<<

The Chemical Effects of Kenneth S. Suslick

School of Chemical Sciences University of Illinois at Urbana-Champaign

• Acoustic and Hot Spot Conditions • Sonochemical Synthesis of Nanomaterials • Heterogeneous • Ultrasonic Spray Pyrolysis

© 2010, K. S. Suslick

Stable Single Bubble Cavitation ACOUSTIC PRESSURE LIQUID DENSITY

m) 40  IMPLOSION SHOCKWAVE (?) 20 HOT SPOT

BUBBLE RADIUS ( RAPID QUENCHING 0 0 50 100 150 TIME (s)

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Single Bubble

piezoceramic hydrophone

piezoceramic driver

Photo in full room light for single bubble in H2SO4; glowing bubble clearly visible to the naked eye at 50 m.

© 2010, K. S. Suslick

Cavitational Collapse of a Single Bubble

Strobed Single Bubble

Rmax ~ 50 µm ~ hair diameter

Rmin < 500 nm ~ large virus size

Pacoustic ~ 1.5 Bar

 = 52 kHz

sbsl ~ 50 ps to 1 ns

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Lab Scale Sonochemical Rig

Power Supply Suppliers:

Piezoelectric Sonics & Materials, Transducer Branson, Mysonix, ACE Glass, and Titanium Horn even Aldrich! Collar & O-Rings

Gas Inlet/Outlet

Cooling Commercial Scale-up: Glass Cell bath Reaction 2 tons/hr coal gob Solution Lewis Corp. 21 kW, 1800 gal.

© 2010, K. S. Suslick

Multi-Bubble Sonoluminescence: 85% Sulfuric Acid

1 cm Ti horn

50 µm

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick What Are the Conditions Inside? Sonoluminescence as a Spectroscopic Probe

© 2010, K. S. Suslick

MBSL from Cr(CO)6 in Hexadecane

1200 Cr* 1000

800

600 Cr * Cr * Intensity 400

CH * C2 * C2 * 200

background continuum 0

350 400 450 500 550 600 Wavelength (nm)

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Temperature vs. Calculated Cr Spectra

MBSL of Cr(CO)6 Cr : 4700 K  300 K 2.0 Mo: 4800 K  400 K 6000 K C2 : 4900 K  300 K 5000 K 1.5 Fe : 5100 K  350 K 4000 K

1.0 3000 K Relative Intensity 0.5

0 350 370 390 410 430 450 470 490 510 530 Wavelength (nm)

© 2010, K. S. Suslick

Hot Spot Conditions during Cavitation

Single Bubble Multi-Bubble Temperature: >15,000 K 1600 to 9000 K (…but, 35 eV plasma) (v.p. controlled)

Pressure: ~1100 atm ~300 atm

Duration: < 1 nsec ~ 1 nsec

Cooling rate: >1013 K/sec >1012 K/sec novel materials…

Suslick et al., Nature, 1999, 401, 772. 2000, 407, 877 2002, 418, 394. 2005, 434, 52. © 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Islands of Chemistry

© 2010, K. S. Suslick

What Else Might Bubble Be Good For?

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Sonochemical Synthesis of Nanostructured Heterogeneous Catalysts

Goals:

Stable High Surface Energy Materials (i.e., highly defected surfaces)

Refractory Materials with High Surface Areas

Specific Example: Hydrodesulfurization (HDS)

© 2010, K. S. Suslick

Why Nanostructured Catalysts? • Nanostructured: 1-10 nm, 100 to 104 atoms. • Properties distinct from either bulk or molecular. • Surface atoms predominate: surface highly defected. • High catalytic activity, often unusual selectivities.

Why Sonochemistry? • Unique interaction of energy and matter. • Every bubble is an isolated 10-18 L (aL) reactor. • Extreme conditions, but extraordinary quench rates. • Easy to produce both in lab and in scale-up.

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Sonochemical Synthesis of Nanostructured Materials

M(CO)x(NO)y

Supported Nanophase Catalyst Colloids in or zer g ULTRA- SOUND i an bil ic sta ox ide M n Mnn ge su xy lfu o s r ou rce hydro- Nanophase carbon Nanophase Metal Oxides Metal Sulfides Nanophase Metals Powders or Carbides n = 100 - 10,000 © 2010, K. S. Suslick

Why Hydrodesulfurization?

• Sulfur present in all fossil fuels. • Dibenzothiophenes most difficult to remove.

