Multibubble Sonoluminescence from a Theoretical Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Multibubble Sonoluminescence from a Theoretical Perspective molecules Review Multibubble Sonoluminescence from a Theoretical Perspective Kyuichi Yasui National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan; [email protected] Abstract: In the present review, complexity in multibubble sonoluminescence (MBSL) is discussed. At relatively low ultrasonic frequency, a cavitation bubble is filled mostly with water vapor at relatively high acoustic amplitude which results in OH-line emission by chemiluminescence as well as emissions from weakly ionized plasma formed inside a bubble at the end of the violent bubble collapse. At relatively high ultrasonic frequency or at relatively low acoustic amplitude at relatively low ultrasonic frequency, a cavitation bubble is mostly filled with noncondensable gases such as air or argon at the end of the bubble collapse, which results in relatively high bubble temperature and light emissions from plasma formed inside a bubble. Ionization potential lowering for atoms and molecules occurs due to the extremely high density inside a bubble at the end of the violent bubble collapse, which is one of the main reasons for the plasma formation inside a bubble in addition to the high bubble temperature due to quasi-adiabatic compression of a bubble, where “quasi” means that appreciable thermal conduction takes place between the heated interior of a bubble and the surrounding liquid. Due to bubble–bubble interaction, liquid droplets enter bubbles at the bubble collapse, which results in sodium-line emission. Keywords: vaporous bubble; gaseous bubble; OH chemiluminescence; plasma; ionization potential lowering; Na-line emission; bubble–bubble interaction; acoustic field; sulfuric acid; applications Citation: Yasui, K. Multibubble Sonoluminescence from a Theoretical Perspective. Molecules 2021, 26, 4624. 1. Introduction https://doi.org/10.3390/ Multibubble sonoluminescence (MBSL) is the light emission phenomenon from cavi- molecules26154624 tation bubbles in liquid irradiated by strong ultrasound (Figure1)[ 1–3]. Cavitation is the appearance of bubbles in liquid by strong decrease in local instantaneous pressure by strong Academic Editor: Gregory Chatel ultrasound or by some hydrodynamic motion such as that around a ship propeller [4]. In cavitation, a bubble collapses very violently after bubble expansion under some conditions. Received: 21 June 2021 There are two reasons for the violent bubble collapse [5]. One is the spherical geometry of a Accepted: 28 July 2021 Published: 30 July 2021 bubble collapse. According to the continuity of the liquid, the speed of the bubble collapse increases as the bubble radius decreases because the surface area of a bubble decreases. Publisher’s Note: MDPI stays neutral The other is the inertia of the surrounding liquid. Due to the inertia of the ingoing liquid, with regard to jurisdictional claims in the bubble collapse becomes very violent. The violent bubble collapse is called Rayleigh published maps and institutional affil- collapse [5,6]. iations. At the end of the violent bubble collapse, temperature and pressure inside a bubble significantly increase to more than 4000 K and 300 bar (1 bar = 105 Pa = 0.987 atm), respectively [7,8], due to quasi-adiabatic compression of a bubble, where “quasi-“ means the appreciable amount of thermal conduction takes place between the heated interior of a bubble and the surrounding liquid. As a result, water vapor inside a bubble is thermally Copyright: © 2021 by the author. Licensee MDPI, Basel, Switzerland. dissociated and OH radicals are formed, which is called sonochemical reactions [5,9]. This article is an open access article Furthermore, faint light of sonoluminescence (SL) is emitted from a bubble. Duration of distributed under the terms and high temperature and pressure inside a bubble is only less than 1–10 ns. Thus, the SL pulse conditions of the Creative Commons width from a bubble is less than 1 ns [1,6,10]. Attribution (CC BY) license (https:// MBSL was discovered in 1933 by Marinesco and Trillat [11] who observed the fog- creativecommons.org/licenses/by/ ging of the photographic plate immersed in the liquid irradiated by ultrasound. MBSL 4.0/). was recognized as the light emission from the cavitating liquid in 1934 by Frenzel and Molecules 2021, 26, 4624. https://doi.org/10.3390/molecules26154624 https://www.mdpi.com/journal/molecules Molecules 2021, 26, x FOR PEER REVIEW 2 of 36 was recognized as the light emission from