Mouse Heatr1 Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Heatr1 Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Heatr1 Knockout Project (CRISPR/Cas9) Objective: To create a Heatr1 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Heatr1 gene (NCBI Reference Sequence: NM_144835 ; Ensembl: ENSMUSG00000050244 ) is located on Mouse chromosome 13. 45 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 45 (Transcript: ENSMUST00000059270). Exon 3~10 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 3 starts from about 2.22% of the coding region. Exon 3~10 covers 18.07% of the coding region. The size of effective KO region: ~9712 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 3 4 5 6 7 8 9 10 45 Legends Exon of mouse Heatr1 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 508 bp section upstream of Exon 3 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 391 bp section downstream of Exon 10 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 9 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(508bp) | A(28.15% 143) | C(17.13% 87) | T(27.95% 142) | G(26.77% 136) Note: The 508 bp section upstream of Exon 3 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(391bp) | A(29.16% 114) | C(11.76% 46) | T(38.11% 149) | G(20.97% 82) Note: The 391 bp section downstream of Exon 10 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 9 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 508 1 508 508 100.0% chr13 + 12395915 12396422 508 browser details YourSeq 33 43 76 508 100.0% chr10 + 21473856 21497396 23541 browser details YourSeq 24 205 234 508 92.9% chr10 - 22320125 22320156 32 browser details YourSeq 22 43 64 508 100.0% chr14 - 70799391 70799412 22 browser details YourSeq 22 43 64 508 100.0% chr13 - 78343516 78343537 22 browser details YourSeq 22 43 64 508 100.0% chr14 + 96457890 96457911 22 browser details YourSeq 22 51 72 508 100.0% chr1 + 170909542 170909563 22 browser details YourSeq 22 47 69 508 100.0% chr1 + 123829978 123830001 24 browser details YourSeq 20 41 62 508 95.5% chr1 - 161231721 161231742 22 Note: The 508 bp section upstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 391 1 391 391 100.0% chr13 + 12406135 12406525 391 browser details YourSeq 27 200 230 391 93.6% chr1 - 142330730 142330760 31 browser details YourSeq 26 288 320 391 96.5% chr12 - 119390481 119390521 41 browser details YourSeq 23 205 229 391 96.0% chr16 - 75895755 75895779 25 browser details YourSeq 23 23 47 391 87.5% chr13 - 64350601 64350624 24 browser details YourSeq 22 10 35 391 92.4% chr12 + 67544370 67544395 26 browser details YourSeq 21 199 220 391 100.0% chr10 - 89549524 89549546 23 browser details YourSeq 21 260 282 391 95.7% chr13 + 8495951 8495973 23 browser details YourSeq 21 101 121 391 100.0% chr10 + 122560292 122560312 21 browser details YourSeq 20 267 286 391 100.0% chr10 - 50627231 50627250 20 browser details YourSeq 20 50 69 391 100.0% chr12 + 90301703 90301722 20 browser details YourSeq 20 148 167 391 100.0% chr1 + 64283145 64283164 20 Note: The 391 bp section downstream of Exon 10 is BLAT searched against the genome. No significant similarity is found. Page 5 of 9 https://www.alphaknockout.com Gene and protein information: Heatr1 HEAT repeat containing 1 [ Mus musculus (house mouse) ] Gene ID: 217995, updated on 12-Aug-2019 Gene summary Official Symbol Heatr1 provided by