University of Veterinary Medicine Hannover

Total Page:16

File Type:pdf, Size:1020Kb

University of Veterinary Medicine Hannover University of Veterinary Medicine Hannover Patterns of parasitism in wild Verreaux’s sifakas (Propithecus verreauxi) at Kirindy Forest, Madagascar: Assessing the role of host behavior Thesis Submitted in partial fulfillment of the requirements for the degree of Doctor of Veterinary Medicine - Doctor medicinae veterinariae - (Dr. med. vet.) by Andrea Springer Hamburg Hannover 2015 Academic supervision: Prof. Dr. med. vet. Franz-Josef Kaup Pathology Unit German Primate Center 1st referee: Prof. Dr. Franz-Josef Kaup 2nd referee: Prof. Prof. h. c. Dr. Ursula Siebert Day of the oral examination: 13.11.2015 This study was funded by the German Primate Center and the German Research Foundation (Ka 1082/29-1). II For the sifakas of Kirindy Forest III The following parts of this thesis have been submitted for publication in peer-reviewed journals: Chapter 6: Andrea Springer, Alexander Mellmann, C laudia Fichtel and Peter M. Kappeler: “Sociality shapes inter-group transmission of Escherichia coli in a group-living wild primate, Verreaux’s sifaka” Submitted for publication to BMC Ecology (date of submission: 14.07.2015, in review) Chapter 8: Andrea Springer, Claudia Fichtel, Sébastien Calvignac-Spencer, Fabian H. Leendertz and Peter M. Kappeler (2015): “Hemoparasites in a wild primate: Plasmodium and Babesia interact in a lemur species” International Journal for Parasitology: Parasites and Wildlife, in press, doi:10.1016/j.ijppaw.2015.10.006. Furthermore, results of this study have been publicly presented at the following conferences: Ecology and Evolution of Infectious Diseases, May 26 – 29, 2015, Athens, GA, USA: “Hemoparasite infections in a wild primate: Parasite interaction shapes prevalence patterns” (poster), Springer A., Fichtel C., Calvignac-Spencer S., Leendertz F.H., Kappeler P. M. EWDA student workshop “Human Impact on Wildlife Diseases”, March 26 – 30, 2015, Veyrier-du-Lac, France: “Social spread of Escherichia coli through a lemur population” (poster), Springer A., Mellmann A., Fichtel C., Kappeler P.M. IV 10th topical meeting of the Ethological Society: “Causes and Consequences of Social Behavior”, February 11 – 14, 2015, Hamburg, Germany: “Environmental versus social transmission: How Escherichia coli spreads through a lemur population” (talk), Springer A., Fichtel C., Mellmann A., Kappeler P.M. 25th Congress of the International Primatological Society, August 11 – 16, 2014, Hanoi, Vietnam: “Investigating parasite spread through a lemur population” (talk), Springer A., Fichtel C., Leendertz F.H., Calvignac-Spencer S., Mellmann A., Nunn C.L., Kappeler P.M. International Conference on Diseases of Zoo and Wild Animals, May 28 – June 01, 2014, Warsaw, Poland: “Investigating parasite spread through a lemur population” (talk), Springer A., Fichtel C., Leendertz F.H., Calvignac-Spencer S., Mellmann A., Nunn C.L., Kappeler P.M. Göttinger Freilandtage, December 03 – 05, 2013, Göttingen, Germany: “Investigating parasite spread through a lemur population” (talk), Springer A., Fichtel C., Leendertz F.H., Calvignac-Spencer S., Mellmann A., Nunn C.L., Kappeler P.M. International Prosimian Congress, August 05 – 11, 2013, Ranomafana, Madagascar: “Investigating parasite spread through a sifaka population” (talk), Springer A., Fichtel C., Leendertz F.H., Calvignac-Spencer S., Mellmann A., Nunn C.L., Kappeler P.M. V VI Table of Contents List of abbreviations……………………………………………………………………… X Chapter 1 – Introduction………………………………………………………………..... 13 Parasitism – an ecological perspective……………………………………..... 13 Parasitism and behavior……………………………………………………… 13 Chapter 2 – Literature Review………………………………………………………….. 16 Parasitic infections – a major cost of sociality?............................................... 16 Benefits of living in groups………………………………………………. 16 Direct parasite transmission, animal density and social complexity……... 16 Sociality and vector-borne parasites……………………………………… 18 Behavioral adaptations against parasitism…………………………………… 18 Avoidance of fecal contamination………………………………………... 19 Social barriers to parasite transmission…………………………………… 20 Grooming……………………………………………………………......... 21 Linking theory with empirical data: Approaches to studying transmission in the wild………………………………………………………………………. 22 Verreaux’s sifakas as a study system………………………………………… 22 Behavioral ecology……………………………………………………….. 24 Parasites of Verreaux’s sifakas…………………………………………… 25 Chapter 3 – Objectives and Structure of this Thesis…………………………………… 27 Chapter 4 – Materials and Methods……………………………………………………... 