Genetic Polymorphism and Protein Conformational Plasticity in the Calmodulin Superfamily: Two Ways to Promote Multifunctionality

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Polymorphism and Protein Conformational Plasticity in the Calmodulin Superfamily: Two Ways to Promote Multifunctionality PERSPECTIVE Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: Two ways to promote multifunctionality Mitsuhiko Ikura†‡ and James B. Ames§ †Division of Signaling Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9; and §Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, MD 20850 Edited by Solomon H. Snyder, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved December 2, 2005 (received for review October 31, 2005) Calcium signaling pathways control a variety of cellular events such as gene transcription, protein phosphorylation, nucleotide me- tabolism, and ion transport. These pathways often involve a large number of calcium-binding proteins collectively known as the cal- modulin or EF-hand protein superfamily. Many EF-hand proteins undergo a large conformational change upon binding to Ca2؉ and target proteins. All members of the superfamily share marked sequence homology and similar structural features required to sense Ca2؉. Despite such structural similarities, the functional diversity of EF-hand calcium-binding proteins is extraordinary. Calmodulin itself can bind >300 different proteins, and the many members of the neuronal calcium sensor and S100 protein families collectively recognize a largely different set of target proteins. Recent biochemical and structural studies of many different EF-hand proteins highlight remarkable similarities and variations in conformational responses to the common ligand Ca2؉ and their respective cellular targets. In this review, we examine the essence of molecular recognition activities and the mechanisms by which calmodulin super- .family proteins control a wide variety of Ca2؉ signaling processes he Ca2ϩ ion is a highly versatile by stimulating or suppressing different interhelical loop region contains several intracellular signal regulating intracellular signaling pathways (5–7). amino acids essential to the coordina- ϩ many different cellular func- The calmodulin superfamily is a major tion of a single Ca2 ion. Typically, a ϩ tions, including fertilization, cell class of Ca2 sensor proteins, which col- pair of EF-hand motifs in tandem array T lectively play a crucial role in various cel- constitutes a stable structural unit, to- cycle, apoptosis, muscle contraction, vi- sion, and memory (1). In eukaryotic lular signaling cascades through regulation gether generating cooperativity in the 2ϩ 2ϩ cells, cytoplasmic Ca2ϩ entry and out- of numerous target proteins in a Ca - binding of Ca ions (62, 63). Many EF- flow are governed by two sources: intra- dependent manner (Table 1). It has been hand proteins, such as calmodulin and cellular stores such as the endoplasmic reported that there are nearly 600 mem- members of the NCS family, consist of ϩ bers in this superfamily (60), all of which reticulum and extracellular Ca2 that four EF-hand motifs. This results in two contain one or more Ca2ϩ binding motifs enters the cell through various trans- globular structural units in a single pro- known as the EF-hand, first identified in tein. We will discuss the importance of porters on the plasma membrane (2). parvalbumin by Kretsinger and coworkers this feature to the multifunctionality of Ca2ϩ entry into the cytoplasm is tightly (7). Calmodulin contains four EF-hand these proteins. The S100 family, on the regulated by a variety of components of motifs, with highly conserved amino acid 2ϩ other hand, consists of only one globular the Ca signaling toolkit, which were sequences in all eukaryotes. In fact, this structural unit comprised of two EF- elegantly summarized by Berridge et al. sequence is ranked fifth in an amino acid hand motifs. However, members of this 2ϩ (3). The Ca flux machinery, consisting conservation contest in proteomes after family all form a stable homo- or het- of ion channels, pumps, and exchangers, the histones H4 and H3, actin B, and erodimer, which contains four EF-hand gives rise to highly localized and tran- ubiquitin (61). In contrast, the troponin C motifs in a single structural entity. ϩ sient Ca2 signals that