Dissolution and Replacement Creep: a Significant Deformation Mechanism

Total Page:16

File Type:pdf, Size:1020Kb

Dissolution and Replacement Creep: a Significant Deformation Mechanism Journal of Structural Geology 24 72002) 1179±1193 www.elsevier.com/locate/jstrugeo Dissolution and replacement creep: a signi®cant deformation mechanism in mid-crustal rocks R.P. Wintscha,*, Keewook Yia,b aDepartment of Geological Sciences, Indiana University, Bloomington, IN 47405, USA bSchool of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea Received 4 December 2000; revised 2 June 2001; accepted 26 June 2001 Abstract Zoning patterns and zoning truncations in metamorphic minerals in a granodioritic orthogneiss indicate that strain and S±C fabrics in these rocks were produced by dissolution, precipitation, and replacement processes, even at epidote±amphibolite facies metamorphic conditions. The metamorphic fabric is de®ned by alternating layers and folia dominated by quartz, feldspars, and biotite 1 epidote. Zoning patterns in most metamorphic plagioclase, orthoclase, epidote, and sphene are truncated at boundaries normal to the shortening direction, suggesting dissolution. Interfaces of relict igneous orthoclase phenocrysts that face the shortening direction are embayed and replaced by biotite, epidote, and myrmekitic intergrowths of plagioclase and quartz. Metamorphic plagioclase grains are also replaced by epidote. We interpret these microstructures to re¯ect strain-enhanced dissolution. The cores of many grains show asymmetric overgrowths with at least two generations of beards, all oriented on the ends of grains that face the extension direction. We interpret these textures to re¯ect precipitation of components dissolved by deformation-enhanced dissolution. While biotite and quartz probably deformed by dislocation creep, the overall deformation was accommodated by dissolution perpendicular to the shortening direction, and precipitation parallel to it. These chemical processes must have been activated at lower stresses than the dislocation creep predicted from extrapolations of data from experiments in dry rocks. Thus wet crust is likely to be weaker than calculated from these experimental studies. q 2002 Elsevier Science Ltd. All rights reserved. Keywords: Dissolution; Precipitation; Replacement creep; Pressure solution; Metamorphic reaction mechanism 1. Introduction shortening direction, as has been recognized in sandstones 7e.g. Blatt, 1992), metaconglomerates 7Mosher, 1976), and Evidence from naturally deformed rocks for the operation augen gneisses 7Simpson and Wintsch, 1989), commonly by of solution transfer is now well documented in sedimentary the concentration of less soluble minerals, `insoluble and low-grade metamorphic rocks 7e.g. Passchier and residue'. The dissolved components may precipitate as Trouw, 1996). Most signi®cantly, the development of quartz, feldspar, and even monazite, forming beards on cleavage and metamorphic fabric is now identi®ed to be a host grains 7Wintsch and Knipe, 1983; Williams et al., chemical process, albeit mechanically induced. The 1999). differentiation is thought to be caused by the dissolution In rocks under suf®ciently high-grade metamorphic of quartz and feldspar from developing mica-rich domains, conditions, dislocation glide and climbare activated and precipitation into growing quartz±feldspar domains. progressively in phyllosilicates, then in quartz, and ®nally Bulk chemical analytical studies do not support the proposi- in feldspars and pyroxenes 7Passchier and Trouw, 1996). tion that silica is removed from the developing slate at the Thus in dry rocks dislocation creep may be the most kilometer scale 7e.g. Wright and Platt, 1982). On the important deformation mechanism in the ductile deforma- contrary, micas and feldspars as well as quartz appear to tion of higher temperature 7.3008C), lower crustal rocks dissolve and reprecipitate locally 7centimeter scale), with 7Fig. 1). Where ¯uids are present, however, a ®eld of dis- only minor and trace elements that are differentially mobile solution and precipitation displaces the dislocation creep moving .100 m 7e.g. Wintsch et al., 1991). The sites of ®eld. This is best documented in low-grade rocks of dissolution are the surfaces normal to the principal ,200±3008C and is typically called `pressure solution' 7Fig. 1; Snoke et al., 1998). * Corresponding author. Tel.: 11-812-855-4018; fax: 11-812-855-7899. In this contribution we describe an orthogneiss meta- E-mail address: [email protected] 7R.P. Wintsch). morphosed to wet epidote±amphibolite facies conditions. 