (Rana temporaria) Affected by an Amphibian Ranavirus in the United Kingdom Ranaviruses are emerging infectious disease agents that af- owned land, so in order to maintain confidentiality we are un- fect a wide range of ectothermic and poikilothermic vertebrates: able to provide more detailed location information than is pro- fish, reptiles (including turtles and tortoises) and amphibians vided in Tables 1 and 2. (Ahne et al. 1997; Chinchar et al. 2009; Miller et al. 2011). In the Live tadpoles were transported in a common container in United Kingdom (UK), amphibian ranaviruses began to emerge pond water to the Institute of Zoology, Zoological Society of in the late 1980s and early 1990s in southeast England (Cunning- London, London, UK. Upon arrival, tadpoles were euthanized ham et al. 1996) and manifested as adult mass morbidity and using an overdose of MS-222 (1g/L tricaine methanesulphonate, mortality events (Cunningham et al. 1993; Cunningham et al. Thompson & Joseph Ltd., Norwich, UK) buffered to pH 7.0 with 1996; Drury et al. 1995). sodium bicarbonate. Tissue samples were then dissected out Evidence for local ranavirus outbreaks in the UK have, to and frozen at -80°C for ranavirus screening. In the case of larger date, relied exclusively upon reports of moribund or dead adult tadpoles, tissues included the right anterior quarter of the body, common frogs (e.g. Cunningham et al. 1993; Cunningham et al.