Computational Analysis of Surface Properties of Ef-Hand Calcium Binding Proteins

Total Page:16

File Type:pdf, Size:1020Kb

Computational Analysis of Surface Properties of Ef-Hand Calcium Binding Proteins BIOPHYSICS COMPUTATIONAL ANALYSIS OF SURFACE PROPERTIES OF EF-HAND CALCIUM BINDING PROTEINS DANA CRACIUN1, ADRIANA ISVORAN2 1Teacher Training Department, West University of Timisoara, 4 V.Pirvan, 300223 Timisoara, Romania, Email: [email protected] 2Department of Biology-Chemistry, West University of Timisoara, 16 Pestalozzi, 300316 Timisoara, Romania, Email: [email protected] Received August 14, 2013 Within present study we perform a computational analysis of the surface properties of the EF-hand calcium binding proteins (EFCaBPs), both at global and local levels. Among EFCaBPs there are calcium sensors involved in signal transduction processes and exhibiting extended spatial structures and calcium buffering proteins exhibiting compact structures. Structures superposition reflects higher structural similarity between extended forms, the compact ones being more divergent in good correlation with their sequence alignment. Surfaces of extended EFCaBPs present a smaller number of cavities but with larger volumes and areas than compact ones in correlation with their known biological functions. Surface electrostatic potential is higher for extended EFCaBPs, underlying the role of electrostatics repulsions in adopting their spatial structures and also the possible role in binding charged peptides. Key words: calcium binding proteins, surface, electrostatic potential. 1. INTRODUCTION Calcium ions are indispensable for the physiology of living cell being involved in many cellular processes. The key role of calcium ions strongly depends on a large number of proteins able to bind them, so-called calcium binding proteins, CaBPs [1]. The group of CaBPs is wide and heterogeneous. There are membrane intrinsic CaBPs acting as calcium transporters and involved in the control of calcium ions concentration, calcium buffers and calcium-modulated proteins involved in signal-transduction processes [2]. Calcium modulated proteins may be found both in extra- and intracellular environment and from structural point of view they may be divided in two families [3]: CaBPs containing EF-hand motifs and CaBPs lacking EF-hand motifs respectively. Rom. Journ. Phys., Vol. 59, Nos. 3–4, P. 339–345, Bucharest, 2014 340 Dana Craciun, Adriana Isvoran 2 Within this study we fix our attention on the EF-hand calcium binding proteins. The EF-hand motif is a structural domain containing a calcium binding loop twelve residues long flanked on both sides by an alpha-helix also twelve residues long [3].The biggest part of CaBPs enclose two domains, N- and C- terminal, each containing two EF-hand motifs and connected by a linker region [4]. Among EF-hand CaBPs there are calcium sensors involved in signal transduction processes and exhibiting open, extended spatial structures and calcium buffering and calcium transporting proteins exhibiting closed, compact structures [5]. The main structural difference between the two categories of EF-hand CaPBs [4] is displayed by the terminal domains linker region that is structured in a straight helix for the calcium sensors (as it is revealed in figure 1 for rabbit skeletal muscle troponin, black) and is unstructured for calcium buffers and calcium transporting proteins (figure 1 for bovine neurocalcin delta - grey). These structures have been retrieved from the Protein Data Bank [6]. Structural dissimilarity of the two categories of EF-hand CaBPs is reflected in their distinct biological functions. Fig. 1 – Superpostion of two structures of EFCaBPs: the extended form of rabbit skeletal muscle troponin in black (PDB code entry 1TN4) and the compact form of bovine neurocalcine delta in grey (PDB entry code 1REC). Tacking into account the involvement of CaBPs in many diseases and the fact that not all of them have determined spatial structures, it becomes important to predict their spatial organizations and their structural and functional properties, respectively. There are in specific literature a few studies concerning the physicochemical factors determining the extended or compact structure of the EF-hand CaBPs [7–9] revealing the involvement of electrostatics interactions [7–8] and the essential role 3 Computational analysis of surface properties of EF-hand calcium binding proteins 341 of the hydrophilicity of resides linking the domains [9]. Also, the concepts of the fractal geometry have been applied to investigate their global structural properties [10–11] illustrating distinct fractal properties of backbones of extended respective compact structures [10] and distinct scaling properties of radius of gyration and surface area of the two categories of EF-hand CaBPs [11] confirming the dissimilar mechanisms responsible for their global folding. Within present study we perform a computational analysis of the surface properties of the two categories of EF-hand CaBPs both at global and local levels and interpret them in terms of specific biological interactions. 