the cavitating liquid in 1934 by Frenzel and Schultes [12]. Significant development in SL research has been brought about after the discovery of single-bubble sonoluminescence (SBSL) in 1990 by Gaitan and Crum [13] (The first report on SBSL was in 1962 by Yosioka and Omura [14]. However, the work was Molecules 2021, 26, 4624 2 of 34 not confirmed.) SBSL is SL from a stably pulsating bubble trapped at pressure antinode of a standing ultrasonic wave [1,2,6]. In 1991, Barber and Putterman [15] reported in Nature that SBSL pulse width is less than 100 ps, which attracted many researchers’ attention. SchultesAfter that, [12 there]. Significant has been developmentsignificant development in SL research in SL has research. been brought Before the about discovery after the of discoverySBSL in 1990, of single-bubble MBSL, which sonoluminescence was simply called (SBSL) SL, had in been 1990 considered by Gaitan and to originate Crum [13 mainly] (The firstin the report recombination on SBSL was of infree 1962 radicals by Yosioka insideand a bubble Omura [16]. [14 ].The However, development the work of the was SBSL not confirmed.)research has SBSL been isreviewed SL from by astably Brenner, pulsating Hilgenfeldt, bubble and trapped Lohse at[6]. pressure antinode of a standingAnother ultrasonic significant wave finding [1,2,6]. in In 1991,SL research Barber is and the Putterman evidence of [15 (thermal)] reported plasma in Nature for- thatmation SBSL inside pulse a bubble width in is lesssulfuric than acid 100 in ps, optical which spectra attracted of SBSL many by researchers’Flannigan and attention. Suslick Afterin 2005 that, [17]. there has been significant development in SL research. Before the discovery of SBSLIn in the 1990, present MBSL, review, which wascomplexity simply calledin MBSL SL, is had discussed been considered based onto the originate understanding mainly indeveloped the recombination after the discovery of free radicals of SBSL. inside Furthermore, a bubble unsolved [16]. The problems development in MBSL of the are SBSL also researchdiscussed. has been reviewed by Brenner, Hilgenfeldt, and Lohse [6]. FigureFigure 1. PhotographicPhotographic image image of of MBSL MBSL from from Ar-saturated Ar-saturated SDS SDS solution solution at an at anacoustic acoustic power power of 4 ofW [3]. Ultrasound at a frequency of 148 kHz was irradiated from the bottom of the beaker. Copyright 4 W [3]. Ultrasound at a frequency of 148 kHz was irradiated from the bottom of the beaker. Copyright 2015, with the permission from Elsevier. 2015, with the permission from Elsevier. 2. TheoreticalAnother significant Model finding in SL research is the evidence of (thermal) plasma forma- tion insideFirstly, a bubblemodel of in bubble sulfuric dynamics acid in optical developed spectra in of studies SBSL by of FlanniganSBSL is reviewed. and Suslick Some in 2005bubbles [17]. in MBSL are nearly isolated and spherical, which are similar to SBSL bubbles [18]. Furthermore,In the present bubble review, dynamics complexity model developed in MBSL is for discussed SBSL can based be modified on the understanding for MBSL bub- developedbles taking afterinto account the discovery the effect of of SBSL. bubble–bubble Furthermore, interaction unsolved [19]. problems in MBSL are also discussed.There are two types in models of bubble dynamics for SBSL [2]. One is the shock wave model that a spherical shock wave converges at the bubble center where extremely 2.high Theoretical temperature Model plasma is formed. The other is the hot-spot model that nearly the whole bubbleFirstly, is heated model by of quasi-ad bubbleiabatic dynamics compression, developed where in studies ‘quasi-‘ of SBSL means is appreciable reviewed. Some ther- bubblesmal conduction in MBSL takes are nearly place isolatedbetween and the spherical,heated bubble which interior are similar and tothe SBSL surrounding bubbles [ 18liq-]. Furthermore,uid. bubble dynamics model developed for SBSL can be modified for MBSL bubblesNumerical taking into simulations account theof bubble effect ofcollapse bubble–bubble by fundamental interaction equations [19]. of fluid dynam- ics haveThere revealed are two that types temperature in models and of pressure bubble dynamics are nearly for spatially SBSL [uniform2]. One inside is the shocka bub- waveble and model that there that a is spherical no shock shock wave waveformatio convergesn inside ata bubble the bubble under center many where conditions extremely [20]. highThe reason temperature for no plasma shock formation is formed. is The as otherfollows is the[21]. hot-spot As the temperature model that nearly near the the bubble whole bubblewall is islower heated than by quasi-adiabaticthat near the bubble compression, center wheredue to ‘quasi-‘ thermal means conduction appreciable between thermal the conductionheated interior takes of place a bubble between and the the heated surrounding bubble interiorliquid, sound and the speed surrounding is lower liquid. near the bubbleNumerical wall. For simulations the shock wave of bubble formation, collapse a by pressure