0191-8141/02/$ - see front matter q 2002 Elsevier Science Ltd. All rights reserved. PII: S0191-8141701)00100-6 1180 R.P. Wintsch, K. Yi / Journal of Structural Geology 24 /2002) 1179±1193 mechanism as suggested by the extrapolation of experimen- tal results from dry rocks 7see Fig. 1). 2. Geologic setting The samples analysed in this study were collected in the Glastonbury gneiss in north-central Connecticut 7Fig. 2). The Glastonbury gneiss is a complex of Ordovician volcanic and plutonic rocks that comprise the Bronson Hill terrane of central New England. It includes metamorphosed granitic, granodioritic, trondjemitic, and dioritic orthogneisses and schists. U±Pbgeochronology on zircon and sphene in this gneiss 7Leo et al., 1984; Aleinikoff et al., 2002) and on the Bronson Hill rocks in general 7Zartman and Leo, 1985; Tucker and Robinson, 1990) con®rm a Late Ordovician Fig. 1. Diagram showing the strength envelope of rocks in which frictional igneous crystallization age for these rocks. sliding ®rst in quartz-rich rocks, followed by feldspar-rich and ®nally by diopside-rich rocks gives way to plastic ¯ow at higher temperatures Apparently all Bronson Hill rocks were metamorphosed 7compiled from Kohlstedt et al. 71995) and Rybacki and Dresen 72000)). twice. In New Hampshire and Massachusetts, U±Pb The addition of a `pressure solution creep' ®eld is from Snoke et al. 71998). geochronology and 40Ar/39Ar hornblende thermochronology con®rms amphibolite facies metamorphism and cooling The foliation development, metamorphic differentiation, from the early Devonian Acadian orogeny. However, and grain shape in these rocks are all most easily explained Carboniferous to Permian 40Ar/39Ar mica and feldspar in terms of dissolution, precipitation, and replacement, with cooling ages document an Alleghanian greenschist facies relatively little evidence for dislocation creep. If these ¯uid- metamorphic overprint 7Harrison et al., 1989). In dependant deformation mechanisms are representative of Connecticut, the intensity of Alleghanian overprinting is processes operating in wet rocks at high grades, then dis- suf®ciently high that U±Pbages of all metamorphic sphene location creep may not be the prevailing deformation and all 40Ar/39Ar hornblende and mica cooling ages yield Fig. 2. Map of New England showing the distribution of lithotectonic terranes or zones, and the location of our study area within the Glastonbury gneiss of the Bronson Hill terrane of northern Connecticut. R.P. Wintsch, K. Yi / Journal of Structural Geology 24 /2002) 1179±1193 1181 Fig. 3. Plane light and crossed polarized light images of augen gneiss from the Glastonbury Complex. The images show 1 cm diameter grains of orthoclase 7Or) with Carlsbad twinning 7Cs Tw in B), locally embayed by myrmekite 7Myr). Darker layers in A, de®ned by biotite and epidote layers locally intergrown with amphibole 7Amp), outline an S±C fabric. These folia are separated by layers of clear quartz 7Qtz) and dusty plagioclase 7Pl). The locations of Figs. 4 and 5D are indicated. only Pennsylvanian to Permian ages 7Wintsch et al., 1993, these minerals are Ordovician igneous minerals, and some 1998; Coleman et al., 1997; Aleinikoff et al., 2002). are metamorphic minerals, produced by metamorphic reactions. Some participate directly in de®ning the foliation, and some do not. Consequently, each mineral is described 3. Observations separately below. The gneisses examined for this study are granodioritic, 3.1. Plagioclase containing centimeter±diameter K-feldspar crystals in a medium- to coarse-grained matrix of plagioclase, quartz, Plagioclase, the most abundant mineral in the gneiss, biotite, epidote, hornblende, K-feldspar, and sphene 7Fig. typically occurs as polygonal untwinned grains 100± 3). Biotite