Cumulative Mitochondrial Activity Correlates with Ototoxin Susceptibility in Zebrafish 2 Mechanosensory Hair Cells

Total Page:16

File Type:pdf, Size:1020Kb

Cumulative Mitochondrial Activity Correlates with Ototoxin Susceptibility in Zebrafish 2 Mechanosensory Hair Cells 1 TITLE: Cumulative mitochondrial activity correlates with ototoxin susceptibility in zebrafish 2 mechanosensory hair cells. 3 4 AUTHORS: 5 6 Sarah B. Pickett1,2, Eric D. Thomas1,2, Joy Y. Sebe1, Tor Linbo1, Robert Esterberg1,3, Dale W. 7 Hailey1,3, David W. Raible1,2,3* 8 1. Department of Biological Structure 9 2. Graduate Program in Neuroscience 10 3. Virginia Merrill Bloedel Hearing Research Center 11 University of Washington, 1959 NE Pacific Street, Box 357420, Seattle, WA 98195, USA 12 Correspondence: [email protected] 13 14 15 SUMMARY: 16 17 Mitochondria play a prominent role in mechanosensory hair cell damage and death. Although hair 18 cells are thought to be energetically demanding cells, how mitochondria respond to these demands 19 and how this might relate to cell death is largely unexplored. Using genetically encoded indicators, 20 we found mitochondrial calcium flux and oxidation are regulated by mechanotransduction 21 and demonstrate that hair cell activity has both acute and long-term consequences on 22 mitochondrial function. We tested whether variation in mitochondrial activity reflected differences in 23 vulnerability of hair cells to the toxic drug neomycin. We observed that susceptibility did not 24 correspond to the acute level of mitochondrial activity but rather to the cumulative history of that 25 activity. 26 27 INTRODUCTION: 28 29 Neurons are some of the most energy demanding cells in the body[1]. Because of this, they 30 are particularly vulnerable to disruptions in mitochondrial and metabolic function. Despite the 31 importance of proper mitochondrial function for all neuronal cell types, some subpopulations are 32 more vulnerable than others, such as those affected by Parkinson’s Disease, ALS, and other 33 neurodegenerative diseases[2,3]. This selective susceptibility of affected subpopulations has been 34 attributed in part to their high physiological activity and altered response to oxidative stress. In 35 addition to high activity levels, advanced age is also a major risk factor for neurodegenerative 36 diseases, suggesting a connection between aging and selective cell death. Increased selective 37 susceptibility over time could be attributed, at least in part, to the accumulation of oxidative 38 damage caused by reactive oxygen species (ROS), as postulated by the free radical theory of 39 aging[4–6]. Mitochondria have been identified as a major source of ROS and studies revealed that 40 ROS production increases with age[4,7]. If accumulation of mitochondrial oxidation and stress are 41 related to cellular activity, highly active or older cells that have experienced more accumulated 42 activity over time may be more vulnerable to acute damage. 1 43 Selective susceptibility is not limited to the central nervous system. Peripheral sensory cells 44 are also highly active as they constantly receive and filter sensory input. Among the peripheral 45 receptors, selective cell death has been well documented for hair cells, the mechanosensory cells 46 of the mammalian inner ear that mediate hearing and balance. Auditory hair cell loss is a common 47 feature of hearing impairment and can occur as a result of exposure to loud noise or clinical 48 therapeutic compounds, and with aging[8]. Hair cell loss occurs in a characteristic pattern relative 49 to both the frequency tuning of the cells and the cell type (inner vs. outer hair cells). After exposure 50 to aminoglycoside antibiotics or with advancing age, for example, hair cells tuned to higher sound 51 frequencies are lost before those tuned to lower frequencies. Similarly, outer hair cells are more 52 susceptible to damage than inner hair cells[9–15]. The cause of selective susceptibility for hair 53 cells remains unclear, although some evidence suggests that differences in hair cell metabolism, 54 free radical damage, or calcium (Ca2+) handling may be contributors, thus implicating mitochondrial 55 involvement[16–18]. A role for mitochondria is further supported by evidence of mitochondrial 56 dysfunction during hair cell damage. Across species, dying hair cells exhibit swollen mitochondrial 57 morphology and generate ROS in response to ototoxic agents, including aminoglycoside antibiotics 58 and copper[19–29]. 59 In this study, we investigate the relationship between mitochondrial activity and selective 60 toxicity of aminoglycosides using the zebrafish lateral line system. Sensory input from the lateral 61 line is mediated by externally located clusters of mechanosensitive hair cells, called neuromasts. 