MGI Official Full Name HEAT repeat containing 1 provided by MGI Primary source MGI:MGI:2442524 See related Ensembl:ENSMUSG00000050244 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as AA517551; BC019693; B130016L12Rik Expression Ubiquitous expression in CNS E11.5 (RPKM 6.1), liver E14 (RPKM 3.9) and 28 other tissues See more Orthologs human all Genomic context Location: 13 A1; 13 4.56 cM See Heatr1 in Genome Data Viewer Exon count: 45 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 13 NC_000079.6 (12395375..12438893) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 13 NC_000079.5 (12487642..12531160) Chromosome 13 - NC_000079.6 Page 6 of 9 https://www.alphaknockout.com Transcript information: This gene has 8 transcripts Gene: Heatr1 ENSMUSG00000050244 Description HEAT repeat containing 1 [Source:MGI Symbol;Acc:MGI:2442524] Gene Synonyms B130016L12Rik Location Chromosome 13: 12,395,027-12,440,289 forward strand. GRCm38:CM001006.2 About this gene This gene has 8 transcripts (splice variants), 237 orthologues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Heatr1- ENSMUST00000059270.9 6780 2143aa ENSMUSP00000054084.8 Protein coding CCDS26240 G3X9B1 TSL:5 201 GENCODE basic APPRIS P1 Heatr1- ENSMUST00000223324.1 193 4aa ENSMUSP00000152797.1 Protein coding - - CDS 3' 208 incomplete TSL:3 Heatr1- ENSMUST00000222091.1 2482 744aa ENSMUSP00000152435.1 Nonsense mediated - A0A1Y7VNI1 CDS 5' 206 decay incomplete TSL:2 Heatr1- ENSMUST00000221046.1 1325 344aa ENSMUSP00000152410.1 Nonsense mediated - A0A1Y7VNG8 TSL:1 202 decay Heatr1- ENSMUST00000221616.1 681 No - Retained intron - - TSL:2 204 protein Heatr1- ENSMUST00000221051.1 556 No - Retained intron - - TSL:3 203 protein Heatr1- ENSMUST00000221746.1 446 No - Retained intron - - TSL:3 205 protein Heatr1- ENSMUST00000222817.1 373 No - Retained intron - - TSL:2 207 protein Page 7 of 9 https://www.alphaknockout.com 65.26 kb Forward strand 12.40Mb 12.42Mb 12.44Mb Genes (Comprehensive set... Heatr1-208 >protein coding Heatr1-205 >retained intron Heatr1-206 >nonsense mediated decay Heatr1-201 >protein coding Heatr1-207 >retained intron Heatr1-203 >retained intron Heatr1-202 >nonsense mediated decay Heatr1-204 >retained intron Contigs < AC154221.3 Genes < Gm5928-201processed pseudogene < Lgals8-203protein coding (Comprehensive set... < Lgals8-202protein coding < Lgals8-204retained intron < Lgals8-206protein coding < Lgals8-207protein coding < Lgals8-201protein coding < Lgals8-208protein coding Regulatory Build 12.40Mb 12.42Mb 12.44Mb Reverse strand 65.26 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding merged Ensembl/Havana Ensembl protein coding Non-Protein Coding pseudogene processed transcript Page 8 of 9 https://www.alphaknockout.com Transcript: ENSMUST00000059270 43.52 kb Forward strand Heatr1-201 >protein coding ENSMUSP00000054... Low complexity (Seg) Coiled-coils (Ncoils) Superfamily Armadillo-type fold SMART BP28, C-terminal domain Pfam U3 small nucleolar RNA-associated protein 10, N-terminal BP28, C-terminal domain PANTHER U3 small nucleolar RNA-associated protein 10 Gene3D Armadillo-like helical All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend stop gained missense variant splice region variant synonymous variant Scale bar 0 200 400 600 800 1000 1200 1400 1600 1800 2143 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 9 of 9.