2. METHODS Experimentally determined structures of proteins are archived in the Protein Data Bank [6] that we have used in order to retrieve the structural files of EFCaBPs. There are numerous structures of EFCaBPs deposited in PDB, but, with the exception of human centrin 2 (that has experimentally-determined structure only in the presence of a peptide) we have considered in our study only those structures obtained using X-ray diffraction technique and containing the entire protein and the bound calcium ions where it was the case. These proteins are presented in the Table 1. Table 1 The investigated proteins Protein PDB code Number of amino acids Conformation in structural file Human calmodulin 1CLL 143 Extended Chicken skeletal muscle 4TNC 159 Extended troponin C Rabbit skeletan muscle troponin 1TN4 157 Extended C Paramecium tetraurelia 1OSA 148 Extended calmodulin Potato calmodulin 1RFJ 148 Extended Human calmodulin-like protein 1GGZ 140 Extended Human centrin 2 2GGM 144 Extended Bovine recombinant neurocalcin 1BJF 181 Compact delta Rattus norvegicus calcineurin B 2CT9 195 Compact Bos Taurus recoverin 1REC 191 Compact Amphioxus sarcoplasmic 2SAS 185 Compact calcium-binding protein Nereis diversicolor sarcoplasmic 2SCP 174 Compact calcium-binding protein 342 Dana Craciun, Adriana Isvoran 4 Multiple sequence alignment of the considered proteins has been done using CLUSTALW [12], a free accessible on-line tool. In order to analyze the surface properties of considered proteins we have used a few computational tools: CHIMERA [13] for surface area calculation and structures superposition, PyMol [14] for electrostatic potential computation and CASTp [15] for cavities identification and characterization. The distribution of physico-chemical properties along the protein chain is obtained using free on-line available tool ProtScale [16]. 3. RESULTS AND DISCUSSIONS Sequence alignment of considered proteins reveals high sequence identity between extended EFCaBPs (more than 73%) and a low sequence identity between extended and compact ones (lower than 47%, data not shown), the calcium binding loops sequences being the most conserved in both extended and compact structures. This remark is also confirmed by structures superposition for the considered EFCaBPs. The superposition of extended structures reveals a high structural similarity between them, the structural motif that is almost identical in all these proteins being the domains linker region. For the compact EFCaBPs, the structure superposition indicates a small structural identity. Also, there is low structural identity between extended and compact EFCaBPs. The structural files of considered proteins and their relevant surface properties are presented in Table 2. Table 2 The surface properties of the considered proteins Volume of the Surface of biggest PDB Number Surface electrostatic potential biggest cavity cavity code of cavities [k T/e] (T=300˚K) [Å3] [Å2] b 1CLL 16 1941,4 581,8 -102.38÷102.38 4TNC 17 581,3 241,6 -102.38÷102.38 1TN4 15 489 296,5 -100.44÷100.44 1OSA 17 2135,1 621,2 -97.18÷97.18 1RFJ 14 255,7 180,9 -97.89÷97.89 1GGZ 20 274,7 148,4 -94.72÷94.72 2GGM 18 2258,8 1286,5 -106.19÷106.19 1BJF 24 484,6 323,7 -67.99÷67.99 2CT9 29 466,6 329,1 -80.37÷80.37 1REC 23 306,1 168,4 -80.48÷80.48 2SAS 19 1274,9 801,4 -78.74÷78.74 2SCP 36 259,6 271,7 -76.09÷76.09 5 Computational analysis of surface properties of EF-hand calcium binding proteins 343 Surfaces of extended EFCaBPs present a smaller number of cavities but with larger volumes and areas than compact ones, in good correlation with their known biological functions [1, 3]. Surface electrostatic potential is higher for extended EFCaBPs, underlying the role of electrostatics repulsions in adopting their spatial structures [7] and also their possible role in binding charged peptides. As these proteins contain distinct numbers of amino acids, in order to compare their surface areas we have