Recommended publications
  • Understanding and Optimising Sonication Conditions for Crystallisation Processes
    Buenos Aires – 5 to 9 September, 2016 Acoustics for the 21st Century… PROCEEDINGS of the 22nd International Congress on Acoustics Sonochemistry and Sonoprocessing: Paper ICA2016-202 Understanding and optimising sonication conditions for crystallisation processes Nnamdi Ugochukwu(a), Madeleine Bussemaker(b), Judy Lee(c) (a)-(c) Chemical and Process Engineering University of Surrey, United Kingdom, [email protected] Abstract Crystallisation is a common technique adopted by many industries for separation and purification operations but it can suffer from unpredictable nucleation rates and inconsistencies in product qualities. To remediate these problems, ultrasound has been used to facilitate and control nucleation of crystals (sonocrystallisation), resulting in a more consistent and narrower size distribution of product. However, the mechanism behind sonocrystallization process is contentious and often reported is the continuous sonication of the system, which causes issues such as heating, probe surface erosion and cost of additional input energy. This study examines the influence of cavitation activity and different modes of pulse sonication on the crystallisation process. The results show a close association between cavitation activity, quantified in terms of sonoluminescence intensity, and the minimum crystal size obtained. In addition, the initial short sonication time 5 seconds proves to be effective for sonocrystallisation, showing results that are comparable to systems undergone 90seconds of sonication. Keywords: Acoustic cavitation, sonocrystallisation, sonoluminescence. 22nd International Congress on Acoustics, ICA 2016 Buenos Aires – 5 to 9 September, 2016 Acoustics for the 21st Century… Understanding and optimising sonication conditions for crystallisation processes 1 Introduction Antisolvent crystallisation is a common technique adopted by many industries for separation or purification operations[1].
    [Show full text]
  • Ultrasound Induced Cavitation and Resonance Amplification Using Adaptive Feedback Control System
    Master's Thesis Electrical Engineering Ultrasound induced cavitation and resonance amplification using adaptive feedback Control System Vipul. Vijigiri Taraka Rama Krishna Pamidi This thesis is presented as part of Degree of Master of Science in Electrical Engineering with Emphasis on Signal Processing Blekinge Institute of Technology (BTH) September 2014 Blekinge Institute of Technology, Sweden School of Engineering Department of Electrical Engineering (AET) Supervisor: Dr. Torbjörn Löfqvist, PhD, LTU Co- Supervisor: Dr. Örjan Johansson, PhD, LTU Shadow Supervisor/Examiner: Dr. Sven Johansson, PhD, BTH Ultrasound induced cavitation and resonance amplification using adaptive feedback Control System Master`s thesis Vipul, Taraka, 2014 Performed in Electrical Engineering, EISlab, Dep’t of Computer Science, Electrical and Space Engineering, Acoustics Lab, dep’t of Acoustics at Lulea University of Technology ii | Page This thesis is submitted to the Department of Applied signal processing at Blekinge Institute of Technology in partial fulfilment of the requirements for the degree of Master of Science in Electrical Engineering with emphasis on Signal Processing. Contact Information: Authors: Vipul Vijigiri Taraka Rama Krishna Pamidi Dept. of Applied signal processing Blekinge Institute of Technology (BTH), Sweden E-mail: [email protected],[email protected] E-mail: [email protected], [email protected] External Advisors: Dr. Torbjörn Löfqvist Department of Computer Science, Electrical and Space Engineering Internet: www.ltu.se Luleå University of technology (LTU), Sweden Phone: +46 (0)920-491777 E-mail: [email protected] Co-Advisor: Dr. Örjan Johansson Internet: www.ltu.se Department of the built environment and natural resources- Phone: +46 (0)920-491386 -Operation, maintenance and acoustics Luleå University of technology (LTU), Sweden E-mail: [email protected] University Advisor/Examiner: Dr.