Recommended publications
  • Identifizierung Und Charakterisierung Von T-Zell-Definierten Antigenen
    Identifizierung und Charakterisierung von Zielantigenen alloreaktiver zytotoxischer T-Zellen mittels cDNA-Bank-Expressionsklonierung in akuten myeloischen Leukämien Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften am Fachbereich Biologie der Johannes Gutenberg-Universität Mainz Sabine Domning Mainz, 2012 Fachbereich Biologie der Johannes Gutenberg-Universität Mainz Dekan: 1.Berichterstatter: 2.Berichterstatter: Tag der mündlichen Prüfung: ZUSAMMENFASSUNG Zusammenfassung Allogene hämatopoetische Stammzelltransplantationen (HSZTs) werden insbesondere zur Behandlung von Patienten mit Hochrisiko-Leukämien durchgeführt. Dabei bewirken T- Zellreaktionen gegen Minorhistokompatibilitätsantigene (mHAgs) sowohl den therapeutisch erwünschten graft-versus-leukemia (GvL)-Effekt als auch die schädigende graft-versus-host (GvH)- Erkrankung. Für die Identifizierung neuer mHAgs mittels des T-Zell-basierten cDNA- Expressionsscreenings waren leukämiereaktive T-Zellpopulationen durch Stimulation naïver CD8+- T-Lymphozyten gesunder HLA-Klasse I-identischer Buffy Coat-Spender mit Leukämiezellen von Patienten mit akuter myeloischer Leukämie (AML) generiert worden (Albrecht et al., Cancer Immunol. Immunother. 60:235, 2011). Im Rahmen der vorliegenden Arbeit wurde mit diesen im AML-Modell des Patienten MZ529 das mHAg CYBA-72Y identifiziert. Es resultiert aus einem bekannten Einzelnukleotidpolymorphismus (rs4673: CYBA-242T/C) des Gens CYBA (kodierend für Cytochrom b-245 α-Polypeptid; syn.: p22phox), der zu einem Austausch von Tyrosin (Y) zu Histidin (H) an Aminosäureposition 72 führt. Das mHAg wurde von T-Lymphozyten sowohl in Assoziation mit HLA-B*15:01 als auch mit HLA-B*15:07 erkannt. Eine allogene T-Zellantwort gegen CYBA-72Y wurde in einem weiteren AML-Modell (MZ987) beobachtet, die ebenso wie in dem AML-Modell MZ529 polyklonal war. Insgesamt konnte bei drei von fünf getesteten HLA-B*15:01-positiven Buffy Coat-Spendern, die homozygot für CYBA-72H (H/H) waren, eine CYBA-72Y-spezifische T- Zellantwort generiert werden.
    [Show full text]
  • A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Genome-Wide CRISPR-Cas9 Screens Reveal Loss of Redundancy Between PKMYT1 and WEE1 in Glioblastoma Stem-Like Cells
    Article Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells Graphical Abstract Authors Chad M. Toledo, Yu Ding, Pia Hoellerbauer, ..., Bruce E. Clurman, James M. Olson, Patrick J. Paddison Correspondence [email protected] (J.M.O.), [email protected] (P.J.P.) In Brief Patient-derived glioblastoma stem-like cells (GSCs) can be grown in conditions that preserve patient tumor signatures and their tumor initiating capacity. Toledo et al. use these conditions to perform genome-wide CRISPR-Cas9 lethality screens in both GSCs and non- transformed NSCs, revealing PKMYT1 as a candidate GSC-lethal gene. Highlights d CRISPR-Cas9 lethality screens performed in patient brain- tumor stem-like cells d PKMYT1 is identified in GSCs, but not NSCs, as essential for facilitating mitosis d PKMYT1 and WEE1 act redundantly in NSCs, where their inhibition is synthetic lethal d PKMYT1 and WEE1 redundancy can be broken by over- activation of EGFR and AKT Toledo et al., 2015, Cell Reports 13, 2425–2439 December 22, 2015 ª2015 The Authors http://dx.doi.org/10.1016/j.celrep.2015.11.021 Cell Reports Article Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells Chad M. Toledo,1,2,14 Yu Ding,1,14 Pia Hoellerbauer,1,2 Ryan J. Davis,1,2,3 Ryan Basom,4 Emily J. Girard,3 Eunjee Lee,5 Philip Corrin,1 Traver Hart,6,7 Hamid Bolouri,1 Jerry Davison,4 Qing Zhang,4 Justin Hardcastle,1 Bruce J. Aronow,8 Christopher L.