considered the surface area per amino acid by dividing the total surface area to the amino acid number. Figure 2 shows that surface area per amino acid for extended forms (medium pattern) and compact forms (dense pattern) are distinct. Fig. 2 – Surface area per amino acid for extended forms (medium pattern) and compact forms (dense pattern). There is a statistically difference between the two means, (46.39±7.2 ) Å2 for extended forms and (54.46±6.5) Å2 for compact ones, reflected by t- and one-way ANOVA tests and underlying the distinct degree of density of their tertiary structures. It is already known that extended EFCABPs present a large solvent exposed hydrophobic surface
Recommended publications
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Visinin-Like Neuronal Calcium Sensor Proteins Regulate the Slow Calcium-Activated Afterhyperpolarizing Current in the Rat Cerebral Cortex
    The Journal of Neuroscience, October 27, 2010 • 30(43):14361–14365 • 14361 Brief Communications Visinin-Like Neuronal Calcium Sensor Proteins Regulate the Slow Calcium-Activated Afterhyperpolarizing Current in the Rat Cerebral Cortex Claudio Villalobos and Rodrigo Andrade Department of Pharmacology, Wayne State University School of Medicine, Detroit Michigan 48230 Many neurons in the nervous systems express afterhyperpolarizations that are mediated by a slow calcium-activated potassium current. This current shapes neuronal firing and is inhibited by neuromodulators, suggesting an important role in the regulation of neuronal function. Surprisingly, very little is currently known about the molecular basis for this current or how it is gated by calcium. Recently, the neuronal calcium sensor protein hippocalcin was identified as a calcium sensor for the slow afterhyperpolarizing current in the hip- pocampus. However, while hippocalcin is very strongly expressed in the hippocampus, this protein shows a relatively restricted distri- bution in the brain. Furthermore, the genetic deletion of this protein only partly reduces the slow hyperpolarizing current in hippocampus. These considerations question whether hippocalcin can be the sole calcium sensor for the slow afterhyperpolarizing current. Here we use loss of function and overexpression strategies to show that hippocalcin functions as a calcium sensor for the slow afterhyperpolarizing current in the cerebral cortex, an area where hippocalcin is expressed at much lower levels than in hippocampus. In addition we show that neurocalcin ␦, but not VILIP-2, can also act as a calcium sensor for the slow afterhyperpolarizing current. Finally we show that hippocalcin and neurocalcin ␦ both increase the calcium sensitivity of the afterhyperpolarizing current but do not alter its ␣ ␤ sensitivity to inhibition by carbachol acting through the G q-11-PLC signaling cascade.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System
    brain sciences Review New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System Krisztina Kelemen * and Tibor Szilágyi Department of Physiology, Doctoral School, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, , Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-746-248064 Abstract: Although Ca2+ ion plays an essential role in cellular physiology, calcium-binding proteins (CaBPs) were long used for mainly as immunohistochemical markers of specific cell types in different regions of the central nervous system. They are a heterogeneous and wide-ranging group of proteins. Their function was studied intensively in the last two decades and a tremendous amount of informa- tion was gathered about them. Girard et al. compiled a comprehensive list of the gene-expression profiles of the entire EF-hand gene superfamily in the murine brain. We selected from this database those CaBPs which are related to information processing and/or neuronal signalling, have a Ca2+- buffer activity, Ca2+-sensor activity, modulator of Ca2+-channel activity, or a yet unknown function. In this way we created a gene function-based selection of the CaBPs. We cross-referenced these findings with publicly available, high-quality RNA-sequencing and in situ hybridization databases (Human Protein Atlas (HPA), Brain RNA-seq database and Allen Brain Atlas integrated into the HPA) and created gene expression heat maps of the regional and cell type-specific expression levels of the selected CaBPs. This represents a useful tool to predict and investigate different expression patterns and functions of the less-known CaBPs of the central nervous system.