de®nes an inconspicuous foliation, and a very 300 mm in length 7Fig. 4), but some grains may be twice conspicuous NNW-plunging lineation parallel to prolate as large 7Fig. 5A). It tends to occur in layers and domains ma®c enclaves, such that the rocks are locally L-tectonites. from 1 to 5 mm wide and 10±15 mm long where it consti- S±C fabric relationships show that top moved to the SSE tutes .80% of the minerals present 7Figs. 3 and 4). Some 7Wintsch et al., 1998). Biotite is the most prominent mineral grains are equant 7Fig. 5B and C), but most are elongated de®ning the lineation, but elongate grains of plagioclase, parallel to the mineral lineation 7Fig. 5A and D). Aspect epidote and quartz also de®ne the lineation in their aspect ratios of 2:1 are typical, but they may be up to 4:1. These ratios and overgrowth patterns 7Figs. 3 and 4). Some of grains are universally zoned, with compositions ¯uctuating 1182 R.P. Wintsch, K. Yi / Journal of Structural Geology 24 /2002) 1179±1193 Fig. 4. A colorized backscattered electron image across the foliation shown in Fig. 3. The images were constructed by assembling and separately colorizing four images of the same regions, each adjusted to maximize compositional contrasts in plagioclase 7blue), orthoclase 7yellow), biotite, epidote, amphibole 7green) and sphene
Recommended publications
  • Amphibole–Melt Disequilibrium in Silicic Melt of the Aso-4 Caldera
    Ishibashi et al. Earth, Planets and Space (2018) 70:137 https://doi.org/10.1186/s40623-018-0907-4 FULL PAPER Open Access Amphibole–melt disequilibrium in silicic melt of the Aso‑4 caldera‑forming eruption at Aso Volcano, SW Japan Hidemi Ishibashi1*, Yukiko Suwa1, Masaya Miyoshi2, Atsushi Yasuda3 and Natsumi Hokanishi3 Abstract The most recent and largest caldera-forming eruption occurred at ~ 90 ka at Aso Volcano, SW Japan, and is known as the “Aso-4 eruption.” We performed chemical analyses of amphibole phenocrysts from Aso-4 pyroclasts collected from the initial and largest pyroclastic unit (4I-1) of the eruption to infer the composition–temperature–pressure conditions of the melt that crystallized amphibole phenocrysts. Each amphibole phenocryst is largely chemically homogeneous, but inter-grain chemical variation is observed. Geothermometry, geobarometry, and melt–SiO2 relationships based on amphibole single-phase compositions reveal that most amphibole phenocrysts were in equilibrium with hydrous SiOmelt melt comprising ~ 63–69 wt% ­SiO2 ( 2 ) at 910–950 °C, although several grains were crystallized from more mafc and higher-temperature melts (~ 57–60.5 wt% ­SiO2 and 965–980 °C). The amphibole temperatures are comparable with those previously estimated from two-pyroxene geothermometry, but are much higher than temperatures previ- melt ously estimated from Fe–Ti oxide geothermometry. The estimated SiO2 contents are lower than that of the host melt in the 4I-1 pyroclasts. Chemical and thermal disequilibrium between the amphibole rims and the host melt, as well as intra-grain homogeneity and inter-grain heterogeneity of amphibole compositions, suggests that these amphiboles were incorporated into the host melt immediately prior to the caldera-forming eruption.
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 08 February 2019 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Humphreys, Madeleine C. S. and Cooper, George F. and Zhang, Jing and Loewen, Matthew and Kent, Adam J. R. and Macpherson, Colin G. and Davidson, Jon P. (2019) 'Unravelling the complexity of magma plumbing at Mount St. Helens : a new trace element partitioning scheme for amphibole.', Contributions to mineralogy and petrology., 174 (1). p. 9. Further information on publisher's website: https://doi.org/10.1007/s00410-018-1543-5 Publisher's copyright statement: This is a post-peer-review, pre-copyedit version of an article published in Contributions to mineralogy and petrology. The nal authenticated version is available online at: https://doi.org/10.1007/s00410-018-1543-5 Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk 1 Unravelling the complexity of magma plumbing at Mount St Helens: a new trace element 2 partitioning scheme for amphibole 3 4 Madeleine.