    [Show full text]
  • Minor Histocompatibility Ags: Identification Strategies, Clinical Results and Translational Perspectives
    Bone Marrow Transplantation (2016) 51, 163–171 © 2016 Macmillan Publishers Limited All rights reserved 0268-3369/16 www.nature.com/bmt REVIEW Minor histocompatibility Ags: identification strategies, clinical results and translational perspectives R Oostvogels1,2,3, HM Lokhorst3 and T Mutis1,3 Allogeneic stem cell transplantation (allo-SCT) and donor lymphocyte infusion are effective treatment modalities for various hematological malignancies. Their therapeutic effect, the graft-versus-tumor (GvT) effect, is based mainly on an alloimmune response of donor T cells directed at tumor cells, in which differences in the expression of minor histocompatibility Ags (mHags) on the cells of the patient and donor have a crucial role. However, these differences are also responsible for induction of sometimes detrimental GvHD. As relapse and development of GvHD pose major threats for a large proportion of allotransplanted patients, additional therapeutic strategies are required. To augment the GvT response without increasing the risk of GvHD, specific mHag- directed immunotherapeutic strategies have been developed. Over the past years, much effort has been put into the identification of therapeutically relevant mHags to enable these strategies for a substantial proportion of patients. Currently, the concept of mHag-directed immunotherapy is tested in clinical trials on feasibility, safety and efficacy. In this review, we will summarize the recent developments in mHag identification and the clinical data on mHag-specific immune responses and mHag-directed
    [Show full text]
  • HEATR1 Polyclonal Antibody
    PRODUCT DATA SHEET Bioworld Technology,Inc. HEATR1 polyclonal antibody Catalog: BS60792 Host: Rabbit Reactivity: Human,Mouse,Rat BackGround: Applications: HEATR1 (HEAT repeat containing 1), also known as WB: 1:500~1:1000 BAP28, is a 2,144 amino acid nuclear protein involved in Storage&Stability: nucleolar processing of pre-18S ribosomal RNA. Store at 4°C short term. Aliquot and store at -20°C long HEATR1 is a member of the HEATR1/UTP10 family and term. Avoid freeze-thaw cycles. contains one HEAT repeat. The gene encoding HEATR1 Specificity: is located on human chromosome 1, which spans 260 HEATR1 polyclonal antibody detects endogenous levels million base pairs, contains over 3,000 genes and com- of HEATR1 protein. prises nearly 8% of the human genome. Chromosome 1 DATA: houses a large number of disease-associated genes, in- cluding those that are involved in familial adenomatous polyposis, Stickler syndrome, Parkinson’s disease, Gau- cher disease, schizophrenia and Usher syndrome. Aberra- tions in chromosome 1 are found in a variety of cancers, including head and neck cancer, malignant melanoma and multiple myeloma. Product: Western blot (WB) analysis of HEATR1 polyclonal antibody at 1:500 Rabbit IgG, 1mg/ml in PBS with 0.02% sodium azide, dilution 50% glycerol, pH7.2 Lane1:HEK293T whole cell lysate Molecular Weight: Lane2:sp2/0 whole cell lysate ~ 242 kDa Lane3:PC12 whole cell lysate Swiss-Prot: Note: Q9H583 For research use only, not for use in diagnostic procedure. Purification&Purity: The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific im- munogen and the purity is > 95% (by SDS-PAGE).