62 These cells allow fish to detect changes in water flow and to navigate their environment. They also 63 share many similarities with hair cells of the inner ear (see Nicolson, 2017 for review)[30]. This 64 includes conservation with human deafness genes as well as susceptibility to compounds that are 65 ototoxic [31–35]. Moreover, the surface location of the lateral line system provides a unique 66 advantage in that we can monitor cellular changes that occur in vivo during physical or chemical 67 manipulation with subcellular resolution. Like auditory hair cells, lateral line hair cells of older 68 zebrafish are more susceptible to aminoglycoside-induced cell death[36]. Unlike cochlear hair 69 cells, lateral line hair cells do not exhibit intrinsic frequency selectivity and, although lateral line hair 70 cells can be classified based on their polarity, they are not otherwise functionally sub-classified by 71 type as are mammalian auditory and vestibular hair cells[37,38]. For this reason, it has been 72 particularly puzzling why some lateral line hair cells are more susceptible than others. Here we 73 have imaged cumulative mitochondrial responses to hair cell stimulation or application of toxic 74 aminoglycosides. We demonstrate that hair cell mechanotransduction (MET) activity has both 75 acute and long-term effects on mitochondrial activity. Moreover, we demonstrate that cumulative 76 changes in mitochondrial activity correspond with hair cell susceptibility to damage. 77 78 RESULTS: 2 79 80 Mitochondria respond to acute hair cell stimulation 81 To examine mitochondrial responses to hair cell MET activity, we conducted in vivo time- 82 lapse imaging studies of lateral line hair cells expressing genetically encoded Ca2+ indicators. To 83 visualize hair cell responses to stereocilia deflection, we used the Tg[myo6b:RGECO]vo10Tg line in 84 which the red Ca2+ indicator RGECO is cytoplasmically expressed in hair cells (referred to as 85 cytoRGECO)[39]. We simultaneously monitored mitochondrial Ca2+ in the same cells using a 86 mitochondrially targeted GCaMP3 also expressed in hair cells (Tg[myo6b:mitoGCaMP3]w119) 87 (referred to as mitoGCaMP)[25,29]. Hair cells were imaged at a single plane and mechanically 88 stimulated at 10 Hz using a pressure wave applied via a waterjet pipette. Both cytoRGECO and 89 mitoGCaMP fluorescence intensity increased, indicating that hair cell stimulation causes an influx 90 of Ca2+ into both the cytoplasm and mitochondria of the activated cells. Sample frames from four 91 different videos are shown in Figure 1 for cytoRGECO (panel A) and mitoGCaMP (panel B). These 92 data demonstrate that mitochondria respond to hair cell stimulation. The two signals differ, 93 however, in their kinetics. While cytoplasmic Ca2+ levels increase and decrease rapidly with the 94 onset and offset of waterjet stimulation, mitochondrial Ca2+ levels exhibit a delayed rise and decay 95 more slowly (Fig. 1C). This is shown in traces of Ca2+ responses (Fig. 1C, 1D-F) and in summary 96 plots of rise times (Fig. 1D; cyto vs mito: 8.9 0.7s vs 13 0.9s; mean SE; n = 21 cells). The 97 integrated area (Fig. 1E; cyto vs mito: 5.6 0.7 vs 11 1.3; mean SE; n = 19 cells) and peak 98 change in the response (Fig. 1F; cyto vs mito: 1.3 0.04 vs 1.5 0.06; mean SE; n = 19 vs 21 99 cells) were significantly greater for mitochondria than for cytoplasm. 100 101 Mitochondrial activity in the absence of mechanotransduction 102 To assay acute mitochondrial activity another way, we used the cationic dye JC-1, a marker 103 of mitochondrial membrane potential. JC-1 fluorescence shifts from green to red upon aggregation 104 in energized mitochondria[40,41]. As a result, JC-1 provides a ratiometric readout of relative 105 mitochondrial membrane potential as an indicator of mitochondrial activity. To assess whether MET 106 activity altered mitochondrial activity, we examined JC-1 in wildtype or heterozygous larvae 107 (WT/Het) and in cadherin23 mutant larvae, also referred to as sputnik mutants[42]. As in 108 mammalian hair cells, Cadherin23 is a critical component of the tip links necessary for function of 109 the MET apparatus; thus sputnik mutant hair cells are MET inactive[43]. Example images of JC-1- 110 labelled hair cells are shown in figures 2A and B. JC-1 was analyzed as a ratio of red to green 111 fluorescence intensity. Compared to age-matched WT/Het siblings, sputnik mutants exhibited 112 significantly lower JC-1 fluorescence ratios, indicating that the mitochondria are depolarized (Fig. 113 2C) (WT/Het: 0.25 ± 0.24 n = 8 fish, Mutant: 0.05 ± 0.07 n = 8 fish, Mann-Whitney U test, p < 0.01, 3 114 mean ratio ± SD). These results suggest that mitochondrial activity is reduced in the absence of 115 MET. 116 117 Measuring mitochondrial aging and oxidation with mitoTimer 118 The waterjet and calcium imaging studies reveal that mitochondria respond to hair cell MET 119 activity. Ca2+ flux can have multiple effects on mitochondrial function, including regulation of 120 electron transport during oxidative phosphorylation (OXPHOS) and generation of ROS[44]. We 121 next wanted to examine whether acute MET activity causes persistent effects on the state of 122 mitochondria. To look at cumulative mitochondrial activity over time, we used a transgenic 123 zebrafish expressing the reporter mitoTimer in all hair cells (Tg[myo6b:mitoTimer]w208; here referred 124 to as mitoTimer).
Recommended publications
  • Desmoplakin Assembly Dynamics in Four Dimensions
    JCB: ARTICLE Desmoplakin assembly dynamics in four dimensions: multiple phases differentially regulated by intermediate filaments and actin Lisa M. Godsel,1 Sherry N. Hsieh,1 Evangeline V. Amargo,1 Amanda E. Bass,1 Lauren T. Pascoe-McGillicuddy,1,4 Arthur C. Huen,1 Meghan E. Thorne,1 Claire A. Gaudry,1 Jung K. Park,1 Kyunghee Myung,3 Robert D. Goldman,3,4 Teng-Leong Chew,3 and Kathleen J. Green1,2 1Department of Pathology, 2Department of Dermatology, 3Department of Cell and Molecular Biology, and 4The R.H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 he intermediate filament (IF)–binding protein des- sensitive translocation of cytoplasmic particles to matur- moplakin (DP) is essential for desmosome function ing borders, with kinetics ranging from 0.002 to 0.04 T and tissue integrity, but its role in junction assembly ␮m/s. DP mutants that abrogate or enhance association Downloaded from is poorly understood. Using time-lapse imaging, we show with IFs exhibit delayed incorporation into junctions, al- that cell–cell contact triggers three temporally overlap- tering particle trajectory or increasing particle pause ping phases of DP-GFP dynamics: (1) the de novo ap- times, respectively. Our data are consistent with the idea pearance of punctate fluorescence at new contact zones that DP assembles into nascent junctions from both diffus- after as little as 3 min; (2) the coalescence of DP and the ible and particulate pools in a temporally overlapping jcb.rupress.org armadillo protein plakophilin 2 into discrete cytoplasmic series of events triggered by cell–cell contact and regu- particles after as little as 15 min; and (3) the cytochalasin- lated by actin and DP–IF interactions.
    [Show full text]
  • And G- Actin Regulates Cell Migration Pavan Vedula1, Satoshi Kurosaka2, Brittany Mactaggart1, Qin Ni3, Garegin Papoian4, Yi Jiang5, Dawei W Dong1,6, Anna Kashina1*
    RESEARCH ARTICLE Different translation dynamics of b- and g- actin regulates cell migration Pavan Vedula1, Satoshi Kurosaka2, Brittany MacTaggart1, Qin Ni3, Garegin Papoian4, Yi Jiang5, Dawei W Dong1,6, Anna Kashina1* 1Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States; 2Institute of Advanced Technology, Kindai University, Kainan, Wakayama, Japan; 3Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, United States; 4Department of Chemistry, University of Maryland, College Park, United States; 5Department of Mathematics and Statistics, Georgia State University, Atlanta, United States; 6Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States Abstract b- and g-cytoplasmic actins are ubiquitously expressed in every cell type and are nearly identical at the amino acid level but play vastly different roles in vivo. Their essential roles in embryogenesis and mesenchymal cell migration critically depend on the nucleotide sequences of their genes, rather than their amino acid sequences; however, it is unclear which gene elements underlie this effect. Here we address the specific role of the coding sequence in b- and g- cytoplasmic actins’ intracellular functions, using stable polyclonal populations of immortalized mouse embryonic fibroblasts with exogenously expressed actin isoforms and their ‘codon- switched’ variants. When targeted to the cell periphery using b-actin 30UTR; b-actin and g-actin have differential effects on cell migration. These effects directly depend on the coding sequence. Single- molecule measurements of actin isoform translation, combined with fluorescence recovery after photobleaching, demonstrate a pronounced difference in b- and g-actins’ translation elongation rates in cells, leading to changes in their dynamics at focal adhesions, impairments in actin bundle *For correspondence: formation, and reduced cell anchoring to the substrate during migration.