    [Show full text]
  • Mineralogy Lab Manual 4-9.Pdf
    Rock forming minerals The Mineral Olivine ! • Chemistry: (Mg, Fe)2SiO4, Magnesium Iron Silicate. • Class: Silicates • Subclass: Nesosilicates • Group: Olivine • Uses: As gemstones, industrial uses as refractory sands and abrasives, an ore of magnesium and as mineral specimens. • Group: Olivine is actually a name for a series between two end members, fayalite and forsterite. Fayalite is the iron rich member with a pure formula of Fe2SiO4. • Forsterite is the magnesium rich member with a pure formula of Mg2SiO4. • the series includes: - Ca2SiO4 - larnite ! - Mn2SiO4 - tephroite! ! - CaMgSiO4 - monticellite (which is commonly found in metamorphosed dolomites) ! Physical properties for hand sample • Color is a light near emerald green to the more common pale yellowish green; also found colorless, greenish brown to black. • Luster is vitreous. • Transparency: Crystals are transparent to translucent. • Crystal System is orthorhombic; • Habits include flatten tabular to box shaped crystals, but good crystals are rare. More commonly found as grains in alluvial gravels and as granular xenoliths in magnesium rich volcanic rock. Also massive. Twinning is rare, but has produced star shaped trillings. • Cleavage is poor in two directions at 90 degrees, is more distinct in fayalite. • Fracture is conchoidal. • Hardness is 6.5 - 7. • Specific Gravity is approximately 3.2 for forsterite - 4.3 for fayalite (above average for non-metallic minerals). • Streak is white. • Associated Minerals are pyroxene group minerals, ca-felspars, amphiboles. • Common rocks: ultramafic, mafic rocks (Dunite, peridotite, basalt, gabbro). It is also found in metamorphic rocks and Serpentine deposits as a primary mineral. Olivine may also occur in meteorites. • It weathers to iddingsite (a combination of clay minerals, iron oxides and ferrihydrites) ! readily in the presence of water.
    [Show full text]
  • Cl-Rich Amphiboles As Record for Hydrothermal Processes at Very
    Cl-rich amphiboles as record for hydrothermal processes at very high temperatures in the deep oceanic crust: brine/rock interaction experiments and investigation on natural rocks Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Adriana Miriam Currin Sala, M. Sc (Niederlande) 2018 Referent: Prof. Dr. rer. nat. Jürgen Koepke Korreferenten: Prof. Dr. rer. nat. Wolfgang Bach Prof. Dr. sci. nat. Ulrich Heimhofer Tag der Promotion: 15.11.2018 2 Abstract Interactions between rock and high temperature seawater-derived fluids are recorded in hydrothermal veins and dykelets that cross-cut layered olivine gabbros deep in the plutonic section of the Samail Ophiolite, Wadi Wariyah, Sultanate of Oman. Here we present a study – using petrographic, microanalytical, isotopic, and structural methods – of amphiboles found in the aforementioned veins and dykelets, which show a conspicuous compositional variation from high-Ti magnesiohastingsite and pargasite via magnesiohornblende and edenite, to Cl-rich ferropargasite and hastingsite (with up to 5.4 wt% Cl) and actinolite. These minerals record a wide range of formation conditions from magmatic to hydrothermal at varying water/rock ratios and salinities, while the formation of super Cl-rich amphibole suggests the occurrence of phase separation, and 87Sr/86Sr and stable δ18O isotope analyses confirm the influence of a hydrothermal fluid in a rock-dominated environment. A parallel experimental study was conducted at hydrothermal (500 – 750 °C) and magmatic (900 °C) conditions at pressures of 2 kbar, and fO2 close to NNO, with an amphibole-containing natural olivine gabbro and saline fluid (6, 20 and 50 wt% NaCl).
