The Diversity of Calcium Sensor Proteins in the Regulation of Neuronal Function

Total Page:16

File Type:pdf, Size:1020Kb

The Diversity of Calcium Sensor Proteins in the Regulation of Neuronal Function Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press The Diversity of Calcium Sensor Proteins in the Regulation of Neuronal Function Hannah V. McCue, Lee P. Haynes, and Robert D. Burgoyne The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom Correspondence: [email protected] Calcium signaling in neurons as in other cell types mediates changes in gene expression, cell growth, development, survival, and cell death. However, neuronal Ca2þ signaling processes have become adapted to modulate the function of other important pathways including axon outgrowth and changes in synaptic strength. Ca2þ plays a key role as the trigger for fast neuro- transmitter release. The ubiquitous Ca2þ sensor calmodulin is involved in various aspects of neuronal regulation. The mechanisms by which changes in intracellular Ca2þ concentration in neurons can bring about such diverse responses has, however, become a topic of wide- spread interest that has recently focused on the roles of specialized neuronal Ca2þ sensors. In this article, we summarize synaptotagmins in neurotransmitter release, the neur- onal roles of calmodulin, and the functional significance of the NCS and the CaBP/ calneuron protein families of neuronal Ca2þ sensors. alcium signaling in many cell types can processes have been shown to be dependent Cmediate changes in gene expression, cell upon the particular route of Ca2þ entry into growth, development, survival, and cell death. the cell. It has long been known that the physio- However, neuronal calcium signaling processes logical outcome from a change in [Ca2þ]i have become adapted to modulate the function depends on its location, amplitude, and dura- of important pathways in the brain, including tion. The importance of location becomes neuronal survival, axon outgrowth, and changes even more pronounced in neurons because of in synaptic strength. Changes in the concentra- their complex and extended morphologies. tion of intracellular free Ca2þ ([Ca2þ]i) are [Ca2þ]i also regulates neuronal development essential for the transmission of information and neuronal survival (Spitzer 2006). In addi- through the nervous system as the trigger for tion, modifications to Ca2þ signaling pathways neurotransmitter release at synapses. In addi- have been suggested to underlie various neuro- tion, alterations in [Ca2þ]i can lead to a wide pathological disorders (Braunewell 2005; Ber- range of different physiological changes that ridge 2010). can modify neuronal functions over time scales Highly localized Ca2þ elevations (Augustine of milliseconds through tens of minutes to et al. 2003) formed following Ca2þ entry though days or longer (Berridge 1998). Many of these voltage-gated Ca2þ channels (VGCCs) lead to Editors: Martin Bootman, Michael J. Berridge, James W. Putney, and H. Llewelyn Roderick Additional Perspectives on Calcium Signaling available at www.cshperspectives.org Copyright # 2010 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a004085 Cite this article as Cold Spring Harb Perspect Biol 2010;2:a004085 1 Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press H.V. McCue, L.P. Haynes, and R.D. Burgoyne synaptic vesicle fusion with the presynaptic role of synaptotagmins in neurotransmitter membrane and thereby allow neurotransmitter release has been the subject of intense investiga- release within less than a millisecond. Differ- tions, which have been extensively reviewed ently localized and timed Ca2þ signals can, for (Chapman 2008; Rizo and Rosenmund 2008; example, result in changes to the properties of Sudhof and Rothman 2009) and so only a brief the VGCCs (Catterall and Few 2008) or lead to outline is given here. Synaptotagmins bind changes in gene expression (Bito et al. 1997). Ca2þ with relatively low affinity (Kd . 10 mM) Postsynaptic Ca2þ signals arising from activa- through their two C2 domains (C2A and C2B) tion of NMDA receptors give rise to two impor- (Shao et al. 1998; Fernandez et al. 2001), which tant processes in synaptic plasticity, long term are functional in many but not all synaptotag- potentiation (LTP) and long term depression min isoforms. Ca2þ binding by C2 domains (LTD). LTP and LTD are examples of the way requires coordination of Ca2þ by both the synaptic transmission can change synaptic effi- protein and membrane lipids and this lipid cacy and are thought to be important in modu- interaction is a key aspect for its function. In lating learning and memory. Importantly, the synaptotagmin I, the C2A and C2B domains Ca2þ signals that bring about either LTP or (Fig. 1) bind three and two Ca2þ ions, respec- LTD differ only in their timing and duration. tively (Shao et al. 1998; Fernandez et al. 2001). LTP is triggered by Ca2þ signals on the micro- It is now well established that synaptotagmin I molar scale for shorter durations, whereas LTD is a key sensor for