    [Show full text]
  • Apkc-Mediated Displacement and Actomyosin-Mediated Retention
    RESEARCH ARTICLE aPKC-mediated displacement and actomyosin-mediated retention polarize Miranda in Drosophila neuroblasts Matthew Robert Hannaford, Anne Ramat, Nicolas Loyer, Jens Januschke* Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom Abstract Cell fate assignment in the nervous system of vertebrates and invertebrates often hinges on the unequal distribution of molecules during progenitor cell division. We address asymmetric fate determinant localization in the developing Drosophila nervous system, specifically the control of the polarized distribution of the cell fate adapter protein Miranda. We reveal a step- wise polarization of Miranda in larval neuroblasts and find that Miranda’s dynamics and cortical association are differently regulated between interphase and mitosis. In interphase, Miranda binds to the plasma membrane. Then, before nuclear envelope breakdown, Miranda is phosphorylated by aPKC and displaced into the cytoplasm. This clearance is necessary for the subsequent establishment of asymmetric Miranda localization. After nuclear envelope breakdown, actomyosin activity is required to maintain Miranda asymmetry. Therefore, phosphorylation by aPKC and differential binding to the actomyosin network are required at distinct phases of the cell cycle to polarize fate determinant localization in neuroblasts. DOI: https://doi.org/10.7554/eLife.29939.001 Introduction *For correspondence: The development of the central nervous system depends on asymmetric cell divisions for the bal- [email protected] anced production of progenitor and differentiating cells. During vertebrate and invertebrate neuro- Competing interests: The genesis, cell fates can be established through the asymmetric inheritance of cortical domains or fate authors declare that no determinants during asymmetric division of progenitor cells (Alexandre et al., 2010; Doe, 2008; competing interests exist.
    [Show full text]
  • Regulation of Keratin Filament Network Dynamics
    Regulation of keratin filament network dynamics Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom Biologe Marcin Maciej Moch aus Dzierżoniów (früher Reichenbach, NS), Polen Berichter: Universitätsprofessor Dr. med. Rudolf E. Leube Universitätsprofessor Dr. phil. nat. Gabriele Pradel Tag der mündlichen Prüfung: 19. Juni 2015 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. This work was performed at the Institute for Molecular and Cellular Anatomy at University Hospital RWTH Aachen by the mentorship of Prof. Dr. med. Rudolf E. Leube. It was exclusively performed by myself, unless otherwise stated in the text. 1. Reviewer: Univ.-Prof. Dr. med. Rudolf E. Leube 2. Reviewer: Univ.-Prof. Dr. phil. nat. Gabriele Pradel Ulm, 15.02.2015 2 Publications Publications Measuring the regulation of keratin filament network dynamics. Moch M, and Herberich G, Aach T, Leube RE, Windoffer R. 2013. Proc Natl Acad Sci U S A. 110:10664-10669. Intermediate filaments and the regulation of focal adhesion. Leube RE, Moch M, Windoffer R. 2015. Current Opinion in Cell Biology. 32:13–20. "Panta rhei": Perpetual cycling of the keratin cytoskeleton. Leube RE, Moch M, Kölsch A, Windoffer R. 2011. Bioarchitecture. 1:39-44. Intracellular motility of intermediate filaments. Leube RE, Moch M, Windoffer R. Under review in: The Cytoskeleton. Editors: Pollard T., Dutcher S., Goldman R. Cold Springer Harbor Laboratory Press, Cold Spring Harbor. Multidimensional monitoring of keratin filaments in cultured cells and in tissues. Schwarz N, and Moch M, Windoffer R, Leube RE.