are, in turn, family, which also contains four EF-hand The direct interaction with Ca2ϩ en- transduced by calcium-binding proteins motifs, has two isoforms in the human ables these Ca2ϩ sensor proteins to acting on various enzymes and down- (skeletal and cardiac muscles) and many change their conformation from the in- stream effector proteins. isoforms in invertebrates, all diverse in active state (P) to the intermediate state A central question in the field of amino acid sequence (6). Similarly, the (Ca2ϩ-P*), which is a prerequisite to the Ca2ϩ signaling is how different Ca2ϩ neuronal calcium sensor (NCS) and S100 formation of an active conformation in ϩ signaling systems control so many diver- proteins are diverse in sequence and func- complex with a target (Ca2 -P**-E*) gent cellular processes (3)? Such control tion. Recent advances in the structural required to transform the target protein and biochemical understanding of these from its inactive state (E) to the active is achieved at both the cellular and mo- 2ϩ lecular level. The spatial and temporal Ca sensor proteins unveiled two emerg- state (E*) 2ϩ ing themes that explain the vast multifunc- variation of Ca signals, known as ϩ 2ϩ ϩ 2ϩ tionality of the calmodulin superfamily. Ca E Ca waves, spikes, and puffs, are re- ϩ ϩ These molecular themes are genetic poly- P 9|=Ca2 -P*9|=Ca2 -P**-E*. sponsible for generating diverse output morphism and protein conformational required for different physiological con- plasticity, and are likely to be relevant to ditions (4). Also, cell-specific expression other protein superfamilies with diverse of a unique set of components from the functions. Conflict of interest statement: No conflicts declared. 2ϩ Ca signaling toolkit (3) is required for Abbreviations: KChIP, Kϩ channel-interacting protein; NCS, 2؉ generating cell-specific responses to EF-Hand as a Building Block of Ca neuronal calcium sensor. 2ϩ Ca signals. At the molecular level, a Sensor Proteins ‡To whom correspondence should be addressed. E-mail: ϩ variety of Ca2 sensor proteins provide The EF-hand motif consists of a simple [email protected]. totally different physiological responses helix-loop-helix architecture in which the © 2006 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0508640103 PNAS ͉ January 31, 2006 ͉ vol. 103 ͉ no. 5 ͉ 1159–1164 Downloaded by guest on September 29, 2021 Table 1. EF-hand Ca2؉-binding proteins and their functional target proteins (35, 36) and hippocalcin (74). Frequenin EF-hand protein Functional targets also is expressed in invertebrates, includ- ing flies (73), worms (75) and yeast (29, Calmodulin Myosin light chain kinases (8) 76). Yeast and mammalian frequenins Calmodulin-dependent protein kinases (9) bind and activate a particular phosphati- Phosphorylase kinase (10) dylinositol 4-OH kinase isoform (Pik1 Myristoylated protein kinase C substrates (11) G protein-coupled receptor kinases (GRKs) (12) gene in yeast) (29, 77) required for vesicu- Calcineurin (13) lar trafficking in the late secretory path- Adenylate cyclases (14) way (78). Mammalian frequenin (NCS-1) 2ϩ Glutamate decarboxylase (15) also regulates voltage-gated Ca channels ϩ Nitric oxide synthases (16) (31) and K channels (30). The KChIP Phosphodiesterases (17, 18) proteins regulate the gating kinetics of Plasma membrane Ca2ϩ ATPase pump (19) Shaker Kϩ channels (34). DREAM͞calse- Cyclic-nucleotide gated ion channels (20) nilin binds to specific DNA sequence ele- SK channels (21) 2ϩ ments in the prodynorphin and c-fos Voltage-gated Ca channels (22) genes (35) and serves as a transcriptional Inositol 1,4,5-trisphosphate receptors (23) Ryanodine receptors (24) repressor for pain modulation (79, 80). Troponin C Hence, the physiological functions of Skeletal (100%) Skeletal muscle Troponin I (25) the NCS proteins are highly diverse and Cardiac (65%) Cardiac muscle Troponin I (26, 27) nonoverlapping. Invertebrate (37%) Invertebrate Troponin I (28) The S100 proteins also have diverse NCS family physiological functions involved in regulat- ϩ 2ϩ Frequenin (100%) PI4-kinase (29), K channels (30), Ca channels (31) ing cell cycle control, transcription, and ␦ Neurocalcin- (55%) Nicotinic acetylcholine receptors (32) secretion (Table 1). S100A1 controls car- Recoverin (43%) Rhodopsin kinase (33) diac contractility and is associated