evoked, synchronous neuro- is triggered by changes in [Ca2þ]i on the nano- transmitter release in many classes of neurons molar scale for longer durations (Yang et al. (Fernandez-Chacon et al. 2001). Structure– 1999). Specific Ca2þ signals are likely to be function studies based on expression of specific decoded by different Ca2þ sensor proteins. mutants have been carried out in mice, worms, These are proteins that undergo a conforma- and flies. For example, disruption of Ca2þ bind- tional change on Ca2þ binding and then interact ing to the C2B domain of synaptotagmin I has with and regulate various target proteins. Among those Ca2þ sensors that are important for neuronal function are the synaptotagmins that control neurotransmitter release (Chap- man 2008), the ubiquitous EF-hand contain- ing sensor calmodulin that has many neuronal roles, and the more recently discovered neuronal EF-hand containing proteins, including the neuronal calcium sensor (NCS) protein (Bur- goyne 2007) and the calcium-binding protein (CaBP)/calneuron (Haeseleer et al. 2002) fam- ilies. We will briefly review synaptotagmins and the neuronal functions of calmodulin but concentrate on the NCS and CaBP families of Ca2þ sensors. SYNAPTOTAGMINS AND NEUROTRANSMITTER RELEASE Synaptotagmins are transmembrane proteins Figure 1. Structures of the C2A and C2B domains of synaptotagmin I. The structures show the isolated C2 mostly found associated with synaptic and domains in their Ca2þ-loaded state with the bound secretory vesicles. There are multiple known Ca2þ ions shown in green. The coordinates for the isoforms of synaptotagmin (Craxton 2004) of structures for the C2A and C2B domains come which synaptotagmin I is the best studied. The from the PDB files 1BYN and 1K5W, respectively. 2 Cite this article as Cold Spring Harb Perspect Biol 2010;2:a004085 Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Calcium Sensor Proteins in Neuronal Function been shown to have a more deleterious effect NEURONAL FUNCTIONS OF CALMODULIN than disruption of Ca2þ binding to its C2A domain (Mackler et al. 2002; Robinson et al. Calmodulin is a ubiquitously expressed Ca2þ 2002). The details of exactly how it triggers exo- -binding protein that can bind four Ca2þ ions cytosis and the function of other syntaptotag- through its four EF-hand domains (Chattopad- min isoforms remain controversial. Membrane hyaya et al. 1992). This protein has been highly fusion requires the pairing and interaction of conserved throughout evolution, is found in all so-called SNARE proteins on vesicle and target eukaryotes, and is 100% identical across all ver- membranes (Sollner et al. 1993). These can tebrates at the amino acid level. It is involved in assemble into a SNARE complex that may the regulation of many essential physiological form the minimal fusion machinery. For synap- processes including cell motility, exocytosis, tic vesicle and neuroendocrine exocytosis, the cytoskeletal assembly, and modulation of intra- SNARE proteins are SNAP-25, syntaxin 1, and cellular Ca2þ concentrations. The first two EF- synaptobrevin. In the case of regulated exocy- hands of calmodulin form an amino-terminal tosis, such as in neurotransmitter release, ves- globular domain that is joined by a flexible icle fusion is tightly regulated and requires a linker to a highly homologous carboxy-termi- Ca2þ signal for activation. Ca2þ entry through nal region encompassing the third and fourth VGCCs leading to Ca2þ elevation in local EF-hands. The carboxy-terminal pair of EF- microdomains close to the mouth of the Ca2þ hands has a much higher affinity for Ca2þ channel is able to trigger very rapid (within than the amino-terminal pair, which allows less than 1 ms) fusion of synaptic vesicles. Syn- the two domains to behave independently at aptotagmin can bind to both syntaxin and varying Ca2þ concentrations (Tadross et al. SNAP-25, and fast neurotransmitter release 2008). The highly flexible linker between the requires synaptotagmin (Geppert et al. 1994) two domains can be bent dramatically upon probably prebound to assembled or partially binding to target proteins (Fig. 2) and is an assembled SNARE complexes (Schiavo et al. essential property of calmodulin, which permits 1997; Rickman et al. 2006) so that Ca2þ- this protein to interact with a large and diverse induced interaction with phospholipids can array of interacting partners. The significant occur rapidly (Xue et al. 2008). It is still under conformational changes on binding to its tar- debate how important synaptotagmin is in gets (Fallon et al. 2005) can increase its affinity vesicle docking (de Wit et al. 2009) and how it for Ca2þ. acts at the plasma membrane in fusion itself Calmodulin is present in brain at high con- (Tang et al. 2006; Hui et al. 2009). Synaptotag- centrations (up to 100 mM). In addition to min could act as a brake on fusion that is its more general functions, calmodulin also has relieved on Ca2þ binding or have a positive a series of specific roles in transducing Ca2þ sig- role in membrane fusion (Chicka et al.