    [Show full text]
  • Modeling the Dynamics of Single-Bubble Sonoluminescence
    Modeling the dynamics of single-bubble sonoluminescence Lucas L. Vignoli‡, Ana L. F. de Barros§, Roberto C. A. Thom´ek, A. L. M. A. Nogueira¶, Ricardo C. Paschoal+, and Hil´ario A. Rodrigues∗ Centro Federal de Educa¸c˜ao Tecnol´ogica Celso Suckow da Fonseca – CEFET/RJ Departamento de F´ısica – DEPES Av. Maracan˜a229, 20271-110, Rio de Janeiro, RJ, Brazil Abstract. Sonoluminescence (SL) is the phenomenon in which acoustic energy is (partially) transformed into light. It may occur by means of many or just one bubble of gas inside a liquid medium, giving rise to the terms multi-bubble- and single-bubble sonoluminescence (MBSL and SBSL). In the last years some models have been proposed to explain this phenomenon, but there is still no complete theory for the light emission mechanism (especially in the case of SBSL). In this work, we will not address this more complicated particular issue, but only present a simple model describing the dynamical behaviour of the sonoluminescent bubble, in the SBSL case. Using simple numerical techniques within the software Matlab, we discuss solutions considering various possibilities for some of the parameters involved: liquid compressibility, superficial tension, viscosity, and type of gas. The model may be used as an introductory study of sonoluminescence in physics courses at undergraduate or graduate levels, as well as a quite clarifying example of a physical system exhibiting large nonlinearity. arXiv:1407.5531v1 [physics.ed-ph] 18 Jul 2014 ‡ E-mail: [email protected] § E-mail: [email protected] k E-mail: [email protected] ¶ E-mail: [email protected] + E-mail: [email protected] ∗ E-mail: [email protected] Single bubble sonoluminescence 2 1.
    [Show full text]
  • Emulsification by Ultrasound: Relation Between Intensity and Emulsion Quality
    Indian Journal of Chemical Technology Vol. 4, November 1997, pp. 277-284 Emulsification by ultrasound: Relation between intensity and emulsion quality Sukti Mujumdar, P Senthil Kumar & A B Pandit* Department of Chemical Technology, University ofMumbai, Matunga, Mumbai 400 019. Received 28 April 1997; accepted 15 September 1997 Ultrasonic emulsification of oil and water was carried out and the effect of position of the ultrasound source from the interface on emulsion quality was studied using ultrasonic bath and horn. Correlations for the effect of distance of the ultrasound source from the interface on various emulsion properties such as dispersed phase fraction, droplet diameter were developed. Large variation in the emulsion properties with small changes in the position of ultrasound source was observed and correlated with an exponential type of equation. Discrepancies in the results of heterogeneous liquid phase systems reported in the literature were attributed to the small changes in the location of ultrasound source. Severe attenuation of ultrasound intensity by the oil layer was quantitatively established using decomposition of aqueous KI solution as a model reaction. The droplet diameter was predicted using Kolmogorov eddy length model. The collapse pressure developed in cavitation was determined indirectly and compares favorably with the reported values. The highly localised nature of cavitation phenomenon is also well established as a cause for the variation in the emulsion quality. Heterogeneous liquid-liquid systems hold an cavitationI. Ultrasound as a source is the one that important place in the domain of chemical has been studied extensively and commercially engineering. The success of the above systems that exploited to a significant extent.
    [Show full text]
  • A Review on Sonochemistry and Its Environmental Applications
    acoustics Review A Review on Sonochemistry and Its Environmental Applications Ba¸sakSavun-Hekimo˘glu Institute of Marine Sciences and Management, Istanbul University, 34134 Istanbul,˙ Turkey; [email protected] Received: 10 September 2020; Accepted: 23 October 2020; Published: 25 October 2020 Abstract: Sonochemistry is a significant contributor to green science as it includes: (i) the use of less toxic compounds and environmentally safe solvents, (ii) improvement of reaction conditions and selectivity, (iii) no toxic sludge generation, (iv) reduction in the energy use for chemical transformations, (v) reusability of materials. In water and wastewater treatment, ultrasound is used as an advanced oxidation process to eliminate refractory pollutants. Ultrasound is also used as a very effective sludge pretreatment technology in wastewater treatment plants to facilitate biogas production. Moreover, sonochemical synthesis of nanoparticles has recently attracted great attention as a greener protocol. This paper presents the main applications of ultrasound in environmental remediation and protection. The study also introduces mechanism for the degradation of pollutants from water via sonication in aqueous media and the principle factors affecting the cavitational effect. Keywords: ultrasound; sonocatalysis; water treatment; sludge pretreatment; nanomaterials 1. Introduction to Sonochemistry Sonochemistry is a field that studies the enhancement of chemical reaction and mass transfer rates under various ultrasonic conditions. Ultrasound is characterized as any sound wave at frequencies above normal human ear hearing range (i.e., above 16 kHz). The mechanism causing sonochemical effects in liquids is the phenomenon of acoustic cavitation. When ultrasound waves propagate in a liquid medium, they generate a repeating pattern of compressions and rarefactions to supply energy to the liquid phase.