with a KChIP1–4 (40%) Shaker channels (34) DREAM͞calensilin Dynorphin DRE (35), presenilin (36) number of cardiomyopathies (81). S100A2 GCAPs (35%) Retinal guanylate cyclases (retGCs) (37) is localized to the nucleus where it regu- Calcineurin B (32%) Calcineurin A-subunit (38) lates transcription of various genes and CIB (24%) Integrin (39), presenilins (40) acts as a tumor suppressor in breast can- CaBP1 (22%) Inositol 1,4,5-trisphosphate receptors (41), voltage-gated Ca2ϩ channels (42) cer cells (82). In contrast, S100A4 (83) S100 family and S100A6 (47) are both tumor promot- S100A1 (100%) Titin (43), SERCA2a (44), ryanodine receptor (45) ers. S100A7 acts extracellularly and is S100A4 (53%) Methionine aminopeptidase 2 (46) implicated in epidermal inflammatory S100A6 (48%) Ubiquitin ligase (47) diseases such as psoriasis (84). The S100A10 (47%) Annexin II (48) ͞ S100A11 (43%) Annexin I (49) S100A8 A9 heterodimer acts extracellu- S100A12 (40%)
Recommended publications
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Computational Analysis of Surface Properties of Ef-Hand Calcium Binding Proteins
    BIOPHYSICS COMPUTATIONAL ANALYSIS OF SURFACE PROPERTIES OF EF-HAND CALCIUM BINDING PROTEINS DANA CRACIUN1, ADRIANA ISVORAN2 1Teacher Training Department, West University of Timisoara, 4 V.Pirvan, 300223 Timisoara, Romania, Email: [email protected] 2Department of Biology-Chemistry, West University of Timisoara, 16 Pestalozzi, 300316 Timisoara, Romania, Email: [email protected] Received August 14, 2013 Within present study we perform a computational analysis of the surface properties of the EF-hand calcium binding proteins (EFCaBPs), both at global and local levels. Among EFCaBPs there are calcium sensors involved in signal transduction processes and exhibiting extended spatial structures and calcium buffering proteins exhibiting compact structures. Structures superposition reflects higher structural similarity between extended forms, the compact ones being more divergent in good correlation with their sequence alignment. Surfaces of extended EFCaBPs present a smaller number of cavities but with larger volumes and areas than compact ones in correlation with their known biological functions. Surface electrostatic potential is higher for extended EFCaBPs, underlying the role of electrostatics repulsions in adopting their spatial structures and also the possible role in binding charged peptides. Key words: calcium binding proteins, surface, electrostatic potential. 1. INTRODUCTION Calcium ions are indispensable for the physiology of living cell being involved in many cellular processes. The key role of calcium ions strongly depends on a large number of proteins able to bind them, so-called calcium binding proteins, CaBPs [1]. The group of CaBPs is wide and heterogeneous. There are membrane intrinsic CaBPs acting as calcium transporters and involved in the control of calcium ions concentration, calcium buffers and calcium-modulated proteins involved in signal-transduction processes [2].
    [Show full text]
  • Visinin-Like Neuronal Calcium Sensor Proteins Regulate the Slow Calcium-Activated Afterhyperpolarizing Current in the Rat Cerebral Cortex
    The Journal of Neuroscience, October 27, 2010 • 30(43):14361–14365 • 14361 Brief Communications Visinin-Like Neuronal Calcium Sensor Proteins Regulate the Slow Calcium-Activated Afterhyperpolarizing Current in the Rat Cerebral Cortex Claudio Villalobos and Rodrigo Andrade Department of Pharmacology, Wayne State University School of Medicine, Detroit Michigan 48230 Many neurons in the nervous systems express afterhyperpolarizations that are mediated by a slow calcium-activated potassium current. This current shapes neuronal firing and is inhibited by neuromodulators, suggesting an important role in the regulation of neuronal function. Surprisingly, very little is currently known about the molecular basis for this current or how it is gated by calcium. Recently, the neuronal calcium sensor protein hippocalcin was identified as a calcium sensor for the slow afterhyperpolarizing current in the hip- pocampus. However, while hippocalcin is very strongly expressed in the hippocampus, this protein shows a relatively restricted distri- bution in the brain. Furthermore, the genetic deletion of this protein only partly reduces the slow hyperpolarizing