Recommended publications
  • Annexin A2 Flop-Out Mediates the Non-Vesicular Release of Damps/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions
    cells Article Annexin A2 Flop-Out Mediates the Non-Vesicular Release of DAMPs/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions Hayato Matsunaga 1,2,† , Sebok Kumar Halder 1,3,† and Hiroshi Ueda 1,4,* 1 Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; [email protected] (H.M.); [email protected] (S.K.H.) 2 Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan 3 San Diego Biomedical Research Institute, San Diego, CA 92121, USA 4 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan * Correspondence: [email protected]; Tel.: +81-75-753-4536 † These authors contributed equally to this work. Abstract: Prothymosin alpha (ProTα) and S100A13 are released from C6 glioma cells under serum- free conditions via membrane tethering mediated by Ca2+-dependent interactions between S100A13 and p40 synaptotagmin-1 (Syt-1), which is further associated with plasma membrane syntaxin-1 (Stx-1). The present study revealed that S100A13 interacted with annexin A2 (ANXA2) and this interaction was enhanced by Ca2+ and p40 Syt-1. Amlexanox (Amx) inhibited the association between S100A13 and ANXA2 in C6 glioma cells cultured under serum-free conditions in the in situ proximity ligation assay. In the absence of Amx, however, the serum-free stress results in a flop-out of ANXA2 Citation: Matsunaga, H.; Halder, through the membrane, without the extracellular release. The intracellular delivery of anti-ANXA2 S.K.; Ueda, H. Annexin A2 Flop-Out antibody blocked the serum-free stress-induced cellular loss of ProTα, S100A13, and Syt-1.
    [Show full text]
  • KLF2 Induced
    UvA-DARE (Digital Academic Repository) The transcription factor KLF2 in vascular biology Boon, R.A. Publication date 2008 Link to publication Citation for published version (APA): Boon, R. A. (2008). The transcription factor KLF2 in vascular biology. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:23 Sep 2021 Supplementary data: Genes induced by KLF2 Dekker et al. LocusLink Accession Gene Sequence Description Fold p-value ID number symbol change (FDR) 6654 AK022099 SOS1 cDNA FLJ12037 fis, clone HEMBB1001921. 100.00 5.9E-09 56999 AF086069 ADAMTS9 full length insert cDNA clone YZ35C05. 100.00 1.2E-09 6672 AF085934 SP100 full length insert cDNA clone YR57D07. 100.00 6.7E-13 9031 AF132602 BAZ1B Williams Syndrome critical region WS25 mRNA, partial sequence.
    [Show full text]
  • Early B-Cell Factors Are Required for Specifying Multiple Retinal Cell Types and Subtypes from Postmitotic Precursors
    11902 • The Journal of Neuroscience, September 8, 2010 • 30(36):11902–11916 Development/Plasticity/Repair Early B-Cell Factors Are Required for Specifying Multiple Retinal Cell Types and Subtypes from Postmitotic Precursors Kangxin Jin,1,2 Haisong Jiang,1,2 Zeqian Mo,3 and Mengqing Xiang1,2 1Center for Advanced Biotechnology and Medicine and Department of Pediatrics, 2Graduate Program in Molecular Genetics, Microbiology and Immunology, and 3Department of Cell Biology and Neuroscience, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 The establishment of functional retinal circuits in the mammalian retina depends critically on the proper generation and assembly of six classes of neurons, five of which consist of two or more subtypes that differ in morphologies, physiological properties, and/or sublaminar positions. How these diverse neuronal types and subtypes arise during retinogenesis still remains largely to be defined at the molecular level. Here we show that all four family members of the early B-cell factor (Ebf) helix-loop-helix transcription factors are similarly expressedduringmouseretinogenesisinseveralneuronaltypesandsubtypesincludingganglion,amacrine,bipolar,andhorizontalcells, and that their expression in ganglion cells depends on the ganglion cell specification factor Brn3b. Misexpressed Ebfs bias retinal precursors toward the fates of non-AII glycinergic amacrine, type 2 OFF-cone bipolar and horizontal cells, whereas a dominant-negative Ebf suppresses the differentiation of these cells as well as ganglion cells. Reducing Ebf1 expression by RNA interference (RNAi) leads to an inhibitory effect similar to that of the dominant-negative Ebf, effectively neutralizes the promotive effect of wild-type Ebf1, but has no impact on the promotive effect of an RNAi-resistant Ebf1.