29 Study site and study animals……………………………………………….... 29 Remote data collection………………………………………………………. 29 Calculation of home ranges and their overlaps…………………………… 30 Estimation of intergroup encounter rates………………………………..... 30 Behavioral observations……………………………………………………… 30 Invasive sampling…………………………………………………………..... 31 Noninvasive sampling……………………………………………………….. 32 VII Overview of data collection………………………………………………….. 33 Sample processing…………………………………………………………… 33 Microscopy of fecal samples…………………………………………….... 33 Fecal cultures and preparation of helminth larvae for PCR………………. 34 DNA extraction from fecal samples and PCRs…………………………… 35 Escherichia coli isolation and multi-locus sequence-typing……………… 37 Ectoparasites……………………………………………………………… 38 Analysis of blood samples and PCRs for hemoparasites………………..... 38 Phylogenetic analyses………………………………………………………... 40 Statistical analyses…………………………………………………………… 41 Ranging patterns and behavioral data…………………………………..... 41 Nematode infections……………………………………………………… 42 Escherichia coli type sharing……………………………………………... 42 Ectoparasite infections………………………………………………….... 44 Hemoparasite infections………………………………………………….. 44 Chapter 5 – Low diversity of intestinal parasites in an arboreal primate, Verreaux’s sifaka, at Kirindy Forest, Madagascar (Manuscript 1)……………………. 46 Chapter 6 – Sociality shapes inter-group transmission of Escherichia coli in a group- living wild primate, Verreaux’s sifaka (Manuscript 2)…………................. 66 Chapter 7 – Ectoparasites of a group-living wild lemur species, Verreaux’s sifaka: Does sociality influence infection risk? (Manuscript 3) ……....................... 92 Chapter 8 – Hemoparasites in a wild primate: Plasmodium and Babesia interact in a lemur species (Manuscript 4).......................................................................... 111 Chapter 9 – General Discussion…………………………………………………………. 140 Arboreality: a strategy to avoid parasites?....................................................... 142 Social behavior and directly transmitted infections…………………………. 146 Social group size and vector-borne infections………………………………. 151 Inter-specific parasite interactions: an important determinant of infection patterns………………………………………………………………………. 151 VIII Conclusions…………………………………………………………………... 153 Summary…………………………………………………………………………………... 155 Zusammenfassung…………………………………………………………….................... 158 References…………………………………………………………………………………. 161 Acknowledgements………………………………………………………………………... 220 Erklärung………………………………………………………………………………….. 221 IX List of abbreviations °C degree Celsius AIC Akaike Information Criterion ANOVA analysis of variance approx. approximately BLAST Basic Local Alignment Search Tool Bp bootstrapped pseudo-replicates bp basepairs CNFEREF Centre National de Formation, d’Etudes et de Recherche en Environnement et Foresterie cyt b cytochrome b df degrees of freedom DNA deoxyribonucleic acid E. coli Escherichia coli E. dispar Entamoeba dispar E. histolytica Entamoeba histolytica E. nuttalli Entamoeba nuttalli e.g. for example EMBL European Molecular Biology Laboratory ESBL extended-spectrum beta-lactamases EUCAST European Committee on Antimicrobial Susceptibility Testing F-EA formalin-ethylacetat FEC fecal egg count g gram GLMM generalized linear mixed model GPS global positioning system h hours ha hectare i.e. that means ID identity ITS internal transcribed spacer X LMM linear mixed model MALDI-ToF matrix-assisted laser desorption ionization time-of-flight mass-spectrometry MgCl2 magnesium chloride min minutes ml milliliter MLST multi-locus sequence typing mM millimolar MR-QAP multiple regression quadratic assignment procedure N sample size NLR neutrophil : lymphocyte ratio no. number p. page P. verreauxi Propithecus verreauxi PCR polymerase chain reaction PCV packed cell volume pp. pages rpm rounds per minute rRNA ribosomal ribonucleic acid s.s-1 substitutions per site SFV simian foamy virus SMS smart model selection sp. species spp. species (plural) ST sequence type TP total protein UDOI utilization distribution overlap index µl mikroliter µM mikromolar XI XII 1. Introduction 1. Introduction Parasitism – an ecological perspective Almost all organisms are affected by parasitism, be it as hosts or as parasites. Throughout this thesis, the term “parasite” will be used according to the ecological definition: “…any organism that lives on and draws nutrients from another organism (the host), usually to the host’s detriment” (Nunn and Altizer 2006). This definition encompasses a wide range of biological diversity in the form of viruses, bacteria, protozoa, fungi, helminths and arthropods. Parasites use their host both as a source of energy and as a habitat in a “prolonged and durable way” (Combes 2001), which gives rise to a system more complex than the sum of its parts. Parasites exhibit considerable morphological simplification and loss of genes while relying on the host to provide them with the corresponding functions (Combes 2001); a parasite is thus often reliant on the host