    [Show full text]
  • Magnesio-Hastingsite Naca2[(Mg; Fe )4Fe ](Si6al2)O22(OH)2 C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Monoclinic
    2+ 3+ Magnesio-hastingsite NaCa2[(Mg; Fe )4Fe ](Si6Al2)O22(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: [Prismatic.] Twinning: [Simple or multiple twinning 100 .] k f g Physical Properties: Cleavage: [Perfect on 110 , with intersections at 56± and 124±; partings on 001 , 100 .] Tenacity: [Brittle.] fHardgness = [5{6] D(meas.») = 3.18{3».22 f g f g D(calc.) = 3.243 Optical Properties: Semitransparent. Color: Green. Luster: [Vitreous.] Optical Class: Biaxial ({). Pleochroism: X = pale brown; Y = dark brown; Z = green-brown. Orientation: Y = b; Z c 15 {19 . ® = 1.652{1.676 ¯ = 1.664{1.687 ° = 1.672{1.695 ^ ' ± ± 2V(meas.) = 80±{84± Cell Data: Space Group: C2=m: a = 9.880(2) b = 18.012(4) c = 5.324(2) ¯ = 105:26(2)± Z = 2 X-ray Powder Pattern: n.d. Chemistry: (1) (2) (1) (2) SiO2 40.26 39.83 MgO 13.98 14.44 TiO2 3.16 2.56 CaO 12.01 12.39 Al2O3 11.99 14.98 Na2O 2.54 2.27 Fe2O3 7.78 7.66 K2O 1.87 1.25 + FeO 5.52 3.78 H2O 1.63 0.58 MnO 0.12 0.00 Total 100.86 99.74 3+ 2+ (1) Unteriefenbach, Austria; corresponds to (Ca1:90Na0:73K0:35)§=2:98(Mg3:07Fe0:86Fe0:68Ti0:35 Mn0:02Al0:02)§=5:00(Si5:94Al2:06)§=8:00O22(OH)1:60: (2) B·rezno nad Labem (Grosspriesen), 3+ 2+ Czech Republic; corresponds to (Ca1:97Na0:65K0:24)§=2:86(Mg3:20Fe0:86Al0:54Fe0:47Ti0:29)§=5:36 (Si5:92Al2:08)§=8:00O22(OH)0:58: Polymorphism & Series: Forms a series with hastingsite.
    [Show full text]
  • Rock-Forming Minerals of Lamprophyres and Associated Mafic Dykes from the KrušNé Hory/Erzgebirge (Czech Republic)
    Journal of the Czech Geological Society 47/12(2002) 23 Rock-forming minerals of lamprophyres and associated mafic dykes from the Kruné hory/Erzgebirge (Czech Republic) Horninotvorné minerály lamprofyrù a pøíbuzných mafických ilných hornin z Kruných hor (Èeská republika) (4 figs, 5 tabs) EDVÍN PIVEC1 FRANTIEK V. HOLUB2 MILO LANG1 JIØÍ K. NOVÁK1 MIROSLAV TEMPROK2 1 Geological Institute, Academy of Sciences of the Czech Republic, Rozvojová 135, CZ 16502 Praha 6, Czech Republic 2 Charles University, Faculty of Science, Albertov 6, CZ 12843 Praha 2, Czech Republic; e-mail: [email protected], [email protected] Electron microprobe analyses were made on micas, amphiboles, feldspars, chlorites and accessory minerals in lamprophyric dykes (kersantites, minettes, spessartites), and in associated mafic diorite to tonalite porphyries (porphyrites) of the Kruné hory (Erzgebirge) area and Mariánské Láznì region in Western Bohemia (Czech Republic). All studied rocks are altered to various degrees during deuteric and/or postmagmatic stages of evolution. The only primary mafic mineral preserved in all rock types is Mg-biotite to phlogopite, in spessartites and some diorite porphyries also Ti-rich hornblende corresponding to titanian magnesiohastingsite to kaersutite. Magmatic biotites are relatively rich in Ti with limited variations in their Mg/Fe ratios, evidently re-equilibrated during cooling or re-heating. Olivine is totally replaced by pilitic pseudomorphs and by biotite-actinolite clots. Phenocrystic clinopyroxene is completely uralitized, often in well-preserved original shapes. The secondary amphiboles correspond to Si-rich magnesiohornblende to actinolite. Chlorite and epidote are rather scarce and their impor- tant occurrences are restricted to limited number of samples.