• Fuel burning produces SO2 : major part of acid rain. • Recent decreases in permitted fuel S content. HDS

+ 2 H + H S S 2 catalyst 2

Hydrogenation + H 2 catalyst

H2

H2 + © 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Scanning Electron Micrographs of MoS2 o Sonicated Mo(CO)6 and S8 in isodurene, Ar, 80 C

1.0 µm 1.0 µm

SEM of Sonochemical MoS2 SEM of Conventional MoS2 Greatly increased edge surface. Limited edge surface, Extremely active HDS Catalyst! limited HDS activity.

© 2010, K. S. Suslick

Transmission Electron Micrograph of

Sonochemically Prepared MoS2

2 nm

Inter-lamellar spacing unchanged, but heavily defected.

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Catalytic Microreactor Rig

VACUUM He Ar Vac Org. Vac Pressure SYSTEM Gauge Liquid Line Transducer

G.C. M.S.

Flow Controllers

Purifiers TEMP. CONTROL

H CO C H H +CO+Ar NO OVEN 2 226 2 2

CATALYST BED © 2010, K. S. Suslick

Thiophene Hydrodesulfurization

3 MoS2 (conv) )

-1 ReS2 (conv) s * Mo2C (sono) -1

g RuS (conv): PREVIOUS BEST * 2

2 MoS2 (sono) molecules 18 1 Activity (10 Activity

0 325 350 375 Temperature (oC) HDS activity comes from the Mo at edges, not within planes.

Nanostructured MoS2 has more edges.

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Hollow MoS2

• Spherical Template: Silica nanospheres (from base hydrolysis of tetraethyl orthosilicate, TEOS)

• Ultrasonic irradiation of slurry:

Mo(CO)6 (1 g), S8 (300 mg), and silica spheres (1 g) in isodurene under Ar flow.

o • MoS2 /silica composite nanospheres annealed 450 C.

• Leach silica with 10% ethanolic aqueous HF.

© 2010, K. S. Suslick

Hollow MoS2

o TEM hollow MoS2 nanospheres after thermal annealing at 450 C.

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick MoS2 Nanospheres: EDX Line Analysis

Across a single particle of MoS2/SiO2

Before Etching After Leaching with HF

© 2010, K. S. Suslick

MoS2 Nanospheres: HDS of Thiophene After 24 hours of catalysis.

Aldrich MoS2

)

1 - Sonochemical MoS2

s

.

1 - 2 Hollow MoS2 (150 nm)

g . Hollow MoS (50 nm)

s 2

e

l

u

c

e

l

o

m

8

1 1

0

1

(

y

t

i

v

i

t

c

A 0 325 350 375 Temperature (oC)

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick First Hollow Single Crystals (!)

TEM of Hollow MoO3 Nanospheres

After Leaching with HF. After thermal annealing at 450oC.

© 2010, K. S. Suslick

What Happens at Surfaces?

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Mechanisms Of Heterogeneous Sonochemistry

SURFACE ACTIVATION: Microjet pitting, etc.

INCREASED SURFACE AREA: Shock wave fragmentation.

ENHANCED MASS TRANSPORT: Surface turbulence.

POWDER MODIFICATION: Interparticle Collisions.

© 2010, K. S. Suslick

Cavitational Collapse Near a Surface

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Cavitation Near Extended Surface 75,000 fps; W. Lauterborn

© 2010, K. S. Suslick

Cavitation Near an Extended Surface

L. A. Crum

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Cavitation Damage to Al Sheet

10  m

© 2010, K. S. Suslick

Sonochemical Activation of Ni Powder

1

0.1

))) Ni Ni* 0.01 (10 m) octane

Ni* 1-nonene nonane 0.001 H2 Initial Rate (mM/min) Initial

0.0001

0.00001 050 100 150 200 250 Duration of Ultrasonic Irradiation (min) © 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick CHO HO-CHCH2CO2C2H5 ))) Reformatsky Rxn.: + Br-CHCH2CO2C H5 + Zn

100

15 m. 80

5 m. ) 60

%

(

d

l 2.5 m.

e

i Y 40 1 m.

20 NO u.s.

0 02040 Thermal Reaction Time (min.) © 2010, K. S. Suslick

Surface Composition Changes Auger Electron Spectroscopy Depth Profiles

Before Ultrasound After Ultrasound 100 100

Cu 80 80 Cu 60 60

40 O 40 800 nm oxide layer 20 20 O

Atomic Composition (%) C Atomic Composition (%) C 0 0 0204060 0204060 Sputter Time (min.) Sputter Time (min.)