Recommended publications
  • Food Selection by Northern Yellow-Cheeked Crested Gibbons (Nomascus Annamensis)In Northern Cambodia
    Food Selection by Northern Yellow-cheeked Crested Gibbons (Nomascus annamensis)in Northern Cambodia Naven Hon A thesis submitted to Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Ecology and Biodiversity School of Biological Sciences Victoria University of Wellington New Zealand 2016 i Abstract Tropical regions have extremely high plant diversity, which in turn supports a high diversity of animals. However, not all plant species are selected by animals as food sources, with some herbivores selecting only specific plants as food as not all plants have the same nutrient make up. Animals must select which food items to include in their diets, as the amount and type of nutrients in their diet can affect lifespan, health, fitness, and reproduction. Gibbon populations have declined significantly in recent years due to habitat destruction and hunting. Northern yellow-cheeked crested gibbon (Nomascus annamensis) is a newly described species, and has a limited distribution restricted to Cambodia, Laos and Vietnam. The northern yellow-cheeked crested gibbons play an important role in seed dispersal, yet little is currently known about this species, including its food selection and nutritional needs. However, data on food selection and nutritional composition of selected food items would greatly inform the conservation of both wild and captive populations of this species. This study aims to quantify food selection by the northern yellow-cheeked crested gibbons by investigating the main plant species consumed and the influence of the availability of food items on their selection. The study also explores the nutritional composition of food items consumed by this gibbon species and identifying key plant species that provide these significant nutrients.
    [Show full text]
  • The Behavioral Ecology of the Tibetan Macaque
    Fascinating Life Sciences Jin-Hua Li · Lixing Sun Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associ- ated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthu- siasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Jin-Hua Li • Lixing Sun • Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Editors Jin-Hua Li Lixing Sun School of Resources Department of Biological Sciences, Primate and Environmental Engineering Behavior and Ecology Program Anhui University Central Washington University Hefei, Anhui, China Ellensburg, WA, USA International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology Anhui, China School of Life Sciences Hefei Normal University Hefei, Anhui, China Peter M. Kappeler Behavioral Ecology and Sociobiology Unit, German Primate Center Leibniz Institute for Primate Research Göttingen, Germany Department of Anthropology/Sociobiology University of Göttingen Göttingen, Germany ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-030-27919-6 ISBN 978-3-030-27920-2 (eBook) https://doi.org/10.1007/978-3-030-27920-2 This book is an open access publication.
    [Show full text]
  • Worms, Nematoda
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2001 Worms, Nematoda Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Gardner, Scott Lyell, "Worms, Nematoda" (2001). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 78. https://digitalcommons.unl.edu/parasitologyfacpubs/78 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Encyclopedia of Biodiversity, Volume 5 (2001): 843-862. Copyright 2001, Academic Press. Used by permission. Worms, Nematoda Scott L. Gardner University of Nebraska, Lincoln I. What Is a Nematode? Diversity in Morphology pods (see epidermis), and various other inverte- II. The Ubiquitous Nature of Nematodes brates. III. Diversity of Habitats and Distribution stichosome A longitudinal series of cells (sticho- IV. How Do Nematodes Affect the Biosphere? cytes) that form the anterior esophageal glands Tri- V. How Many Species of Nemata? churis. VI. Molecular Diversity in the Nemata VII. Relationships to Other Animal Groups stoma The buccal cavity, just posterior to the oval VIII. Future Knowledge of Nematodes opening or mouth; usually includes the anterior end of the esophagus (pharynx). GLOSSARY pseudocoelom A body cavity not lined with a me- anhydrobiosis A state of dormancy in various in- sodermal epithelium.