    [Show full text]
  • Genetically Encoded Biosensors Based on Fluorescent Proteins
    sensors Review Genetically Encoded Biosensors Based on Fluorescent Proteins Hyunbin Kim 1,2,†, Jeongmin Ju 1,2,†, Hae Nim Lee 1,3,†, Hyeyeon Chun 1,† and Jihye Seong 1,2,3,* 1 Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; [email protected] (H.K.); [email protected] (J.J.); [email protected] (H.N.L.); [email protected] (H.C.) 2 Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea 3 Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea * Correspondence: [email protected]; Tel.: +82-2-958-5904 † These authors contributed equally to this work. Abstract: Genetically encoded biosensors based on fluorescent proteins (FPs) allow for the real-time monitoring of molecular dynamics in space and time, which are crucial for the proper functioning and regulation of complex cellular processes. Depending on the types of molecular events to be monitored, different sensing strategies need to be applied for the best design of FP-based biosensors. Here, we review genetically encoded biosensors based on FPs with various sensing strategies, for example, translocation, fluorescence resonance energy transfer (FRET), reconstitution of split FP, pH sensitivity, maturation speed, and so on. We introduce general principles of each sensing strategy and discuss critical factors to be considered if available, then provide representative examples of these FP-based biosensors. These will help in designing the best sensing strategy for the successful development of new genetically encoded biosensors based on FPs. Keywords: fluorescent protein; genetically encoded biosensor; FRET; ddFP; BiFC; split FP; circular permutation; fluorescent timer Citation: Kim, H.; Ju, J.; Lee, H.N.; Chun, H.; Seong, J.
    [Show full text]
  • Phototransformable Fluorescent Proteins: Future Challenges. Virgile Adam, Romain Berardozzi, Martin Byrdin, Dominique Bourgeois
    Phototransformable fluorescent proteins: Future challenges. Virgile Adam, Romain Berardozzi, Martin Byrdin, Dominique Bourgeois To cite this version: Virgile Adam, Romain Berardozzi, Martin Byrdin, Dominique Bourgeois. Phototransformable fluores- cent proteins: Future challenges.. Current Opinion in Chemical Biology, Elsevier, 2014, 20, pp.92-102. hal-01093360 HAL Id: hal-01093360 https://hal.univ-grenoble-alpes.fr/hal-01093360 Submitted on 19 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. *Manuscript Click here to view linked References Phototransformable fluorescent proteins 19/05/2014 Phototransformable fluorescent proteins: future challenges Virgile Adam*,1,2,3, Romain Berardozzi1,2,3, Martin Byrdin1,2,3 and Dominique Bourgeois*,1,2,3 1Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France ; 2CNRS, IBS, F-38000 Grenoble, France ; 3CEA, DSV, IBS, F-38000 Grenoble, France *Authors for correspondence: [email protected], Tel: +33 (0)4 57 42 85 67 [email protected], Tel: +33 (0)4 57 42 86 44
    [Show full text]
  • Individual and Combined Use of Ultraviolet (UV) Light with Hydrogen Peroxide, Peracetic Acid, and Ferrate(VI) for Wastewater Disinfection
    Individual and combined use of ultraviolet (UV) light with hydrogen peroxide, peracetic acid, and ferrate(VI) for wastewater disinfection by Natalie Linklater A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree Doctor of Philosophy in Environmental Engineering Carleton University Ottawa, Ontario © 2017 Natalie Linklater Abstract This work explores the use of chlorine-free chemicals hydrogen peroxide (HP), peracetic acid (PAA), and ferrate(VI) as well as physical disinfection method, ultraviolet light (UV), alone and combination for wastewater disinfection. To evaluate treatments the culturability of indicator-organism Escherichia coli was compared to that of spore- forming Bacillus subtilis and C. perfringens. Remaining culturable and viable E. coli were studied using a method combining propidium monoazide (PMA) and quantitative polymerase chain reaction (qPCR). Changes to culturability were monitored for up to 48 hours after treatment to evaluate regrowth, reactivation and resuscitation levels. In Chapter 4 culturable and viable E. coli were studied following disinfection with sodium hypochlorite (NaClO), HP, PAA, ferrate(VI), and ultraviolet light (UV). All methods reduced culturable E. coli to below 2 log CFU/mL but 3-6 log CCE/mL of E. coli remained viable following chemical treatments. The largest reduction of viable cells was achieved with Ferrate(VI) followed by PAA, NaClO, and HP. In Chapters 5 and 6 the use of UV and ferrate(VI) both alone and in combination was studied. The combination of 40 mJ/cm2 UV and 9 mg/L ferrate(VI) provided an additional 80% reduction in coliform bacteria compared to the use of UV alone.