    [Show full text]
  • Observation of Elliptically Polarized Light from Total Internal Reflection in Bubbles
    Observation of elliptically polarized light from total internal reflection in bubbles Item Type Article Authors Miller, Sawyer; Ding, Yitian; Jiang, Linan; Tu, Xingzhou; Pau, Stanley Citation Miller, S., Ding, Y., Jiang, L. et al. Observation of elliptically polarized light from total internal reflection in bubbles. Sci Rep 10, 8725 (2020). https://doi.org/10.1038/s41598-020-65410-5 DOI 10.1038/s41598-020-65410-5 Publisher NATURE PUBLISHING GROUP Journal SCIENTIFIC REPORTS Rights Copyright © The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License. Download date 29/09/2021 02:08:57 Item License https://creativecommons.org/licenses/by/4.0/ Version Final published version Link to Item http://hdl.handle.net/10150/641865 www.nature.com/scientificreports OPEN Observation of elliptically polarized light from total internal refection in bubbles Sawyer Miller1,2 ✉ , Yitian Ding1,2, Linan Jiang1, Xingzhou Tu1 & Stanley Pau1 ✉ Bubbles are ubiquitous in the natural environment, where diferent substances and phases of the same substance forms globules due to diferences in pressure and surface tension. Total internal refection occurs at the interface of a bubble, where light travels from the higher refractive index material outside a bubble to the lower index material inside a bubble at appropriate angles of incidence, which can lead to a phase shift in the refected light. Linearly polarized skylight can be converted to elliptically polarized light with efciency up to 53% by single scattering from the water-air interface. Total internal refection from air bubble in water is one of the few sources of elliptical polarization in the natural world.
    [Show full text]
  • A Monte Carlo Ray Tracing Study of Polarized Light Propagation in Liquid Foams
    ARTICLE IN PRESS Journal of Quantitative Spectroscopy & Radiative Transfer 104 (2007) 277–287 www.elsevier.com/locate/jqsrt A Monte Carlo ray tracing study of polarized light propagation in liquid foams J.N. Swamya,Ã, Czarena Crofchecka, M. Pinar Mengu¨c- b,ÃÃ aDepartment of Biosystems and Agricultural Engineering, 128 C E Barnhart Building, University of Kentucky, Lexington, KY 40546, USA bDepartment of Mechanical Engineering, 269 Ralph G. Anderson Building, University of Kentucky, Lexington, KY 40506, USA Received 10 July 2006; accepted 28 July 2006 Abstract A Monte Carlo ray tracing scheme is used to investigate the propagation of an incident collimated beam of polarized light in liquid foams. Cellular structures like foam are expected to change the polarization characteristics due to multiple scattering events, where such changes can be used to monitor foam dynamics. A statistical model utilizing some of the recent developments in foam physics is coupled with a vector Monte Carlo scheme to compute the depolarization ratios via Stokes–Mueller formalism. For the simulations, the incident Stokes vector corresponding to horizontal linear polarization and right circular polarization are considered. It is observed that bubble size and the polydispersity parameter have a significant effect on the depolarization ratios. This is partially owing to the number of total internal reflection events in the Plateau borders. The results are discussed in terms of applicability of polarized light as a diagnostic tool for monitoring foams. r 2006 Elsevier Ltd. All rights reserved. Keywords: Polarized light scattering; Liquid foams; Bubble size; Polydispersity; Foam characterization; Foam diagnostics; Cellular structures 1. Introduction Liquid foams are random packing of bubbles in a small amount of immiscible liquid [1] and can be found in a wide variety of applications.