50 min. sputter time ~ 1 m depth Sonication of slurries in octane. © 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Effect of Ultrasound on Particle Morphology: Ni in decane m  100

Before ultrasound 60 min. ultrasound

© 2010, K. S. Suslick

Effect of Ultrasound on Particle Morphology: Ni in decane m  10

Before ultrasound 15 min. ultrasound 120 min. ultrasound

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Interparticle Collisions Induced by Ultrasound

Zn Powder in decane; 20 kHz, 100 W/cm2

© 2010, K. S. Suslick

Velocity Of Interparticle Collisions

Melted Neck Volume ~ 1 m3 ~ 8 x 10-12 g

Heat of Melting (Fe) ~ 1 m3 ~ 1.6 kJ / g

To melt neck ~ 0.1 erg / neck

Kinetic Energy = ½ mv2 > 0.1 erg

Velocity of Impact ~ 100 to 500 m / s !

Speed of Sound ~ 1100 m / s

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Effect of Ultrasound on Particle Morphology: Cr in decane m  10

Before ultrasound 30 min. ultrasound

m.p.: 2130 K

© 2010, K. S. Suslick

Effect of Ultrasound on Particle Morphology: Mo in decane m  60

Before ultrasound 30 min. ultrasound

m.p.: 2890 K

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Effect of Ultrasound on Particle Morphology: W in decane m  60

Before ultrasound 30 min. ultrasound

m.p.: 3680 K

© 2010, K. S. Suslick

Effects Of Ultrasound On Metal Powders

METAL MELTING AGGLOME- SURFACE POINT RATION MORPHOLOGY

Sn 505 K ++ ++ Zn 693 K ++ ++ Cu 1358 K ++ ++ Ni 1726 K ++ ++ Cr 2130 K ++ + Mo 2890 K + - W 3680 K - -

20 kHz, 50 W/cm2 , 293 K, 10 micron powder, in decane under Ar.

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Agglomeration vs. Particle Size

PR 9 t  v 1exp2  vi 62R n s   o co i t

c u

e s

s d - r X a g g

n i

s

a

e r critical velocity c

n i for melting

© 2010, K. S. Suslick

What About Liquid-Gas Interfaces?

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Ultrasonic Spray Pyrolysis (USP): Hot Liquid in a Gas

Ultrasonic Humidifier (Sunbeam, $20 eBay) Frequency ~1.7 MHz 2.7 gal of mist / day

Nebulization is due to momentum transfer.

© 2010, K. S. Suslick

Ultrasonic Fountain and Nebulization

each frame: ~15 x 15 cm.

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Ultrasonic Fountain and Nebulization

~1 cm

© 2010, K. S. Suslick

Ultrasonic Nebulization

Nebulization occurs at capillary standing waves (i.e., ripples).

droplet size  capillary wavelength (Kelvin Eqn.)  1/3 Lang Eqn: D ~ d ()f2

Dd  droplet diameter   surface tension   density f  atomization frequency

At 1.7 MHz, 2 to 5 μm diameter droplets with H2O

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Flow Synthesis with Dual Oven USP

Synthetic Methodology: furnace 2 Easy synthesis: droplets as isolated microreactors. product furnace 1 collector One pot encapsulation, polymerization, & drying: in situ template synthesis.

ultrasonic Porous solid synthesis: fountain matrix with pyrolyzable template. carrier gas Continuous and large scale 1.7 MHz production possible. piezo- electric

USP is an easily scalable & versatile synthetic methodology.

© 2010, K. S. Suslick

How To Make Nanosized Particles with USP

Traditional USP Droplet Solvent evaporates, Agglomeration, Particles form Sintering 1 droplet = 1 particle

Solution: High boiling point solvents instead of water Keep droplet as hot liquid phase; multi-nucleation sites. 1 droplet = 1000s of particles. “Chemical Aerosol Flow Synthesis” (CAFS)

CAFS Droplet Cosolvent Nucleation, particles Final Particles evaporates formation & growth collected

1 droplet = 1000s particles

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Fluorescent Quantum Dots

Why Quantum Dots? • nm size gives quantum confinement, i.e., size-dependent fluorescent color • No photobleaching of inorganic pigments

How Prepared? • High temperature batch reaction at high dilution. • Expensive, high boiling-point solvents. octadecene, hexadecane, isodurene. • Often nasty precursors: dimethyl cadmium originally! Now Cd acetate, oxide thiourea, trioctylphosphine sulfide (selenides/tellurides, too) • Surface stabilizers: acids (oleic, phosphonic, stearic), amines, TOPO (trioctylphosphine oxide)

© 2010, K. S. Suslick

USP of CdS, CdSe, CdTe

Conditions: USP, Ar 1.5 L/min

Precursors: Cd(OAc)2, TOP-E (S, Se, Te)

Surface Stabilizer: Stearic acid

Temperatures: 200 to 340°C

XRD: nano-crystals

Diameters: ~3.5 nm

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Absorbance and Fluorescence of CdSe/Stearic Acid Q-dots

0.8

0.4

Fluorescence 220 240 260 280 300 320 340oC

0 450nm 550 nm 650 nm

Conditions: Cd Ac2, Stearic acid, TOPSe residence time ~2 s.