    [Show full text]
  • Parasitic Nematodes of Pool Frog (Pelophylax Lessonae) in the Volga Basin
    Journal MVZ Cordoba 2019; 24(3):7314-7321. https://doi.org/10.21897/rmvz.1501 Research article Parasitic nematodes of Pool Frog (Pelophylax lessonae) in the Volga Basin Igor V. Chikhlyaev1 ; Alexander B. Ruchin2* ; Alexander I. Fayzulin1 1Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, Togliatti, Russia 2Mordovia State Nature Reserve and National Park «Smolny», Saransk, Russia. *Correspondence: [email protected] Received: Febrary 2019; Accepted: July 2019; Published: August 2019. ABSTRACT Objetive. Present a modern review of the nematodes fauna of the pool frog Pelophylax lessonae (Camerano, 1882) from Volga basin populations on the basis of our own research and literature sources analysis. Materials and methods. Present work consolidates data from different helminthological works over the past 80 years, supported by our own research results. During the period from 1936 to 2016 different authors examined 1460 specimens of pool frog, using the method of full helminthological autopsy, from 13 regions of the Volga basin. Results. In total 9 nematodes species were recorded. Nematode Icosiella neglecta found for the first time in the studied host from the territory of Russia and Volga basin. Three species appeared to be more widespread: Oswaldocruzia filiformis, Cosmocerca ornata and Icosiella neglecta. For each helminth species the following information included: systematic position, areas of detection, localization, biology, list of definitive hosts, the level of host-specificity. Conclusions. Nematodes of pool frog, excluding I. neglecta, belong to the group of soil-transmitted helminthes (geohelminth) and parasitize in adult stages. Some species (O. filiformis, C. ornata, I. neglecta) are widespread in the host range.
    [Show full text]
  • Description of Enterobius (Colobenterobius) Emodensis Sp. N
    Zootaxa 4514 (1): 065–076 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4514.1.5 http://zoobank.org/urn:lsid:zoobank.org:pub:C9C5FC4C-4402-4FA0-BBE7-0814172BE2C0 Description of Enterobius (Colobenterobius) emodensis sp. n. (Nematoda: Oxyuridae) collected from Central Himalayan langur, Semnopithecus schistaceus, in Uttarakhand, India HIDEO HASEGAWA1,4, HIMANI NAUTIYAL2, MIZUKI SASAKI3 & MICHAEL A. HUFFMAN2 1Department of Biomedicine / Department of Infectious Disease Control, Faculty of Medicine, Oita University, Hasama, Yufu, Oita 879–5593, Japan. E-mail: [email protected] 2Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan. E-mail: [email protected]; [email protected] 3Department of Parasitology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan. E-mail: [email protected] 4Corresponding author. E-mail: [email protected] Abstract A new pinworm species, Enterobius (Colobenterobius) emodensis sp. n. (Nematoda: Oxyuridae) is described from the Central Himalayan langur, Semnopithecus schistaceus, in Mandal Valley, Chamoli District, Uttarakhand, India, based on mature and immature adults and fourth-stage larvae. This species closely resembles Enterobius (Colobenterobius) zakiri parasitic in Tarai langur, Semnopithecus hector, recorded from Uttarakhand and Uttar Pradesh, India, but is readily distin- guished by having a shorter esophagus and a shorter spicule. It is surmised that this pinworm has co-speciated with the host langur. The new species is also characterized in that the posterior 1/3 of the esophageal corpus is much darker. Phy- logenetic analysis based on the sequences of partial Cox1 gene of mtDNA suggested a basal position of diversification of Colobenterobius from the Enterobius lineage.