    [Show full text]
  • The Synergistic Effect of Focused Ultrasound and Biophotonics to Overcome the Barrier of Light Transmittance in Biological Tissue
    Photodiagnosis and Photodynamic Therapy 33 (2021) 102173 Contents lists available at ScienceDirect Photodiagnosis and Photodynamic Therapy journal homepage: www.elsevier.com/locate/pdpdt The synergistic effect of focused ultrasound and biophotonics to overcome the barrier of light transmittance in biological tissue Jaehyuk Kim a,b, Jaewoo Shin c, Chanho Kong c, Sung-Ho Lee a, Won Seok Chang c, Seung Hee Han a,d,* a Molecular Imaging, Princess Margaret Cancer Centre, Toronto, ON, Canada b Health and Medical Equipment, Samsung Electronics Co. Ltd., Suwon, Republic of Korea c Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea d Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada ARTICLE INFO ABSTRACT Keywords: Optical technology is a tool to diagnose and treat human diseases. Shallow penetration depth caused by the high Light transmission enhancement optical scattering nature of biological tissues is a significantobstacle to utilizing light in the biomedical field. In Focused Ultrasound this paper, light transmission enhancement in the rat brain induced by focused ultrasound (FUS) was observed Air bubble and the cause of observed enhancement was analyzed. Both air bubbles and mechanical deformation generated Mechanical deformation by FUS were cited as the cause. The Monte Carlo simulation was performed to investigate effects on transmission Rat brain by air bubbles and finiteelement method was also used to describe mechanical deformation induced by motions of acoustic particles. As a result, it was found that the mechanical deformation was more suitable to describe the transmission change according to the FUS pulse observed in the experiment. 1.
    [Show full text]
  • Ocean Storage
    277 6 Ocean storage Coordinating Lead Authors Ken Caldeira (United States), Makoto Akai (Japan) Lead Authors Peter Brewer (United States), Baixin Chen (China), Peter Haugan (Norway), Toru Iwama (Japan), Paul Johnston (United Kingdom), Haroon Kheshgi (United States), Qingquan Li (China), Takashi Ohsumi (Japan), Hans Pörtner (Germany), Chris Sabine (United States), Yoshihisa Shirayama (Japan), Jolyon Thomson (United Kingdom) Contributing Authors Jim Barry (United States), Lara Hansen (United States) Review Editors Brad De Young (Canada), Fortunat Joos (Switzerland) 278 IPCC Special Report on Carbon dioxide Capture and Storage Contents EXECUTIVE SUMMARY 279 6.7 Environmental impacts, risks, and risk management 298 6.1 Introduction and background 279 6.7.1 Introduction to biological impacts and risk 298 6.1.1 Intentional storage of CO2 in the ocean 279 6.7.2 Physiological effects of CO2 301 6.1.2 Relevant background in physical and chemical 6.7.3 From physiological mechanisms to ecosystems 305 oceanography 281 6.7.4 Biological consequences for water column release scenarios 306 6.2 Approaches to release CO2 into the ocean 282 6.7.5 Biological consequences associated with CO2 6.2.1 Approaches to releasing CO2 that has been captured, lakes 307 compressed, and transported into the ocean 282 6.7.6 Contaminants in CO2 streams 307 6.2.2 CO2 storage by dissolution of carbonate minerals 290 6.7.7 Risk management 307 6.2.3 Other ocean storage approaches 291 6.7.8 Social aspects; public and stakeholder perception 307 6.3 Capacity and fractions retained
    [Show full text]
  • Bubble-Mania the Bubbling Clues to Magma Viscosity and Eruptions
    Earthlearningidea - http://www.earthlearningidea.com/ Bubble-mania The bubbling clues to magma viscosity and eruptions Pour a viscous liquid (eg. honey, syrup) into Honey and a one transparent container and a pale-coloured soft drink – ready for soft drink (eg. ginger beer) or just coloured bubble-mania. water into another. Put both of these onto a plastic tray or table. Ask your pupils to use a drinking straw to blow bubbles into the soft Apparatus photo: drink, then ask them to ‘use the same blow’ to Chris King blow bubbles in the more viscous liquid. When nothing happens, ask them to blow harder until the liquid ‘erupts’. Ask: • How were the ‘eruptions’ different? • How were the bubbles different? • What caused the differences? • Some volcanoes have magmas that are Magma fountain ‘runny’ (like the soft drink) and some have within the crater much more viscous magmas (like the other of Volcan liquid) – how might these volcanoes erupt Villarrica, Pucón, differently? Chile. • Which sort of eruption would you most like to This file is see – one with low viscosity (runny) magma, licensed by Jonathan Lewis like the soft drink, or one with high viscosity under the Creative (thick) magma like the viscous liquid? Commons Attribution-Share Alike 2.0 Generic license. ……………………………………………………………………………………………………………………………… The back up Title: Bubble-mania • How were the ‘eruptions’ different? It was easy to blow bubbles into the soft drink Subtitle: The bubbling clues to magma viscosity and it ‘fizzed’ a bit, but the bubbles soon and eruptions disappeared; it was much harder to blow bubbles into the viscous liquid and they grew Topic: A simple test of the viscosity of two similar- large and sometimes burst out of the container looking liquids, linked to volcanic eruption style.