    [Show full text]
  • 2 1 2 Origin of Corundum Within Anorthite Megacrysts From
    1 Manuscript #7108: Revision – 2 2 3 Origin of corundum within anorthite megacrysts from anorthositic amphibolites, Granulite 4 Terrane, Southern India 5 6 Shreya Karmakar1*, Subham Mukherjee1, Upama Dutta2 7 1Department of Geological Sciences, Jadavpur University, Kolkata 700032, INDIA. 8 2Department of Applied Geology, Indian Institute of Technology (Indian School of Mines), 9 Dhanbad 826004, INDIA 10 *[email protected] 11 12 13 14 15 16 17 Corresponding author: 18 Shreya Karmakar 19 [email protected] 20 Department of Geological Sciences, 21 Jadavpur University, 22 Kolkata 700032, INDIA. 23 1 24 Abstract 25 26 Growth of corundum in metamorphosed anorthosites and related basic-ultrabasic rocks is an 27 exceptional feature and its origin remains elusive. We describe the occurrence of and offer an 28 explanation for the genesis of corundum in anorthositic amphibolites from ~2.5 Ga old basement 29 of the Granulite Terrane of Southern India (GTSI). The studied amphibolites from two localities, 30 Manavadi (MvAm) and Ayyarmalai (AyAm), contain anorthite lenses (An90-99) with euhedral to 31 elliptical outline set in a finer grained matrix of calcic plagioclase (An85-90) and aluminous 32 amphibole (pargasite-magnesiohastingsite). The lenses, interpreted as primary magmatic 33 megacrysts, and the matrix are both recrystallized under static condition presumably during the 34 regional high pressure (HP) metamorphism (~800C, 8-11 kbar) at ~2.45 Ga. Corundum occurs 35 in the core of some of the recrystallized anorthite lenses (An95-99) in two modes: (a) Dominantly, 36 it forms aggregates with magnetite (with rare inclusion of hercynite; in MvAm) or spinel (and 37 occasionally hematite-ilmenite; in AyAm).
    [Show full text]
  • Crystallization Conditions Showed by the Resurgent Dome in the 900 Years BP Eruption of Cerro Machín Volcano, Colombia
    European Mineralogical Conference Vol. 1, EMC2012-183, 2012 European Mineralogical Conference 2012 © Author(s) 2012 Crystallization conditions showed by the resurgent dome in the 900 years BP eruption of Cerro Machín Volcano, Colombia K. Laeger (1), R. Halama (1), T. Hansteen (2), G. P. Cortés (3), and H. Murcia (4) (1) Institute of Geosciences, University of Kiel, 24098 Kiel, Germany , (2) GEOMAR, 24148 Kiel, Germany, (3) Observatorio Vulcanológico y Sismológico de Manizales, Geological Survey of Colombia, Colombia, (4) Institute of Earth Science and Engineering, University of Auckland, Auckland, New Zealand Volcán Cerro Machín (VCM), a composite volcano located in the Colombian Central Cordillera, is considered to be among the potentially most explosive volcanoes of Colombia, due to its dacitic magma composition and the magnitude of past eruptions. For the past 5000 years, six major eruptions have been described, four plinian and two vulcanian/peléan eruptions. To give an assessment of volcanic hazards in the case of future eruptions, it is essential to understand past eruptions and the dynamics of a given magmatic system. The youngest major eruption, dated at 900 years BP, generated a late-stage lava dome which was investigated mineralogically and geochemically in order to unravel pre-eruptive processes. The partly glassy to fully crystallised dacitic rocks (65.3 – 66.2 wt.% SiO2) contain plagioclase (An24−54), amphibole (tschermakite to magnesiohastingsite), quartz, mica, ilmenite and olivine (Fo85−88). Most plagioclase crystals exhibit
    [Show full text]
  • Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names
    Color profile: Disabled Black 133 lpi at 45 degrees 219 The Canadian Mineralogist Vol. 35, pp. 219-246 (1997) NOMENCLATURE OF AMPHIBOLES: REPORT OF THE SUBCOMMITTEE ON AMPHIBOLES OF THE INTERNATIONAL MINERALOGICAL ASSOCIATION, COMMISSION ON NEW MINERALS AND MINERAL NAMES BERNARD E. LEAKE1 (Chairman) Department of Geology and Applied Geology, University of Glasgow, Glasgow G12 8QQ, U.K. ALAN R. WOOLLEY (Secretary) Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, U.K. CHARLES E.S. ARPS* (The Netherlands; retired December 1994) WILLIAM D. BIRCH* (Australia; from January 1995) M. CHARLES GILBERT (U.S.A.; resigned 1994) JOEL D. GRICE (Canada; *from January 1995) Mineral Sciences Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada FRANK C. HAWTHORNE Department of Earth Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada AKIRA KATO Department of Geology, Natural Science Museum, 2-23-1 Hyakanin-cho, Shinjuka, Tokyo 160, Japan HANAN J. KISCH Department of Geology and Mineralogy, Ben Gurion University of the Negev, P.O. Box 653, 84105 Beer Sheva, Israel VLADIMIR G. KRIVOVICHEV Faculty of Geology, St. Petersburg University, University Emb. 7/9, 199034 St. Petersburg, Russia KEES LINTHOUT Department of Ore Geology, Petrology and Mineralogy, Institute of Earth Sciences, Free University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands JO LAIRD Department of Earth Sciences, College of Engineering and Physical Sciences, University of New Hampshire, Durham, New Hampshire 03824, U.S.A. JOSEPH A. MANDARINO* (Canada; retired December 1994) WALTER V. MARESCH Institut für Mineralogie, Ruhr-Universität Bochum, D-44780 Bochum, Germany ERNEST H.