    [Show full text]
  • Formin-2 Drives Polymerisation of Actin Filaments Enabling
    RESEARCH ADVANCE Formin-2 drives polymerisation of actin filaments enabling segregation of apicoplasts and cytokinesis in Plasmodium falciparum Johannes Felix Stortz1, Mario Del Rosario1, Mirko Singer2, Jonathan M Wilkes1, Markus Meissner1,2*, Sujaan Das1,2* 1Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom; 2Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany Abstract In addition to its role in erythrocyte invasion, Plasmodium falciparum actin is implicated in endocytosis, cytokinesis and inheritance of the chloroplast-like organelle called the apicoplast. Previously, the inability to visualise filamentous actin (F-actin) dynamics had restricted the characterisation of both F-actin and actin regulatory proteins, a limitation we recently overcame for Toxoplasma (Periz et al, 2017). Here, we have expressed and validated actin-binding chromobodies as F-actin-sensors in Plasmodium falciparum and characterised in-vivo actin dynamics. F-actin could be chemically modulated, and genetically disrupted upon conditionally deleting actin-1. In a comparative approach, we demonstrate that Formin-2, a predicted nucleator of F-actin, is responsible for apicoplast inheritance in both Plasmodium and Toxoplasma, and additionally mediates efficient cytokinesis in Plasmodium. Finally, time-averaged local intensity *For correspondence: measurements of F-actin in Toxoplasma conditional mutants revealed molecular determinants of [email protected]. spatiotemporally regulated F-actin flow. Together, our data indicate that Formin-2 is the primary uni-muenchen.de (MM); F-actin nucleator during apicomplexan intracellular growth, mediating multiple essential functions. [email protected] DOI: https://doi.org/10.7554/eLife.49030.001 muenchen.de (SD) Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • EOS, an Ikaros Family Zinc Finger Transcription Factor, Interacts with the HTLV-1 Oncoprotein Tax and Is Downregulated in Periph
    Naito et al. Virology Journal (2019) 16:160 https://doi.org/10.1186/s12985-019-1270-1 RESEARCH Open Access EOS, an Ikaros family zinc finger transcription factor, interacts with the HTLV-1 oncoprotein Tax and is downregulated in peripheral blood mononuclear cells of HTLV-1-infected individuals, irrespective of clinical statuses Tadasuke Naito1, Hiroshi Ushirogawa1, Takuya Fukushima2, Yuetsu Tanaka3 and Mineki Saito1* Abstract Background: EOS plays an important role in maintaining the suppressive function of regulatory T cells (Tregs), and induces a regulated transformation of Tregs into T helper-like cells, which are capable of secreting proinflammatory cytokines in response to specific inflammatory signals. Meanwhile, significant reduction in Treg activity along with production of proinflammatory cytokines has been reported in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Methods: In this study, to examine whether there is an alteration in EOS expression in peripheral blood mononuclear cells (PBMCs) derived from HTLV-1-infected individuals especially HAM/TSP, we investigated the expression of HTLV-1 tax genotype, proviral load (PVL), and the mRNA expression of tax, HBZ and EOS in HTLV-1 infected individuals including adult T-cell leukemia/lymphoma (ATL), HAM/TSP, or asymptomatic carriers. The expression levels of EOS mRNA and protein in various HTLV-1-infected or uninfected human T-cell lines were also investigated. Results: EOS was highly expressed at the protein level in most HTLV-1 infected T-cell lines, and was augmented after the HTLV-1 regulatory factor Tax was induced in a Tax-inducible JPX-9 cell line. Immunoprecipitation experiments demonstrated a physical interaction between EOS and the viral regulatory protein Tax, but not HBZ.