    [Show full text]
  • CLIMATE CHANGE, DOLPHINS, SPACESHIPS and ANTIMI- CROBIAL RESISTANCE - the IMPACT of BUBBLE ACOUSTICS Timothy G
    CLIMATE CHANGE, DOLPHINS, SPACESHIPS AND ANTIMI- CROBIAL RESISTANCE - THE IMPACT OF BUBBLE ACOUSTICS Timothy G. Leighton Institute of Sound and Vibration Research, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK email: [email protected] Bubbles couple to sound fields to an extraordinary extent, generating and scattering sound, and changing the chemical, physical and biological environments around them when excited to pul- sate by an appropriate sound field. This paper accompanies a plenary lecture, opening with the way that the sound emitted by bubbles, when they are injected into the ocean by breaking waves, helps track the >1 billion tonnes of atmospheric carbon that transfers between atmosphere and ocean annually. However, compared to carbon dioxide, atmospheric methane has at least 20 times the ability, per molecule, to generate ‘greenhouse’ warming. Worldwide there is more than twice the amount of carbon trapped in the seabed in the form of methane hydrate than the amount of carbon worldwide in all other known conventional fossil fuels. Acoustics can track the release of bubbles of seabed methane as this hydrate dissociates in response to increasing ocean tempera- tures, an effect cited by some as a possible climate apocalypse. Continuing the methane theme, this paper discusses the sounds of methane/ethane ‘waterfalls’ on Titan, Saturn’s largest moon, before returning to Earth’s oceans to discuss how whales and dolphins might use the interaction between sound
    [Show full text]
  • Beamed UV Sonoluminescence by Aspherical Air Bubble Collapse Near Liquid-Metal Microparticles Bradley Boyd1,2, Sergey A
    www.nature.com/scientificreports OPEN Beamed UV sonoluminescence by aspherical air bubble collapse near liquid-metal microparticles Bradley Boyd1,2, Sergey A. Suslov3, Sid Becker1, Andrew D. Greentree4 & Ivan S. Maksymov5* Irradiation with UV-C band ultraviolet light is one of the most commonly used ways of disinfecting water contaminated by pathogens such as bacteria and viruses. Sonoluminescence, the emission of light from acoustically-induced collapse of air bubbles in water, is an efcient means of generating UV-C light. However, because a spherical bubble collapsing in the bulk of water creates isotropic radiation, the generated UV-C light fuence is insufcient for disinfection. Here we show, based on detailed theoretical modelling and rigorous simulations, that it should be possible to create a UV light beam from aspherical air bubble collapse near a gallium-based liquid-metal microparticle. The beam is perpendicular to the metal surface and is caused by the interaction of sonoluminescence light with UV plasmon modes of the metal. We estimate that such beams can generate fuences exceeding 10 mJ/cm2, which is sufcient to irreversibly inactivate most common pathogens in water with the turbidity of more than 5 Nephelometric Turbidity Units. The ability of UV-C light (200–280 nm) to inactivate bacteria, viruses and protozoa is widely used as an environmentally-friendly, chemical-free and highly efective means of disinfecting and safeguarding water against pathogens responsible for cholera, polio, typhoid, hepatitis and other bacterial, viral and parasitic diseases1. UV-C light inactivates pathogens through absorption of radiation energy by their cellular RNA and DNA prompting the formation of new bonds between adjacent nucleotides.
    [Show full text]