    [Show full text]
  • Steroid-Dependent Regulation of the Oviduct: a Cross-Species Transcriptomal Analysis
    University of Kentucky UKnowledge Theses and Dissertations--Animal and Food Sciences Animal and Food Sciences 2015 Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis Katheryn L. Cerny University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cerny, Katheryn L., "Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis" (2015). Theses and Dissertations--Animal and Food Sciences. 49. https://uknowledge.uky.edu/animalsci_etds/49 This Doctoral Dissertation is brought to you for free and open access by the Animal and Food Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Animal and Food Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • An Arf1 Synthetic Lethal Screen Identifies a New Clathrin Heavy
    Copyright 1998 by the Genetics Society of America An arf1D Synthetic Lethal Screen Identi®es a New Clathrin Heavy Chain Conditional Allele That Perturbs Vacuolar Protein Transport in Saccharomyces cerevisiae Chih-Ying Chen and Todd R. Graham Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235 Manuscript received March 5, 1998 Accepted for publication June 16, 1998 ABSTRACT ADP-ribosylation factor (ARF) is a small GTP-binding protein that is thought to regulate the assembly of coat proteins on transport vesicles. To identify factors that functionally interact with ARF, we have performed a genetic screen in Saccharomyces cerevisiae for mutations that exhibit synthetic lethality with an arf1D allele and de®ned seven genes by complementation tests (SWA1-7 for synthetically lethal with arf1D). Most of the swa mutants exhibit phenotypes comparable to arf1D mutants such as temperature-conditional growth, hypersensitivity to ¯uoride ions, and partial protein transport and glycosylation defects. Here, we report that swa5-1 is a new temperature-sensitive allele of the clathrin heavy chain gene (chc1-5), which carries a frameshift mutation near the 39 end of the CHC1 open reading frame. This genetic interaction between arf1 and chc1 provides in vivo evidence for a role for ARF in clathrin coat assembly. Surprisingly, strains harboring chc1-5 exhibited a signi®cant defect in transport of carboxypeptidase Y or carboxypepti- dase S to the vacuole that was not observed in other chc1 ts mutants. The kinetics of invertase secretion or transport of alkaline phosphatase to the vacuole were not signi®cantly affected in the chc1-5 mutant, further implicating clathrin speci®cally in the Golgi to vacuole transport pathway for carboxypeptidase Y.
    [Show full text]
  • Synergetic Effect of Recoverin and Calmodulin on Regulation of Rhodopsin Kinase
    Thomas Jefferson University Jefferson Digital Commons Department of Biochemistry and Molecular Department of Biochemistry and Molecular Biology Faculty Papers Biology 1-1-2012 Synergetic effect of recoverin and calmodulin on regulation of rhodopsin kinase. Ilya I Grigoriev Lomonosov Moscow State University Ivan I Senin Lomonosov Moscow State University Natalya K Tikhomirova Lomonosov Moscow State University Konstantin E Komolov Lomonosov Moscow State University; University of Oldenburg, Oldenburg, Germany; Department of FBiochemistrollow this andy and additional Molecular works Biology at: ,https:/ Thomas/jdc.jeff Jeffersonerson.edu/bmpfp University Ser geiPar tE of P theermy Medicalakov Biochemistry Commons, and the Medical Molecular Biology Commons LetInstitute us for knowBiological Instrumentationhow access of the tRussiano this Academy document of Sciences benefits ouy RecommendedSee next page for Citation additional authors Grigoriev, Ilya I; Senin, Ivan I; Tikhomirova, Natalya K; Komolov, Konstantin E; Permyakov, Sergei E; Zernii, Evgeni Yu; Koch, Karl-Wilhelm; and Philippov, Pavel P, "Synergetic effect of recoverin and calmodulin on regulation of rhodopsin kinase." (2012). Department of Biochemistry and Molecular Biology Faculty Papers. Paper 36. https://jdc.jefferson.edu/bmpfp/36 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Biochemistry and Molecular Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons.