    [Show full text]
  • Advances in Fluorescent Protein Technology
    Commentary 4247 Advances in fluorescent protein technology Nathan C. Shaner1, George H. Patterson2 and Michael W. Davidson3 1The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA 2Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development (NICHD), Bethesda, MD 20892, USA 3National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, FL 32310, USA e-mails: [email protected]; [email protected]; [email protected] Accepted 31 October 2007 Journal of Cell Science 120, 4247-4260 Published by The Company of Biologists 2007 doi:10.1242/jcs.005801 Summary Current fluorescent protein (FP) development strategies monomeric and fast-maturing red FP has yielded a host of are focused on fine-tuning the photophysical properties of excellent candidates, although none is yet optimal for all blue to yellow variants derived from the Aequorea victoria applications. Meanwhile, photoactivatable FPs are jellyfish green fluorescent protein (GFP) and on the emerging as a powerful class of probes for intracellular development of monomeric FPs from other organisms that dynamics and, unexpectedly, as useful tools for the emit in the yellow-orange to far-red regions of the visible development of superresolution microscopy applications. light spectrum. Progress toward these goals has been substantial, and near-infrared emitting FPs may loom over the horizon. The latest efforts in jellyfish variants have Key words: Fluorescent proteins, Mutagenesis, Optical highlighters, resulted in new and improved monomeric BFP, CFP, GFP Photoactivation, Photoconversion, Photoswitching, Live-cell and YFP variants, and the relentless search for a bright, imaging Introduction fusions.
    [Show full text]
  • Internet-Based Education on the Structure, Function, and Imaging Of
    The Fluorescent Protein Color Palette Scott G. Olenych, Nathan S. Claxton, Gregory K. Ottenberg, and Michael W. Davidson* National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, The Florida State University, Tallahassee, Florida 32310-3706 ABSTRACT Advances in fluorescent protein development over the past 10 years have led to fine-tuning of the Aequorea victoria jellyfish color palette in the emission color range from blue to yellow, while a significant amount of progress has been achieved with reef coral species in the generation of monomeric fluorescent proteins emitting in the orange to far-red spectral regions. It is not inconceivable that near-infrared fluorescent proteins loom on the horizon. Expansion of the fluorescent protein family to include optical highlighters and FRET biosensors further arms this ubiquitous class of fluorophores with biological probes capable of photoactivation, photoconversion, and detection of molecular interactions beyond the resolution limits of optical microscopy. The success of these endeavors certainly suggests that almost any biological parameter can be investigated using the appropriate fluorescent protein-based application. Keywords: GFP, fluorescent proteins, optical highlighters, biosensors, photoconversion, photoactivation, chromophore, fluorophore, FRET, FRAP, microscopy, confocal INTRODUCTION Although the first report of fluorescence emission in the bioluminescent hydrozoan jellyfish species Aequorea victoria was recorded in the mid-twentieth century (Davenport and Nichol, 1955) and a protein extract was independently demonstrated by two investigators to be responsible for this “green” fluorescence in the 1960s and 1970s (Shimomura, et al., 1962; Morin and Hastings, 1971), it took another 20 years and a number of significant advances in the technology of molecular and cellular biology to witness the elucidation of the primary amino acid structure (Prasher, et al., 1992).
    [Show full text]
  • Characterization and Development of Photoactivatable Fluorescent Proteins for Single-Molecule–Based Superresolution Imaging
    Characterization and development of photoactivatable fluorescent proteins for single-molecule–based superresolution imaging Siyuan Wanga, Jeffrey R. Moffitta, Graham T. Dempseya, X. Sunney Xiea, and Xiaowei Zhuanga,b,c,1 Departments of aChemistry and Chemical Biology and bPhysics, Harvard University, cHoward Hughes Medical Institute, Cambridge, MA 02138 Contributed by Xiaowei Zhuang, April 10, 2014 (sent for review February 7, 2014) Photoactivatable fluorescent proteins (PAFPs) have been widely photons, a higher photon budget leads to higher localization used for superresolution imaging based on the switching and precision and hence higher image resolution (7, 9). (ii) The localization of single molecules. Several properties of PAFPs second property is the on–off switching rate ratio (on–off ratio), strongly influence the quality of the superresolution images. defined as the ratio between the on-switching (activation) and These properties include (i) the number of photons emitted per off-switching or photobleaching rates under the illumination of switching cycle, which affects the localization precision of individ- the imaging light only (7). Even in the absence of activation light, ual molecules; (ii) the ratio of the on- and off-switching rate con- the imaging light itself can also switch on the PAFPs, albeit at stants, which limits the achievable localization density; (iii) the a low rate. Thus, the ratio between the on-switching and off- dimerization tendency, which could cause undesired aggregation switching rates under this condition determines the lower bound of target proteins; and (iv) the signaling efficiency, which de- of the fraction of PAFP molecules in the on-state at any given termines the fraction of target–PAFP fusion proteins that is de- time.
    [Show full text]