    [Show full text]
  • Relationships Between Crystal Structure, Bonding and Thermal Stability of Amphiboles
    RELATIONSHIPS BETWEEN CRYSTAL STRUCTURE, BONDING AND THERMAL STABILITY OF AMPHIBOLES by KWO-LING CHYI Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geological Sciences APPROVED: G. V. Gibbs, Co-chairman D. A. Hewitt, Co-chairman F. D. Bloss M. C. Gilbert J. D. Rimstidt June, 1987 Blacksburg, Virginia Relationships between crystal structure, bonding and thermal stability of amp hiboles by Kwo-Ling Chyi Gerald V. Gibbs, Co-Chairman David A. Hewitt, Co-Chairman Dept. of Geologic~ Sciences (ABSTRACT) The complexities in structure and chemical composition of the amphiboles and the wide range of their occurrence suggest that the amphiboles are potential index minerals for the physical conditions of their formation. Hydrothermal stability studies of several amphibole end- members have demonstrated that the FeMg_1 substitution produces a wide spread in thermal stability. The crystal structure, upon substitution, responds to the differences in cation size and site occupancy, but the changes are small. In order to correlate the observed stability variation with the observed differences in crystal structure of amphiboles, structure parameters as well as calculated bond strengths, Madelung site energies, and average bond overlap populations obtained from Extended Hiickel Molecular Orbital (EHMO) calculation for different cation sites, were examined. Among the examined structural parameters, calculated Madelung site potentials, and bond strength, only the parameters involving bonds between the M(l)- and M(3)-cations with OH show higher correlations with the thermal stability as compared to those of the M(2)- and M(4)-cations.
    [Show full text]
  • 1745 Vol 43#5 Art 23.Indd
    1745 The Canadian Mineralogist Vol. 43, pp. 1745-1758 (2005) ANOMALOUSLY HIGH ␦D VALUES IN AN ARCHEAN FERROPICRITIC MELT: IMPLICATIONS FOR MAGMA DEGASSING WILLIAM EDWARD STONE§ Nevada Star Resource Corporation, 1400, 355 Burrard Street, Vancouver, British Columbia V6C 2G8, Canada ETIENNE DELOULE Centre de Recherches Pétrographiques et Géochimiques – Centre National de la Recherches Scientifi que, BP20, F–54501 Vandoeuvre-lès-Nancy Cedex, France STEPHEN W. BERESFORD School of Geosciences, Monash University, Clayton, Victoria 3800, Australia MARCO FIORENTINI School of Earth and Geographical Sciences, University of Western Australia, Crawley, WA 6009, Australia ABSTRACT In situ H isotope analysis of igneous amphibole from the Boston Creek ferropicrite, in the Abitibi Belt, Ontario, a 100-m-thick layered mafi c-ultramafi c unit, provides insights into the evolution of Archean mantle-derived hydrous melts in the crust. Ion- microprobe analyses of the ultramafi c-rock-hosted interstitial igneous magnesiohastingsite indicate a wide range of ␦D values, from –47 to +54‰ and 2–3 wt% H2O at the 100–1000 ␮m intragrain scale, but relatively uniform major-element and incom- patible trace-element compositions. This wide range encompasses values signifi cantly higher than the ␦D values of –50‰ for whole-rock samples, <+10‰ for igneous amphiboles from ultramafi c sills, –80 to –30‰ values for hydrothermal-metamorphic fl uids in the area, and –90 to –60‰ values for mantle materials. The anomalously high ␦D values cannot be attributed entirely to H loss from amphibole during secondary processes. The contrast with the relatively uniform magnesiohastingsite composition and H2O and trace-element contents of the amphibole excludes the possibility that the ␦D values refl ect variable fl uid/mineral fractionation.
    [Show full text]