    [Show full text]
  • Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors
    University of Cincinnati Date: 12/20/2010 I, Arturo R Maldonado , hereby submit this original work as part of the requirements for the degree of Doctor of Philosophy in Developmental Biology. It is entitled: Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors Student's name: Arturo R Maldonado This work and its defense approved by: Committee chair: Jeffrey Whitsett Committee member: Timothy Crombleholme, MD Committee member: Dan Wiginton, PhD Committee member: Rhonda Cardin, PhD Committee member: Tim Cripe 1297 Last Printed:1/11/2011 Document Of Defense Form Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors A dissertation submitted to the Graduate School of the University of Cincinnati College of Medicine in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (PH.D.) in the Division of Molecular & Developmental Biology 2010 By Arturo Rafael Maldonado B.A., University of Miami, Coral Gables, Florida June 1993 M.D., New Jersey Medical School, Newark, New Jersey June 1999 Committee Chair: Jeffrey A. Whitsett, M.D. Advisor: Timothy M. Crombleholme, M.D. Timothy P. Cripe, M.D. Ph.D. Dan Wiginton, Ph.D. Rhonda D. Cardin, Ph.D. ABSTRACT Since 1999, cancer has surpassed heart disease as the number one cause of death in the US for people under the age of 85. Malignant Peripheral Nerve Sheath Tumor (MPNST), a common malignancy in patients with Neurofibromatosis, and colorectal cancer are midkine- producing tumors with high mortality rates. In vitro and preclinical xenograft models of MPNST were utilized in this dissertation to study the role of midkine (MDK), a tumor-specific gene over- expressed in these tumors and to test the efficacy of a MDK-transcriptionally targeted oncolytic HSV-1 (oHSV).
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Cardiac Stretch-Induced Transcriptomic Changes are Axis-Dependent Permalink https://escholarship.org/uc/item/7m04f0b0 Author Buchholz, Kyle Stephen Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Cardiac Stretch-Induced Transcriptomic Changes are Axis-Dependent A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioengineering by Kyle Stephen Buchholz Committee in Charge: Professor Jeffrey Omens, Chair Professor Andrew McCulloch, Co-Chair Professor Ju Chen Professor Karen Christman Professor Robert Ross Professor Alexander Zambon 2016 Copyright Kyle Stephen Buchholz, 2016 All rights reserved Signature Page The Dissertation of Kyle Stephen Buchholz is approved and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California, San Diego 2016 iii Dedication To my beautiful wife, Rhia. iv Table of Contents Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents ................................................................................................................ v List of Figures ...................................................................................................................
    [Show full text]
  • Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2010 Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Renuka Nayak University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Computational Biology Commons, and the Genomics Commons Recommended Citation Nayak, Renuka, "Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress" (2010). Publicly Accessible Penn Dissertations. 1559. https://repository.upenn.edu/edissertations/1559 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1559 For more information, please contact [email protected]. Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Abstract Genes interact in networks to orchestrate cellular processes. Here, we used coexpression networks based on natural variation in gene expression to study the functions and interactions of human genes. We asked how these networks change in response to stress. First, we studied human coexpression networks at baseline. We constructed networks by identifying correlations in expression levels of 8.9 million gene pairs in immortalized B cells from 295 individuals comprising three independent samples. The resulting networks allowed us to infer interactions between biological processes. We used the network to predict the functions of poorly-characterized human genes, and provided some experimental support. Examining genes implicated in disease, we found that IFIH1, a diabetes susceptibility gene, interacts with YES1, which affects glucose transport. Genes predisposing to the same diseases are clustered non-randomly in the network, suggesting that the network may be used to identify candidate genes that influence disease susceptibility.