    [Show full text]
  • A Parasite of Red Grouse (Lagopus Lagopus Scoticus)
    THE ECOLOGY AND PATHOLOGY OF TRICHOSTRONGYLUS TENUIS (NEMATODA), A PARASITE OF RED GROUSE (LAGOPUS LAGOPUS SCOTICUS) A thesis submitted to the University of Leeds in fulfilment for the requirements for the degree of Doctor of Philosophy By HAROLD WATSON (B.Sc. University of Newcastle-upon-Tyne) Department of Pure and Applied Biology, The University of Leeds FEBRUARY 198* The red grouse, Lagopus lagopus scoticus I ABSTRACT Trichostrongylus tenuis is a nematode that lives in the caeca of wild red grouse. It causes disease in red grouse and can cause fluctuations in grouse pop ulations. The aim of the work described in this thesis was to study aspects of the ecology of the infective-stage larvae of T.tenuis, and also certain aspects of the pathology and immunology of red grouse and chickens infected with this nematode. The survival of the infective-stage larvae of T.tenuis was found to decrease as temperature increased, at temperatures between 0-30 C? and larvae were susceptible to freezing and desiccation. The lipid reserves of the infective-stage larvae declined as temperature increased and this decline was correlated to a decline in infectivity in the domestic chicken. The occurrence of infective-stage larvae on heather tips at caecal dropping sites was monitored on a moor; most larvae were found during the summer months but very few larvae were recovered in the winter. The number of larvae recovered from the heather showed a good correlation with the actual worm burdens recorded in young grouse when related to food intake. Examination of the heather leaflets by scanning electron microscopy showed that each leaflet consists of a leaf roll and the infective-stage larvae of T.tenuis migrate into the humid microenvironment' provided by these leaf rolls.
    [Show full text]
  • Strongylida: Trichostrongylidae) on the Haematological, Biochemical, Clinical and Reproductive Traits in Rams
    Onderstepoort Journal of Veterinary Research ISSN: (Online) 2219-0635, (Print) 0030-2465 Page 1 of 8 Original Research Effect of the infection with the nematode Haemonchus contortus (Strongylida: Trichostrongylidae) on the haematological, biochemical, clinical and reproductive traits in rams Authors: This study aimed to investigate the effect of Haemonchus contortus infection on rams’ 1 Mariem Rouatbi haematological, biochemical and clinical parameters and reproductive performances. A total Mohamed Gharbi1 Mohamed R. Rjeibi1 number of 12 Barbarine rams (control and infected) were included in the experiment. The Imen Ben Salem2 infected group received 30 000 H. contortus third-stage larvae orally. Each ram’s ejaculate was Hafidh Akkari1 immediately evaluated for volume, sperm cell concentration and mortality rate. At the end of 3 Narjess Lassoued the experiment (day 82 post-infection), which lasted 89 days, serial blood samples were Mourad Rekik4 collected in order to assess plasma testosterone and luteinising hormone (LH) concentrations. Affiliations: There was an effect of time, infection and their interaction on haematological parameters 1Laboratory of Parasitology, (p < 0.001). In infected rams, haematocrit, red blood cell count and haemoglobin started to Manouba University, Tunisia decrease from 21 days post-infection. There was an effect of time and infection for albumin. 2Department of Animal For total protein, only infection had a statistically significant effect. For glucose, only time had Production, Service of Animal a statistically significant effect. Concentrations were significantly lower in infected rams Science, Manouba University, compared to control animals. A significant effect of infection and time on sperm concentrations Tunisia and sperm mortality was observed. The effect of infection appears in time for sperm concentrations at days 69 and 76 post-infection.