    [Show full text]
  • Computational Analysis of Surface Properties of Ef-Hand Calcium Binding Proteins
    BIOPHYSICS COMPUTATIONAL ANALYSIS OF SURFACE PROPERTIES OF EF-HAND CALCIUM BINDING PROTEINS DANA CRACIUN1, ADRIANA ISVORAN2 1Teacher Training Department, West University of Timisoara, 4 V.Pirvan, 300223 Timisoara, Romania, Email: [email protected] 2Department of Biology-Chemistry, West University of Timisoara, 16 Pestalozzi, 300316 Timisoara, Romania, Email: [email protected] Received August 14, 2013 Within present study we perform a computational analysis of the surface properties of the EF-hand calcium binding proteins (EFCaBPs), both at global and local levels. Among EFCaBPs there are calcium sensors involved in signal transduction processes and exhibiting extended spatial structures and calcium buffering proteins exhibiting compact structures. Structures superposition reflects higher structural similarity between extended forms, the compact ones being more divergent in good correlation with their sequence alignment. Surfaces of extended EFCaBPs present a smaller number of cavities but with larger volumes and areas than compact ones in correlation with their known biological functions. Surface electrostatic potential is higher for extended EFCaBPs, underlying the role of electrostatics repulsions in adopting their spatial structures and also the possible role in binding charged peptides. Key words: calcium binding proteins, surface, electrostatic potential. 1. INTRODUCTION Calcium ions are indispensable for the physiology of living cell being involved in many cellular processes. The key role of calcium ions strongly depends on a large number of proteins able to bind them, so-called calcium binding proteins, CaBPs [1]. The group of CaBPs is wide and heterogeneous. There are membrane intrinsic CaBPs acting as calcium transporters and involved in the control of calcium ions concentration, calcium buffers and calcium-modulated proteins involved in signal-transduction processes [2].
    [Show full text]
  • Calcium Signaling at the Endoplasmic Reticulum Fine-Tuning Stress
    Cell Calcium 70 (2018) 24–31 Contents lists available at ScienceDirect Cell Calcium journal homepage: www.elsevier.com/locate/ceca Review Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses T ⁎ Amado Carreras-Suredaa,b,c, Philippe Pihána,b,c, Claudio Hetza,b,c,d,e, a Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Chile b Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile c Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile d Buck Institute for Research on Aging, Novato, CA, 94945, USA e Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA ARTICLE INFO ABSTRACT Keywords: Endoplasmic reticulum (ER) calcium signaling is implicated in a myriad of coordinated cellular processes. The ER homeostasis ER calcium content is tightly regulated as it allows a favorable environment for protein folding, in addition to ER stress operate as a major reservoir for fast and specific release of calcium. Altered ER homeostasis impacts protein Calcium handling mechanisms folding, activating the unfolded protein response (UPR) as a rescue mechanism to restore proteostasis. ER cal- Calcium homeostasis cium release impacts mitochondrial metabolism and also fine-tunes the threshold to undergo apoptosis under Unfolded protein response chronic stress. The global coordination between UPR signaling and energetic demands takes place at mi- Mitochondrial associated membranes Mitochondria biology tochondrial associated membranes (MAMs), specialized subdomains mediating interorganelle communication. Here we discuss current models explaining the functional relationship between ER homeostasis and various cellular responses to coordinate proteostasis and metabolic maintenance.
    [Show full text]
  • ARF1 Dimerization Is Essential for Vesicle Trafficking and Dependent
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.21.913905; this version posted January 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 ARF1 dimerization is essential for vesicle trafficking and dependent on activation by ARF-GEF 2 dimers in Arabidopsis 3 4 Sabine Brumm1, Mads Eggert Nielsen1,2, Sandra Richter1, Hauke Beckmann1, York-Dieter Stierhof3, Manoj 5 K. Singh1, Angela-Melanie Fischer1, Venkatesan Sundaresan4, Gerd Jürgens1,* 6 7 1 Center for Plant Molecular Biology (ZMBP), Developmental Genetics, University of Tübingen, Auf der 8 Morgenstelle 32, 72076 Tübingen, Germany 9 2 University of Copenhagen, Faculty of Science, Section for Plant and Soil Science, Thorvaldsensvej 40, 10 1871 Frederiksberg C, Denmark 11 3 Center for Plant Molecular Biology (ZMBP), Microscopy, University of Tübingen, Auf der Morgenstelle 12 32, 72076 Tübingen, Germany 13 4 Department of Plant Biology and Department of Plant Sciences, University of California, Davis, One 14 Shields Avenue, Davis, CA 95616, USA 15 16 * Corresponding author: 17 Gerd Jürgens 18 Center for Plant Molecular Biology (ZMBP), Developmental Genetics, University of Tübingen, Auf der 19 Morgenstelle 32, 72076 Tübingen, Germany 20 Phone: +49-7071-2978886 21 Email: [email protected] 22 ORCID: 0000-0003-4666-8308 23 24 Short title 25 Activation-dependent ARF1 dimerization 26 27 Material distribution footnote 28 The author responsible for distribution of materials integral to the findings presented in this article is: 29 Gerd Jürgens ([email protected]).