    [Show full text]
  • Broadening Adenoviral Oncolysis in PDAC
    Broadening Adenoviral Oncolysis in PDAC: Interrogation of Patient-Derived Organoids for personalized virotherapy and modulation of miRNA content to boost adenoviral potency Giulia Raimondi Aquesta tesi doctoral està subjecta a la llicència Reconeixement 4.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento 4.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution 4.0. Spain License. UNIVERSITAT DE BARCELONA FACULTAT DE FARMÀCIA I CIÈNCIES DE L’ALIMENTACIÓ Tesi dirigida per la Dra Cristina Fillat Fonts Grup de Teràpia Gènica i Càncer - IDIBAPS Broadening Adenoviral Oncolysis in PDAC: Interrogation of Patient-derived Organoids for personalized virotherapy and modulation of miRNA content to boost adenoviral potency Giulia Raimondi 2020 Abbreviations 5-FU 5-FluoroUracil Adwt Adenovirus Wild Type Specie C Serotype 5 ATCC American Type Culture Collection BAC Bacterial Artificial Chromosome BiTE Bi-specific T cell Engager bp Base Pair CAF Cancer Associated Fibroblasts CAR Coxsackie and Adenovirus Receptor cDNA copy DNA CK19 CytoKeratin 19 CMV CytoMegaloVirus CPE Cytoplasmatic Polyadenylation Element CRC Colorectal Cancer CSC Cancer Stem Cell DAPI 4,6-DiAmidino-2-PenilIndole DMEM Dulbecco’s Modified Eagle Medium DMSO DiMethyl SulfOxide DNA DeoxyriboNucleic Acid dNTPs deoxyNucleotides DTT DiThioThreitol E. Coli Escherichia Coli EBV Epstein-Barr Virus ECM Extra Cellular Matrix eGFP enhanced Green Fluorescence Protein EMT Epithelial Mesenchimal Transition FC
    [Show full text]
  • A Novel Role for Nucleolin in Splice Site Selection
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.02.402354; this version posted December 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. A Novel Role for Nucleolin in Splice Site Selection Kinneret Shefer1,#, Ayub Boulos1,# , Valer Gotea2,# , Yair Ben Chaim3, Joseph Sperling4, Laura Elnitski2,* and Ruth Sperling1,* 1Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 2Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA 3Department of Natural Sciences, The Open University, Raanana 43107, Israel 4Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel # The first 3 authors should be regarded as joint First Authors * To whom correspondence should be addressed. Ruth Sperling Department of Genetics The Hebrew University of Jerusalem, Jerusalem 91904, Israel Tel: +972-54-882-0311 Fax: +972-2-658-6975 Email: [email protected] Correspondence may also be addressed to: Laura Elnitski Translational and Functional Genomics Branch National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA Tel: +1-301-451-0265 Fax: +1-301-402-4929 Email: [email protected] We would like to dedicate this manuscript to the memory of Joseph (Yossi) Sperling. Running Title: A Novel Role for Nucleolin in Splicing Keywords 5’ splice site selection, suppression of splicing, alternative splicing, endogenous spliceosome, latent splice sites, latent splicing, splicing regulation, mass spectrometry, RNA sequencing, bioinformatics analysis.
    [Show full text]
  • 1 INTRACELLULAR TRAFFICKING of AAV2 CAPSID MUTANTS and EFFECTS on GENE EXPRESSION by FIKRET AYDEMIR a DISSERTATION PRESENTED TO
    INTRACELLULAR TRAFFICKING OF AAV2 CAPSID MUTANTS AND EFFECTS ON GENE EXPRESSION By FIKRET AYDEMIR A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2016 1 © 2016 Fikret Aydemir 2 To my wife, Dr. Tolunay Beker Aydemir 3 ACKNOWLEDGMENTS I would like to thank my dissertation adviser Nicholas Muzyczka and committee members Mavis Agbandje-McKenna, Sergei Zolutukhin and Arun Srivastava. They invested a lot of time, energy and funding for my doctoral training. This dissertation wouldn’t have happened without them. I would like to thank them for their patience and understanding. I have been very fortunate to have an opportunity to work in Dr. Muzyczka’s lab. I have been lucky to share my work space with very productive lab members. I am specifically thankful to Mrs. Weijun Chen, Dr. Hector Mendez-Gomez, Dr. Jasbir Singh and Maxim Salganik. University of Florida is home of Powell Gene Therapy Vector Core. I would like to thank Mr. Mark Potter and his colleagues for providing not only very valuable vectors but also troubleshooting experimental problems, as well. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 7 LIST OF FIGURES .........................................................................................................
    [Show full text]