    [Show full text]
  • Population Genetics, Community of Parasites, and Resistance to Rodenticides in an Urban Brown Rat (Rattus Norvegicus) Population
    RESEARCH ARTICLE Population genetics, community of parasites, and resistance to rodenticides in an urban brown rat (Rattus norvegicus) population AmeÂlie Desvars-Larrive1, Michel Pascal2², Patrick Gasqui3, Jean-FrancËois Cosson4,5, Etienne BenoõÃt6, Virginie Lattard6, Laurent Crespin3, Olivier Lorvelec2, BenoõÃt Pisanu7, Alexandre TeynieÂ3, Muriel Vayssier-Taussat4, Sarah Bonnet4, Philippe Marianneau8, Sandra Lacoà te8, Pascale Bourhy9, Philippe Berny6, Nicole Pavio10, Sophie Le Poder10, Emmanuelle Gilot-Fromont11, Elsa Jourdain3, Abdessalem Hammed6, Isabelle Fourel6, Farid Chikh12, GwenaeÈl Vourc'h3* a1111111111 a1111111111 1 Conservation Medicine, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria, 2 Joint Research Unit (JRU) E cologie et Sante des E cosystèmes (ESE), Institut National de la a1111111111 Recherche Agronomique, INRA, Agrocampus Ouest, Rennes, France, 3 Joint Research Unit (JRU) a1111111111 EpideÂmiologie des Maladies Animales et Zoonotiques (EPIA), Institut National de la Recherche Agronomique, a1111111111 INRA, VetAgro Sup, Saint-Genès Champanelle, France, 4 Joint Research Unit (JRU) Biologie MoleÂculaire et Immunologie Parasitaire (BIPAR), Agence Nationale de SeÂcurite Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), Institut National de la Recherche Agronomique, INRA, Ecole Nationale VeÂteÂrinaire d'Alfort (ENVA), Maisons-Alfort, France, 5 Joint Research Unit (JRU) Centre de Biologie pour la Gestion des Populations (CBGP), Centre de CoopeÂration Internationale en Recherche Agronomique pour le DeÂveloppement (CIRAD), Institut National de la Recherche Agronomique, INRA, Institut OPEN ACCESS de Recherche pour le DeÂveloppement (IRD), SupAgro Montpellier, France, 6 Contract-based Research Unit (CBRU) Rongeurs Sauvages±Risques Sanitaires et Gestion des Populations (RS2GP), VetAgro Sup, Citation: Desvars-Larrive A, Pascal M, Gasqui P, Institut National de la Recherche Agronomique, INRA, Lyon University, Marcy-L'Etoile, France, 7 Unite Cosson J-F, BenoõÃt E, Lattard V, et al.
    [Show full text]
  • Phylogenetic Systematic Analysis of the Trichostrongylidae (Nematoda), with an Initial Assessment of Coevolution and Biogeography
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 12-1994 Phylogenetic Systematic Analysis of the Trichostrongylidae (Nematoda), with an Initial Assessment of Coevolution and Biogeography Eric P. Hoberg United States Department of Agriculture, Agricultural Research Service, [email protected] J. Ralph Lichtenfels United States Department of Agriculture, Agricultural Research Service Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Biodiversity Commons, Evolution Commons, and the Parasitology Commons Hoberg, Eric P. and Lichtenfels, J. Ralph, "Phylogenetic Systematic Analysis of the Trichostrongylidae (Nematoda), with an Initial Assessment of Coevolution and Biogeography" (1994). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 723. https://digitalcommons.unl.edu/parasitologyfacpubs/723 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Parasitol., 80(6), 1994, p. 976-996 ? AmericanSociety of Parasitologists1994 PHYLOGENETICSYSTEMATIC ANALYSIS OF THE TRICHOSTRONGYLIDAE(NEMATODA), WITH AN INITIALASSESSMENT OF COEVOLUTIONAND BIOGEOGRAPHY E. P. Hoberg and J. R. Lichtenfels UnitedStates Departmentof Agriculture,Agricultural Research Service, Biosystematic Parasitology Laboratory, BARCEast, Building1180, 10300Baltimore Avenue, Beltsville, Maryland 20705-2350 ABSTRACT:Phylogenetic analysis of the subfamiliesof the Trichostrongylidaebased on 22 morphologicaltrans- formationseries produceda single cladogramwith a consistencyindex (CI) = 74.2%.Monophyly for the family was supportedby the structureof the female tail and copulatorybursa.