© 2010, K. S. Suslick

How to Make Nanoporous Materials

Traditional USP Powder Synthesis

Solution Δ Δ

Solvent Nebulized liquid evaporation/ Particle Product droplet particle formation aggregation densification

Sacrificial Nano-Templates: SiO2, polymer, salt; added or formed in situ. Solution

Δ HF

nano- template Nebulized liquid Template Precursor Porous droplet composite collection material Templates can produce high surface area, porous materials.

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Titania: Porous and Hollow Nanospheres

initial solvent-free dense porous droplet conglomerate microsphere microsphere initial heating and heating consolidation etching

TiO2 solvent SiO2 precursor SiO2 precursor: bis(ammonium)(lactato)(dihydroxo)TiIV ball-in-ball sacrificial template: silica colloid

hollow ball

© 2010, K. S. Suslick

Titania Size Distribution

before etching Ti:Si=1:1 Etching with HF/EtOH after etching

Average size = 900 nm © 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick TEM of Etched TiO2-SiO2 Nanosphere

500 nm SiO2 200 nm TiO2

Hollow TiO2 microsphere shells with SiO2 ball inside.

© 2010, K. S. Suslick

Sucrose-Based Porous Carbon via USP

• Scalable production technology: USP • Simple, cheap precursors: sugar, carbohydrates.

Cn(H2O)n  n C + n H2O↑

• No hazardous decomposition byproducts. • Rational design of very high surface area carbons. • Addition of alkali carbonate or nitrate salt to precursor promotes decomposition of sucrose and gas decomposition products create internal pores.

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Internal Porosity vs. Salt USP 0.5 M Sucrose + Salt, 800 °C, 1 L/min Argon

0.1 M NaNO3 0.5 M Na2CO3 solid S. A. ~ 440 m2/g

0.5 M NaHCO3 1.0 M Na2CO3 2 2 © 2010, K. S. Suslick S. A. ~ 800 m /g S. A. ~ 1115 m /g

Characterization of Porosity

Scanning Electron Microscopy Focused Ion Beam

Scanning Transmission Transmission Electron Microscopy Electron Microscopy

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Characterization of Porosity

TEM and BET shows hierarchical pore structure.

microporous shell

internal macropores

High surface areas indicate microporous shell allows access to internal macropores.

Very narrow micropore distribution at 0.6 nm

© 2010, K. S. Suslick

Other Applications of Sonochemistry

• Liquid-Solid Reactions (Grignards, Li, KMnO4 …)

• Emulsification (i.e. Liquid-liquid reactions)

• Sonocrystallization of pharmaceuticals

• Microencapsulation (e.g., protein microspheres for imaging and drug delivery)

• Surface modification (e.g., wettable PE, PVC polymers)

• Drinking water remediation (OH• from water sonolysis)

• “Megasonic” cleaning of microelectronics (e.g., Si wafers)

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Ultrasound Scale-up

Naval jet engine rebuilding and maintenance facility. (cleaning of whole engines after avian encounters)

21 kW, 1800 gal., immersible magnetostrictive transducers

© 2010, K. S. Suslick

Conclusions

• Ultrasound does High Energy Chemistry thru Cavitation. Cavitation Clouds: 5000 K, ~300 Atm., ~10-9 sec. Single Bubbles: >15,000K, ~1100 Atm., <10-9 sec.

• Sonochemistry: new tool for nanophased materials. Metals, alloys, carbides, sulfides, oxides all available: as colloids, supported catalysts, nanoporous solids.

• Extremely Active New Nanostructured Catalysts.

• Heterogeneous Systems: diverse & dramatic enhancements

• Metal Surface Activation: Inter-Particle Collisions.

• Ultrasonic Spray Pyrolysis as a versatile synthetic route.

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick ACKNOWLEDGMENTS

Jin Ho Bang Jamie Oxley Yuri Didenko Tanya Prozorov Arul Dhas Ruslan Prozorov Nathan Eddingsaas Sara Skrabalak Ming Ming Fang Won Hyuk Suh David Flannigan Hangxun Xu Maria Fortunato Richard Helmich UIUC Matl. Res. Lab., Steve Hopkins Center for Microanalysis Taeghwan Hyeon of Materials, supported by DOE. Millan M. Mdleleni William B. McNamara III NSF, DOE, DARPA

© 2010, K. S. Suslick

© K. S. Suslick, 2007. www.scs.uiuc.edu/suslick