    [Show full text]
  • Neurocalcin Regulates Nighttime Sleep and Arousal in Drosophila Ko-Fan Chen*, Simon Lowe, Ange´ Lique Lamaze, Patrick Kra¨ Tschmer, James Jepson*
    RESEARCH ARTICLE Neurocalcin regulates nighttime sleep and arousal in Drosophila Ko-Fan Chen*, Simon Lowe, Ange´ lique Lamaze, Patrick Kra¨ tschmer, James Jepson* Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom Abstract Sleep-like states in diverse organisms can be separated into distinct stages, each with a characteristic arousal threshold. However, the molecular pathways underlying different sleep stages remain unclear. The fruit fly, Drosophila melanogaster, exhibits consolidated sleep during both day and night, with night sleep associated with higher arousal thresholds compared to day sleep. Here we identify a role for the neuronal calcium sensor protein Neurocalcin (NCA) in promoting sleep during the night but not the day by suppressing nocturnal arousal and hyperactivity. We show that both circadian and light-sensing pathways define the temporal window in which NCA promotes sleep. Furthermore, we find that NCA promotes sleep by suppressing synaptic release from a dispersed wake-promoting neural network and demonstrate that the mushroom bodies, a sleep-regulatory center, are a module within this network. Our results advance the understanding of how sleep stages are genetically defined. DOI: https://doi.org/10.7554/eLife.38114.001 Introduction Sleep is a widely conserved behavior that influences numerous aspects of brain function, including neuronal development (Kayser et al., 2014), clearance of metabolic waste (Xie et al., 2013), synap- *For correspondence: tic plasticity (Havekes et al., 2016; Kuhn et al., 2016; Li et al., 2017; Yang et al., 2014), and com- [email protected] (K-FC); plex behaviors (Kayser et al., 2015; Kayser et al., 2014).
    [Show full text]
  • Calcium Signaling, Second Edition
    This is a free sample of content from Calcium Signaling, Second Edition. Click here for more information on how to buy the book. Index A ANO1, 441 ABT-199/Venetoclax, 471, 473 AP. See Action potential Action potential (AP), 407 Aquaporin, 441 Activin-A, 389 ARF1, 291 AD. See Alzheimer’s disease Arteriosclerosis. See Calcification ADAM10, 551 ASD. See Autism spectrum disorder Addiction. See Drug addiction Astrocyte Adenylyl cyclase, CRAC channel calcium brain aging modulation, 72–73 Alzheimer’s disease Aging amyloid-b effects on calcium dynamics, brain 549–550 Alzheimer’s disease astrogliopathology, 548–549 amyloid-b effects on calcium calcium signaling in astrocytes, 549–552 dynamics, 549–550 endoplasmic reticulum calcium release and astrogliopathology, 548–549 astrogliotic response, 552 calcium signaling in astrocytes, 549–552 astroglia support over life, 546–547 endoplasmic reticulum calcium release and ionic signaling and excitability, 547 astrogliotic response, 552 physiology in aging, 547–548 astrocyte transcription-dependent metabolic plasticity, 391–393 astroglia support over life, 546–547 ATF3, 389 ionic signaling and excitability, 547 Atherosclerosis. See Calcification physiology in aging, 547–548 Atrap, 164 overview, 545–546 Autism spectrum disorder (ASD) tissue calcification, 534–535 IL1RAPL1 mutations, 296 AKAP9, 470 parvalbumin neurons, 228–229 AKAP79, 75 ALN, 163 B Alzheimer’s disease (AD) BAP1, 482 astrocyte aging Bcl-2 amyloid-b effects on calcium dynamics, 549–550 endoplasmic reticulum function, 465–466 astrogliopathology,
    [Show full text]
  • Calcium Binding Proteins Immunohistochemistry and Identification of Neurons in the Mammalian Pineal Gland of the African Giant Rat: Cricetomys Gambianus
    Gen Physiol Biophys (1999), 18, 5—17 5 Calcium Binding Proteins Immunohistochemistry and Identification of Neurons in the Mammalian Pineal Gland of the African Giant Rat: Cricetomys gambianus E. BASTIANELLI1, K. MOUTAIROU2, M. T. AKÉLÉ-AKPO3, R. DARBOUX3 AND R. POCHET1 1 Laboratoire d'Histologie, Faculté de Médecme, Université Libre de Bruxelles, Bruxelles, Belgique 2 Departement de Biológie cellulaire, Faculté des Sciences et Techniques, Université Nationale du Benin, Cotonou 3 Unité ď Anatómie Pathologique, Faculté des Sciences de la Santé, Université Nationale du Bénm, Cotonou Abstract. The presence of true neurons in the rodent pineal gland is still a matter of controversy In this work, by using immunohistochemistry with five antibodies against calcium-binding proteins (calbindin-D28k, calretinin, calmodulin, neurocal- cin