current in hippocampus. These considerations question whether hippocalcin can be the sole calcium sensor for the slow afterhyperpolarizing current. Here we use loss of function and overexpression strategies to show that hippocalcin functions as a calcium sensor for the slow afterhyperpolarizing current in the cerebral cortex, an area where hippocalcin is expressed at much lower levels than in hippocampus. In addition we show that neurocalcin ␦, but not VILIP-2, can also act as a calcium sensor for the slow afterhyperpolarizing current. Finally we show that hippocalcin and neurocalcin ␦ both increase the calcium sensitivity of the afterhyperpolarizing current but do not alter its ␣ ␤ sensitivity to inhibition by carbachol acting through the G q-11-PLC signaling cascade.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System
    brain sciences Review New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System Krisztina Kelemen * and Tibor Szilágyi Department of Physiology, Doctoral School, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, , Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-746-248064 Abstract: Although Ca2+ ion plays an essential role in cellular physiology, calcium-binding proteins (CaBPs) were long used for mainly as immunohistochemical markers of specific cell types in different regions of the central nervous system. They are a heterogeneous and wide-ranging group of proteins. Their function was studied intensively in the last two decades and a tremendous amount of informa- tion was gathered about them. Girard et al. compiled a comprehensive list of the gene-expression profiles of the entire EF-hand gene superfamily in the murine brain. We selected from this database those CaBPs which are related to information processing and/or neuronal signalling, have a Ca2+- buffer activity, Ca2+-sensor activity, modulator of Ca2+-channel activity, or a yet unknown function. In this way we created a gene function-based selection of the CaBPs. We cross-referenced these findings with publicly available, high-quality RNA-sequencing and in situ hybridization databases (Human Protein Atlas (HPA), Brain RNA-seq database and Allen Brain Atlas integrated into the HPA) and created gene expression heat maps of the regional and cell type-specific expression levels of the selected CaBPs. This represents a useful tool to predict and investigate different expression patterns and functions of the less-known CaBPs of the central nervous system.
    [Show full text]
  • Neurocalcin Regulates Nighttime Sleep and Arousal in Drosophila Ko-Fan Chen*, Simon Lowe, Ange´ Lique Lamaze, Patrick Kra¨ Tschmer, James Jepson*
    RESEARCH ARTICLE Neurocalcin regulates nighttime sleep and arousal in Drosophila Ko-Fan Chen*, Simon Lowe, Ange´ lique Lamaze, Patrick Kra¨ tschmer, James Jepson* Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom Abstract Sleep-like states in diverse organisms can be separated into distinct stages, each with a characteristic arousal threshold. However, the molecular pathways underlying different sleep stages remain unclear. The fruit fly, Drosophila melanogaster, exhibits consolidated sleep during both day and night, with night sleep associated with higher arousal thresholds compared to day sleep. Here we identify a role for the neuronal calcium sensor protein Neurocalcin (NCA) in promoting sleep during the night but not the day by suppressing nocturnal arousal and hyperactivity. We show that both circadian and light-sensing pathways define the temporal window in which NCA promotes sleep. Furthermore, we find that NCA promotes sleep by suppressing synaptic release from a dispersed wake-promoting neural network and demonstrate that the mushroom bodies, a sleep-regulatory center, are a module within this network. Our results advance the understanding of how sleep stages are genetically defined. DOI: https://doi.org/10.7554/eLife.38114.001 Introduction Sleep is a widely conserved behavior that influences numerous aspects of brain function, including neuronal development (Kayser et al., 2014), clearance of metabolic waste (Xie et al., 2013), synap- *For correspondence: tic plasticity (Havekes et al., 2016; Kuhn et al., 2016; Li et al., 2017; Yang et al., 2014), and com- [email protected] (K-FC); plex behaviors (Kayser et al., 2015; Kayser et al., 2014).
