The Chemical Effects of Ultrasound Kenneth S. Suslick Stable Single

The Chemical Effects of Ultrasound Kenneth S. Suslick Stable Single

The Chemical Effects of Ultrasound Kenneth S. Suslick School of Chemical Sciences University of Illinois at Urbana-Champaign • Acoustic Cavitation and Hot Spot Conditions • Sonochemical Synthesis of Nanomaterials • Heterogeneous Sonochemistry • Ultrasonic Spray Pyrolysis © 2010, K. S. Suslick Stable Single Bubble Cavitation ACOUSTIC PRESSURE LIQUID DENSITY m) 40 IMPLOSION SHOCKWAVE (?) 20 HOT SPOT BUBBLE RADIUS ( RAPID QUENCHING 0 0 50 100 150 TIME (s) © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Single Bubble Sonoluminescence piezoceramic hydrophone piezoceramic driver Photo in full room light for single bubble in H2SO4; glowing bubble clearly visible to the naked eye at 50 m. © 2010, K. S. Suslick Cavitational Collapse of a Single Bubble Strobed Single Bubble Rmax ~ 50 µm ~ hair diameter Rmin < 500 nm ~ large virus size Pacoustic ~ 1.5 Bar = 52 kHz sbsl ~ 50 ps to 1 ns © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Lab Scale Sonochemical Rig Power Supply Suppliers: Piezoelectric Sonics & Materials, Transducer Branson, Mysonix, ACE Glass, and Titanium Horn even Aldrich! Collar & O-Rings Gas Inlet/Outlet Cooling Commercial Scale-up: Glass Cell bath Reaction 2 tons/hr coal gob Solution Lewis Corp. 21 kW, 1800 gal. © 2010, K. S. Suslick Multi-Bubble Sonoluminescence: 85% Sulfuric Acid 1 cm Ti horn 50 µm © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick What Are the Conditions Inside? Sonoluminescence as a Spectroscopic Probe © 2010, K. S. Suslick MBSL from Cr(CO)6 in Hexadecane 1200 Cr* 1000 800 600 Cr * Cr * Intensity 400 CH * C2 * C2 * 200 background continuum 0 350 400 450 500 550 600 Wavelength (nm) © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Temperature vs. Calculated Cr Spectra MBSL of Cr(CO)6 Cr : 4700 K 300 K 2.0 Mo: 4800 K 400 K 6000 K C2 : 4900 K 300 K 5000 K 1.5 Fe : 5100 K 350 K 4000 K 1.0 3000 K Relative Intensity 0.5 0 350 370 390 410 430 450 470 490 510 530 Wavelength (nm) © 2010, K. S. Suslick Hot Spot Conditions during Cavitation Single Bubble Multi-Bubble Temperature: >15,000 K 1600 to 9000 K (…but, 35 eV plasma) (v.p. controlled) Pressure: ~1100 atm ~300 atm Duration: < 1 nsec ~ 1 nsec Cooling rate: >1013 K/sec >1012 K/sec novel materials… Suslick et al., Nature, 1999, 401, 772. 2000, 407, 877 2002, 418, 394. 2005, 434, 52. © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Islands of Chemistry © 2010, K. S. Suslick What Else Might Bubble Be Good For? © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Sonochemical Synthesis of Nanostructured Heterogeneous Catalysts Goals: Stable High Surface Energy Materials (i.e., highly defected surfaces) Refractory Materials with High Surface Areas Specific Example: Hydrodesulfurization (HDS) © 2010, K. S. Suslick Why Nanostructured Catalysts? • Nanostructured: 1-10 nm, 100 to 104 atoms. • Properties distinct from either bulk or molecular. • Surface atoms predominate: surface highly defected. • High catalytic activity, often unusual selectivities. Why Sonochemistry? • Unique interaction of energy and matter. • Every bubble is an isolated 10-18 L (aL) reactor. • Extreme conditions, but extraordinary quench rates. • Easy to produce both in lab and in scale-up. © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Sonochemical Synthesis of Nanostructured Materials M(CO)x(NO)y Supported Nanophase Catalyst Colloids in or zer g ULTRA- SOUND i an bil ic sta ox ide M n Mnn ge su xy lfu o s r ou rce hydro- Nanophase carbon Nanophase Metal Oxides Metal Sulfides Nanophase Metals Powders or Carbides n = 100 - 10,000 © 2010, K. S. Suslick Why Hydrodesulfurization? • Sulfur present in all fossil fuels. • Dibenzothiophenes most difficult to remove. • Fuel burning produces SO2 : major part of acid rain. • Recent decreases in permitted fuel S content. HDS + 2 H + H S S 2 catalyst 2 Hydrogenation + H 2 catalyst H2 H2 + © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Scanning Electron Micrographs of MoS2 o Sonicated Mo(CO)6 and S8 in isodurene, Ar, 80 C 1.0 µm 1.0 µm SEM of Sonochemical MoS2 SEM of Conventional MoS2 Greatly increased edge surface. Limited edge surface, Extremely active HDS Catalyst! limited HDS activity. © 2010, K. S. Suslick Transmission Electron Micrograph of Sonochemically Prepared MoS2 2 nm Inter-lamellar spacing unchanged, but heavily defected. © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Catalytic Microreactor Rig VACUUM He Ar Vac Org. Vac Pressure SYSTEM Gauge Liquid Line Transducer