and S-100/3) and Cricetomys gambianus, a rodent belonging to Muridae family living in Africa, we were able to illustrate the presence of neurons in the pineal gland. Anti-calbindin-D28k and anti-calretmin labelled neurons belonging to two neural ganglia. One ganglion was localized in the anterior part of the gland near the pmeal stalk and the other one in the posterior portion of the organ. Immunoreac- tive neurons are medium in size (15-20 /xm) and have long thick processes running towards the stalk. Calretinin and calbmdin-D28k positive neurons stained with different intensities. Thin processes were detected by anti-calretinin whereas thick piocesses were preferentially calbmdm-D28k positive. Neurocalcin labelled a few smallei neurons and many thin processes within the ganglion. Calmodulin could not be detected immunochemically. Within the ganglia many astrocytic processes were S-100/3 positive The afferent and the efferent pathways of the pineal ganglia remain to be elucidated.
    [Show full text]
  • UC Davis UC Davis Previously Published Works
    UC Davis UC Davis Previously Published Works Title 1H, 15N, and 13C chemical shift assignments of neuronal calcium sensor-1 homolog from fission yeast Permalink https://escholarship.org/uc/item/95t1n2df Journal Biomolecular NMR Assignments, 3(2) ISSN 1874-270X Authors Lim, Sunghyuk Ames, James B. Publication Date 2009-12-01 DOI 10.1007/s12104-009-9191-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biomol NMR Assign (2009) 3:269–271 DOI 10.1007/s12104-009-9191-3 ARTICLE 1H, 15N, and 13C chemical shift assignments of neuronal calcium sensor-1 homolog from fission yeast Sunghyuk Lim • James B. Ames Received: 12 August 2009 / Accepted: 8 October 2009 / Published online: 23 October 2009 Ó The Author(s) 2009. This article is published with open access at Springerlink.com Abstract The neuronal calcium sensor (NCS) proteins 1999)andS. pombe Ncs1p (Hamasaki-Katagiri et al. regulate signal transduction processes and are highly con- 2004). All members of the NCS family have around served from yeast to humans. We report complete NMR 200 amino acid residues, contain N-terminal myris- chemical shift assignments of the NCS homolog from fis- toylation, and possess four EF-hands. sion yeast (Schizosaccharomyces pombe), referred to in Three-dimensional structures are now known for this study as Ncs1p. (BMRB no. 16446). many NCS proteins, including recoverin (Ames et al. 1997; Flaherty et al. 1993), frequenin (Bourne et al. Keywords NCS Á Ncs1p Á Fission yeast Á Calcium Á 2001), Frq1 (Strahl et al. 2007), neurocalcin (Vijay- EF-hand Á NMR Á S.
    [Show full text]
  • Kv2.1 Mediates Spatial and Functional Coupling of L-Type Calcium Channels
    RESEARCH ARTICLE Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons Nicholas C Vierra1,2, Michael Kirmiz2, Deborah van der List1,2, L Fernando Santana1, James S Trimmer1,2* 1Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States; 2Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States Abstract The voltage-gated K+ channel Kv2.1 serves a major structural role in the soma and proximal dendrites of mammalian brain neurons, tethering the plasma membrane (PM) to endoplasmic reticulum (ER). Although Kv2.1 clustering at neuronal ER-PM junctions (EPJs) is tightly regulated and highly conserved, its function remains unclear. By identifying and evaluating proteins in close spatial proximity to Kv2.1-containing EPJs, we discovered that a significant role of Kv2.1 at EPJs is to promote the clustering and functional coupling of PM L-type Ca2+ channels (LTCCs) to ryanodine receptor (RyR) ER Ca2+ release channels. Kv2.1 clustering also unexpectedly enhanced LTCC opening at polarized membrane potentials. This enabled Kv2.1-LTCC-RyR triads to generate localized Ca2+ release events (i.e., Ca2+ sparks) independently of action potentials. Together, these findings uncover a novel mode of LTCC regulation and establish a unique mechanism whereby Kv2.1-associated EPJs provide a molecular platform for localized somatodendritic Ca2+ signals in mammalian brain neurons. *For correspondence: DOI: https://doi.org/10.7554/eLife.49953.001 [email protected] Competing interests: The authors declare that no competing interests exist. Introduction + Funding: See page 34 The members of the Kv2 family of voltage-gated K (Kv) channels, Kv2.1 and Kv2.2, are among the most abundant and widely expressed K+ channels in mammalian brain neurons (Trimmer, 2015).