    [Show full text]
  • Calcium Signaling, Second Edition
    This is a free sample of content from Calcium Signaling, Second Edition. Click here for more information on how to buy the book. Index A ANO1, 441 ABT-199/Venetoclax, 471, 473 AP. See Action potential Action potential (AP), 407 Aquaporin, 441 Activin-A, 389 ARF1, 291 AD. See Alzheimer’s disease Arteriosclerosis. See Calcification ADAM10, 551 ASD. See Autism spectrum disorder Addiction. See Drug addiction Astrocyte Adenylyl cyclase, CRAC channel calcium brain aging modulation, 72–73 Alzheimer’s disease Aging amyloid-b effects on calcium dynamics, brain 549–550 Alzheimer’s disease astrogliopathology, 548–549 amyloid-b effects on calcium calcium signaling in astrocytes, 549–552 dynamics, 549–550 endoplasmic reticulum calcium release and astrogliopathology, 548–549 astrogliotic response, 552 calcium signaling in astrocytes, 549–552 astroglia support over life, 546–547 endoplasmic reticulum calcium release and ionic signaling and excitability, 547 astrogliotic response, 552 physiology in aging, 547–548 astrocyte transcription-dependent metabolic plasticity, 391–393 astroglia support over life, 546–547 ATF3, 389 ionic signaling and excitability, 547 Atherosclerosis. See Calcification physiology in aging, 547–548 Atrap, 164 overview, 545–546 Autism spectrum disorder (ASD) tissue calcification, 534–535 IL1RAPL1 mutations, 296 AKAP9, 470 parvalbumin neurons, 228–229 AKAP79, 75 ALN, 163 B Alzheimer’s disease (AD) BAP1, 482 astrocyte aging Bcl-2 amyloid-b effects on calcium dynamics, 549–550 endoplasmic reticulum function, 465–466 astrogliopathology,
    [Show full text]
  • Calcium Binding Proteins Immunohistochemistry and Identification of Neurons in the Mammalian Pineal Gland of the African Giant Rat: Cricetomys Gambianus
    Gen Physiol Biophys (1999), 18, 5—17 5 Calcium Binding Proteins Immunohistochemistry and Identification of Neurons in the Mammalian Pineal Gland of the African Giant Rat: Cricetomys gambianus E. BASTIANELLI1, K. MOUTAIROU2, M. T. AKÉLÉ-AKPO3, R. DARBOUX3 AND R. POCHET1 1 Laboratoire d'Histologie, Faculté de Médecme, Université Libre de Bruxelles, Bruxelles, Belgique 2 Departement de Biológie cellulaire, Faculté des Sciences et Techniques, Université Nationale du Benin, Cotonou 3 Unité ď Anatómie Pathologique, Faculté des Sciences de la Santé, Université Nationale du Bénm, Cotonou Abstract. The presence of true neurons in the rodent pineal gland is still a matter of controversy In this work, by using immunohistochemistry with five antibodies against calcium-binding proteins (calbindin-D28k, calretinin, calmodulin, neurocal- cin and S-100/3) and Cricetomys gambianus, a rodent belonging to Muridae family living in Africa, we were able to illustrate the presence of neurons in the pineal gland. Anti-calbindin-D28k and anti-calretmin labelled neurons belonging to two neural ganglia. One ganglion was localized in the anterior part of the gland near the pmeal stalk and the other one in the posterior portion of the organ. Immunoreac- tive neurons are medium in size (15-20 /xm) and have long thick processes running towards the stalk. Calretinin and calbmdin-D28k positive neurons stained with different intensities. Thin processes were detected by anti-calretinin whereas thick piocesses were preferentially calbmdm-D28k positive. Neurocalcin labelled a few smallei neurons and many thin processes within the ganglion. Calmodulin could not be detected immunochemically. Within the ganglia many astrocytic processes were S-100/3 positive The afferent and the efferent pathways of the pineal ganglia remain to be elucidated.
    [Show full text]
  • UC Davis UC Davis Previously Published Works
    UC Davis UC Davis Previously Published Works Title 1H, 15N, and 13C chemical shift assignments of neuronal calcium sensor-1 homolog from fission yeast Permalink https://escholarship.org/uc/item/95t1n2df Journal Biomolecular NMR Assignments, 3(2) ISSN 1874-270X Authors Lim, Sunghyuk Ames, James B. Publication Date 2009-12-01 DOI 10.1007/s12104-009-9191-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biomol NMR Assign (2009) 3:269–271 DOI 10.1007/s12104-009-9191-3 ARTICLE 1H, 15N, and 13C chemical shift assignments of neuronal calcium sensor-1 homolog from fission yeast Sunghyuk Lim • James B. Ames Received: 12 August 2009 / Accepted: 8 October 2009 / Published online: 23 October 2009 Ó The Author(s) 2009. This article is published with open access at Springerlink.com Abstract The neuronal calcium sensor (NCS) proteins 1999)andS. pombe Ncs1p (Hamasaki-Katagiri et al. regulate signal transduction processes and are highly con- 2004). All members of the NCS family have around served from yeast to humans. We report complete NMR 200 amino acid residues, contain N-terminal myris- chemical shift assignments of the NCS homolog from fis- toylation, and possess four EF-hands. sion yeast (Schizosaccharomyces pombe), referred to in Three-dimensional structures are now known for this study as Ncs1p. (BMRB no. 16446). many NCS proteins, including recoverin (Ames et al. 1997; Flaherty et al. 1993), frequenin (Bourne et al. Keywords NCS Á Ncs1p Á Fission yeast Á Calcium Á 2001), Frq1 (Strahl et al. 2007), neurocalcin (Vijay- EF-hand Á NMR Á S.