G.C. M.S. Flow Controllers Purifiers TEMP. CONTROL H CO C H H +CO+Ar NO OVEN 2 226 2 2 CATALYST BED © 2010, K. S. Suslick Thiophene Hydrodesulfurization 3 MoS2 (conv) ) -1 ReS2 (conv) s * Mo2C (sono) -1 g RuS (conv): PREVIOUS BEST * 2 2 MoS2 (sono) molecules 18 1 Activity (10 Activity 0 325 350 375 Temperature (oC) HDS activity comes from the Mo at edges, not within planes. Nanostructured MoS2 has more edges. © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Hollow MoS2 • Spherical Template: Silica nanospheres (from base hydrolysis of tetraethyl orthosilicate, TEOS) • Ultrasonic irradiation of slurry: Mo(CO)6 (1 g), S8 (300 mg), and silica spheres (1 g) in isodurene under Ar flow. o • MoS2 /silica composite nanospheres annealed 450 C. • Leach silica with 10% ethanolic aqueous HF. © 2010, K. S. Suslick Hollow MoS2 o TEM hollow MoS2 nanospheres after thermal annealing at 450 C. © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick MoS2 Nanospheres: EDX Line Analysis Across a single particle of MoS2/SiO2 Before Etching After Leaching with HF © 2010, K. S. Suslick MoS2 Nanospheres: HDS of Thiophene After 24 hours of catalysis. Aldrich MoS2 ) 1 - Sonochemical MoS2 s . 1 - 2 Hollow MoS2 (150 nm) g . Hollow MoS (50 nm) s 2 e l u c e l o m 8 1 1 0 1 ( y t i v i t c A 0 325 350 375 Temperature (oC) © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick First Hollow Single Crystals (!) TEM of Hollow MoO3 Nanospheres After Leaching with HF. After thermal annealing at 450oC. © 2010, K. S. Suslick What Happens at Surfaces? © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Mechanisms Of Heterogeneous Sonochemistry SURFACE ACTIVATION: Microjet pitting, etc. INCREASED SURFACE AREA: Shock wave fragmentation. ENHANCED MASS TRANSPORT: Surface turbulence. POWDER MODIFICATION: Interparticle Collisions. © 2010, K. S. Suslick Cavitational Collapse Near a Surface © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Cavitation Near Extended Surface 75,000 fps; W. Lauterborn © 2010, K. S. Suslick Cavitation Near an Extended Surface L. A. Crum © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Cavitation Damage to Al Sheet 10 m © 2010, K. S. Suslick Sonochemical Activation of Ni Powder 1 0.1 ))) Ni Ni* 0.01 (10 m) octane Ni* 1-nonene nonane 0.001 H2 Initial Rate (mM/min) Initial 0.0001 0.00001 050 100 150 200 250 Duration of Ultrasonic Irradiation (min) © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick CHO HO-CHCH2CO2C2H5 ))) Reformatsky Rxn.: + Br-CHCH2CO2C H5 + Zn 100 15 m. 80 5 m. ) 60 % ( d l 2.5 m. e i Y 40 1 m. 20 NO u.s. 0 02040 Thermal Reaction Time (min.) © 2010, K. S. Suslick Surface Composition Changes Auger Electron Spectroscopy Depth Profiles Before Ultrasound After Ultrasound 100 100 Cu 80 80 Cu 60 60 40 O 40 800 nm oxide layer 20 20 O Atomic Composition (%) C Atomic Composition (%) C 0 0 0204060 0204060 Sputter Time (min.) Sputter Time (min.) 50 min. sputter time ~ 1 m depth Sonication of slurries in octane. © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Effect of Ultrasound on Particle Morphology: Ni in decane m 100 Before ultrasound 60 min. ultrasound © 2010, K. S. Suslick Effect of Ultrasound on Particle Morphology: Ni in decane m 10 Before ultrasound 15 min. ultrasound 120 min. ultrasound © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Interparticle Collisions Induced by Ultrasound Zn Powder in decane; 20 kHz, 100 W/cm2 © 2010, K. S. Suslick Velocity Of Interparticle Collisions Melted Neck Volume ~ 1 m3 ~ 8 x 10-12 g Heat of Melting (Fe) ~ 1 m3 ~ 1.6 kJ / g To melt neck ~ 0.1 erg / neck Kinetic Energy = ½ mv2 > 0.1 erg Velocity of Impact ~ 100 to 500 m / s ! Speed of Sound ~ 1100 m / s © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Effect of Ultrasound on Particle Morphology: Cr in decane m 10 Before ultrasound 30 min. ultrasound m.p.: 2130 K © 2010, K. S. Suslick Effect of Ultrasound on Particle Morphology: Mo in decane m 60 Before ultrasound 30 min. ultrasound m.p.: 2890 K © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Effect of Ultrasound on Particle Morphology: W in decane m 60 Before ultrasound 30 min. ultrasound m.p.: 3680 K © 2010, K. S. Suslick Effects Of Ultrasound On Metal Powders METAL MELTING AGGLOME- SURFACE POINT RATION MORPHOLOGY Sn 505 K ++ ++ Zn 693 K ++ ++ Cu 1358 K ++ ++ Ni 1726 K ++ ++ Cr 2130 K ++ + Mo 2890 K + - W 3680 K - - 20 kHz, 50 W/cm2 , 293 K, 10 micron powder, in decane under Ar. © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Agglomeration vs.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    33 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us