    [Show full text]
  • Calcium-Dependent Translocation of S100B Is Facilitated by Neurocalcin Delta
    molecules Article Calcium-Dependent Translocation of S100B Is Facilitated by Neurocalcin Delta Jingyi Zhang 1, Anuradha Krishnan 1, Hao Wu 1 and Venkat Venkataraman 1,2,* 1 Department of Cell Biology and Neuroscience, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA; [email protected] (J.Z.); [email protected] (A.K.); [email protected] (H.W.) 2 Department of Rehabilitation Medicine, NeuroMusculoskeletal Institute, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA * Correspondence: [email protected]; Tel.: +1-856-566-6418 Abstract: S100B is a calcium-binding protein that governs calcium-mediated responses in a variety of cells—especially neuronal and glial cells. It is also extensively investigated as a potential biomarker for several disease conditions, especially neurodegenerative ones. In order to establish S100B as a viable pharmaceutical target, it is critical to understand its mechanistic role in signaling pathways and its interacting partners. In this report, we provide evidence to support a calcium-regulated interaction between S100B and the neuronal calcium sensor protein, neurocalcin delta both in vitro and in living cells. Membrane overlay assays were used to test the interaction between purified proteins in vitro and bimolecular fluorescence complementation assays, for interactions in living cells. Added calcium is essential for interaction in vitro; however, in living cells, calcium elevation causes translocation of the NCALD-S100B complex to the membrane-rich, perinuclear trans-Golgi network in COS7 cells, suggesting that the response is independent of specialized structures/molecules found in neuronal/glial cells. Similar results are also observed with hippocalcin, a closely related paralog; however, the interaction appears less robust in vitro.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses by a Synthetic TLR3 Ligand Mitigates
    Downloaded from http://www.jimmunol.org/ by guest on September 28, 2021 Inducing is online at: average * The Journal of Immunology published online 16 August 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/08/16/jimmun ol.1300376 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 28, 2021. Published August 16, 2013, doi:10.4049/jimmunol.1300376 The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]
  • The Diversity of Calcium Sensor Proteins in the Regulation of Neuronal Function
    Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press The Diversity of Calcium Sensor Proteins in the Regulation of Neuronal Function Hannah V. McCue, Lee P. Haynes, and Robert D. Burgoyne The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom Correspondence: [email protected] Calcium signaling in neurons as in other cell types mediates changes in gene expression, cell growth, development, survival, and cell death. However, neuronal Ca2þ signaling processes have become adapted to modulate the function of other important pathways including axon outgrowth and changes in synaptic strength. Ca2þ plays a key role as the trigger for fast neuro- transmitter release. The ubiquitous Ca2þ sensor calmodulin is involved in various aspects of neuronal regulation. The mechanisms by which changes in intracellular Ca2þ concentration in neurons can bring about such diverse responses has, however, become a topic of wide- spread interest that has recently focused on the roles of specialized neuronal Ca2þ sensors. In this article, we summarize synaptotagmins in neurotransmitter release, the neur- onal roles of calmodulin, and the functional significance of the NCS and the CaBP/ calneuron protein families of neuronal Ca2þ sensors. alcium signaling in many cell types can processes have been shown to be dependent Cmediate changes in gene expression, cell upon the particular route of Ca2þ entry into growth, development, survival, and cell death. the cell. It has long been known that the physio- However, neuronal calcium signaling processes logical outcome from a change in [Ca2þ]i have become adapted to modulate the function depends on its location, amplitude, and dura- of important pathways in the brain, including tion.
    [Show full text]