    [Show full text]
  • Kv2.1 Mediates Spatial and Functional Coupling of L-Type Calcium Channels
    RESEARCH ARTICLE Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons Nicholas C Vierra1,2, Michael Kirmiz2, Deborah van der List1,2, L Fernando Santana1, James S Trimmer1,2* 1Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States; 2Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States Abstract The voltage-gated K+ channel Kv2.1 serves a major structural role in the soma and proximal dendrites of mammalian brain neurons, tethering the plasma membrane (PM) to endoplasmic reticulum (ER). Although Kv2.1 clustering at neuronal ER-PM junctions (EPJs) is tightly regulated and highly conserved, its function remains unclear. By identifying and evaluating proteins in close spatial proximity to Kv2.1-containing EPJs, we discovered that a significant role of Kv2.1 at EPJs is to promote the clustering and functional coupling of PM L-type Ca2+ channels (LTCCs) to ryanodine receptor (RyR) ER Ca2+ release channels. Kv2.1 clustering also unexpectedly enhanced LTCC opening at polarized membrane potentials. This enabled Kv2.1-LTCC-RyR triads to generate localized Ca2+ release events (i.e., Ca2+ sparks) independently of action potentials. Together, these findings uncover a novel mode of LTCC regulation and establish a unique mechanism whereby Kv2.1-associated EPJs provide a molecular platform for localized somatodendritic Ca2+ signals in mammalian brain neurons. *For correspondence: DOI: https://doi.org/10.7554/eLife.49953.001 [email protected] Competing interests: The authors declare that no competing interests exist. Introduction + Funding: See page 34 The members of the Kv2 family of voltage-gated K (Kv) channels, Kv2.1 and Kv2.2, are among the most abundant and widely expressed K+ channels in mammalian brain neurons (Trimmer, 2015).
    [Show full text]
  • Calcium-Dependent Translocation of S100B Is Facilitated by Neurocalcin Delta
    molecules Article Calcium-Dependent Translocation of S100B Is Facilitated by Neurocalcin Delta Jingyi Zhang 1, Anuradha Krishnan 1, Hao Wu 1 and Venkat Venkataraman 1,2,* 1 Department of Cell Biology and Neuroscience, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA; [email protected] (J.Z.); [email protected] (A.K.); [email protected] (H.W.) 2 Department of Rehabilitation Medicine, NeuroMusculoskeletal Institute, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA * Correspondence: [email protected]; Tel.: +1-856-566-6418 Abstract: S100B is a calcium-binding protein that governs calcium-mediated responses in a variety of cells—especially neuronal and glial cells. It is also extensively investigated as a potential biomarker for several disease conditions, especially neurodegenerative ones. In order to establish S100B as a viable pharmaceutical target, it is critical to understand its mechanistic role in signaling pathways and its interacting partners. In this report, we provide evidence to support a calcium-regulated interaction between S100B and the neuronal calcium sensor protein, neurocalcin delta both in vitro and in living cells. Membrane overlay assays were used to test the interaction between purified proteins in vitro and bimolecular fluorescence complementation assays, for interactions in living cells. Added calcium is essential for interaction in vitro; however, in living cells, calcium elevation causes translocation of the NCALD-S100B complex to the membrane-rich, perinuclear trans-Golgi network in COS7 cells, suggesting that the response is independent of specialized structures/molecules found in neuronal/glial cells. Similar results are also observed with hippocalcin, a closely related paralog; however, the interaction appears less robust in vitro.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses by a Synthetic TLR3 Ligand Mitigates
    Downloaded from http://www.jimmunol.org/ by guest on September 28, 2021 Inducing is online at: average * The Journal of Immunology published online 16 August 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/08/16/jimmun ol.1300376 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 28, 2021. Published August 16, 2013, doi:10.4049/jimmunol.1300376 The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]