    [Show full text]
  • Comparisons of Two Polymorphic Species of Ostertagia And
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 1998 Comparisons of Two Polymorphic Species of Ostertagia and Phylogenetic Relationships within the Ostertagiinae (Nematoda: Trichostrongyloidea) Inferred from Ribosomal DNA Repeat and Mitochondrial DNA Sequences Dante S. Zarlenga Agricultural Research Service, Immunology and Disease Resistance Laboratory, United States Department of Agriculture Eric P. Hoberg Agricultural Research Service, Immunology and Disease Resistance Laboratory, United States Department of Agriculture, [email protected] Frank Stringfellow Agricultural Research Service, Immunology and Disease Resistance Laboratory, United States Department of Agriculture J. Ralph Lichtenfels Animal Parasitic Disease Lab, ARS, United States Department of Agriculture, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Zarlenga, Dante S.; Hoberg, Eric P.; Stringfellow, Frank; and Lichtenfels, J. Ralph, "Comparisons of Two Polymorphic Species of Ostertagia and Phylogenetic Relationships within the Ostertagiinae (Nematoda: Trichostrongyloidea) Inferred from Ribosomal DNA Repeat and Mitochondrial DNA Sequences" (1998). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 637. https://digitalcommons.unl.edu/parasitologyfacpubs/637 This Article is brought to you for free and open
    [Show full text]
  • AGILE GRACILE OPOSSUM Gracilinanus Agilis (Burmeister, 1854 )
    Smith P - Gracilinanus agilis - FAUNA Paraguay Handbook of the Mammals of Paraguay Number 35 2009 AGILE GRACILE OPOSSUM Gracilinanus agilis (Burmeister, 1854 ) FIGURE 1 - Adult, Brazil (Nilton Caceres undated). TAXONOMY: Class Mammalia; Subclass Theria; Infraclass Metatheria; Magnorder Ameridelphia; Order Didelphimorphia; Family Didelphidae; Subfamily Thylamyinae; Tribe Marmosopsini (Myers et al 2006, Gardner 2007). The genus Gracilinanus was defined by Gardner & Creighton 1989. There are six known species according to the latest revision (Gardner 2007) one of which is present in Paraguay. The generic name Gracilinanus is taken from Latin (gracilis) and Greek (nanos) meaning "slender dwarf", in reference to the slight build of this species. The species name agilis is Latin meaning "agile" referring to the nimble climbing technique of this species. (Braun & Mares 1995). The species is monotypic, but Gardner (2007) considers it to be composite and in need of revision. Furthermore its relationship to the cerrado species Gracilinanus agilis needs to be examined, with some authorities suggesting that the two may be at least in part conspecific - there appear to be no consistent cranial differences (Gardner 2007). Costa et al (2003) found the two species to be morphologically and genetically distinct and the two species have been found in sympatry in at least one locality in Minas Gerais, Brazil (Geise & Astúa 2009) where the authors found that they could be distinguished on external characters alone. Smith P 2009 - AGILE GRACILE OPOSSUM Gracilinanus agilis - Mammals of Paraguay Nº 35 Page 1 Smith P - Gracilinanus agilis - FAUNA Paraguay Handbook of the Mammals of Paraguay Number 35 2009 Patton & Costa (2003) commented that the presence of the similar Gracilinanus microtarsus at Lagoa Santa, Minas Gerais, the type locality for G.agilis , raises the possibility that the type specimen may in fact prove to be what is currently known as G.microtarsus .
    [Show full text]
  • Download Complete Work
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Gray, M. R., and H. M. Smith, 2004. The “striped” group of stiphidiid spiders: two new genera from northeastern New South Wales, Australia (Araneae: Stiphidiidae: Amaurobioidea). Records of the Australian Museum 56(1): 123–138. [7 April 2004]. doi:10.3853/j.0067-1975.56.2004.1394 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia © Copyright Australian Museum, 2004 Records of the Australian Museum (2004) Vol. 56: 123–138. ISSN 0067-1975 The “Striped” Group of Stiphidiid Spiders: Two New Genera from Northeastern New South Wales, Australia (Araneae: Stiphidiidae: Amaurobioidea) MICHAEL R. GRAY* AND HELEN M. SMITH Australian Museum, 6 College Street, Sydney NSW 2010, Australia [email protected] · [email protected] ABSTRACT. Borrala and Pillara, two new genera of putative “stiphidiid” spiders from forest habitats in northern New South Wales, are described. They include eight new species: Borrala dorrigo, B. webbi, B. longipalpis, B. yabbra and Pillara karuah, P. coolahensis, P. macleayensis, P. griswoldi. Brief comments on characters and relationships are given. These genera form part of a generic group characterized by the presence of a palpal tegular lobe and grate-shaped tapeta in the posterior eyes. GRAY, MICHAEL R., & HELEN M. SMITH, 2004. The “striped” group of stiphidiid spiders: two new genera from northeastern New South Wales, Australia (Araneae: Stiphidiidae: Amaurobioidea). Records of the Australian Museum 56(1): 123–138.
    [Show full text]