    [Show full text]
  • Dissection of Gtpase-Activating Proteins Reveals Functional Asymmetry in the COPI Coat of Budding Yeast Eric C
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs232124. doi:10.1242/jcs.232124 RESEARCH ARTICLE Dissection of GTPase-activating proteins reveals functional asymmetry in the COPI coat of budding yeast Eric C. Arakel1, Martina Huranova2,3,*, Alejandro F. Estrada2,*, E-Ming Rau2, Anne Spang2,‡ and Blanche Schwappach1,4,‡ ABSTRACT The COPI coat is formed by an obligate heptamer – also termed – α β′ ε β γ δ ζ The Arf GTPase controls formation of the COPI vesicle coat. Recent coatomer consisting of , , , , , and subunits, and is recruited structural models of COPI revealed the positioning of two Arf1 en bloc to membranes (Hara-Kuge et al., 1994). Fundamentally, the molecules in contrasting molecular environments. Each of these COPI coat mediates the retrograde trafficking of proteins and lipids pockets for Arf1 is expected to also accommodate an Arf GTPase- from the Golgi to the ER, and within intra-Golgi compartments activating protein (ArfGAP). Structural evidence and protein (Arakel et al., 2016; Beck et al., 2009; Pellett et al., 2013; Spang and interactions observed between isolated domains indirectly suggest Schekman, 1998). Several reports have also implicated COPI in that each niche preferentially recruits one of the two ArfGAPs known endosomal recycling and regulation of lipid droplet homeostasis to affect COPI, i.e. Gcs1/ArfGAP1 and Glo3/ArfGAP2/3, although (Aniento et al., 1996; Beller et al., 2008; Xu et al., 2017). only partial structures are available. The functional role of the unique Activation of the small GTPase Arf1 and its subsequent non-catalytic domain of either ArfGAP has not been integrated into membrane anchoring by exchanging GDP with GTP through a the current COPI structural model.
    [Show full text]
  • Calcium Signaling in Aging and Neurodegenerative Diseases 2019
    International Journal of Molecular Sciences Meeting Report Calcium Signaling in Aging and Neurodegenerative Diseases 2019 Luísa Cortes 1,2 , João Malva 2,3,4, Ana Cristina Rego 1,2,3 and Cláudia F. Pereira 1,2,3,* 1 Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Faculty of Medicine, Polo I, 1st floor, 3004-504 Coimbra, Portugal; [email protected] (L.C.); [email protected] (A.C.R.) 2 CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Faculty of Medicine, Polo I, 1st floor, 3004-504 Coimbra, Portugal; [email protected] 3 Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal 4 iCRB- Coimbra Institute for Clinical and Biomedical Research; Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal * Correspondence: [email protected] Received: 28 December 2019; Accepted: 4 February 2020; Published: 7 February 2020 Abstract: The European Calcium Society (ECS) workshop, which is held every 2 years, is a dedicated meeting of scientists interested in the elucidation of the action of calcium binding, calcium signaling and the study of proteins and organelles, such as mitochondria and endoplasmic reticulum, thereby involved, either in health and disease conditions. The 8th edition of the ECS workshop was organized by a group of researchers from the University of Coimbra, Portugal, in close collaboration with ECS board members. Thanks to the central role of “Calcium Signaling in Aging and Neurodegenerative Disorders”, the ECS 2019 workshop was attended by 62 experts who presented their results in a plenary lecture and five regular symposia, two oral communication sessions and two poster sessions, followed by a hands-on session on calcium imaging.
    [Show full text]