Sonochemical Synthesis of Highly Fluorescent Ag Nanoclusters

Total Page:16

File Type:pdf, Size:1020Kb

Sonochemical Synthesis of Highly Fluorescent Ag Nanoclusters ARTICLE Sonochemical Synthesis of Highly Fluorescent Ag Nanoclusters Hangxun Xu and Kenneth S. Suslick* School of Chemical Sciences, University of Illinois at UrbanaOChampaign, Urbana, Illinois 61801 ven smaller than nanoparticles, noble metal nanoclusters consist of several ABSTRACT Highly fluorescent, stable, water-soluble Ag nanoclusters have been successfully prepared via a E ϳ to 100 metal atoms and possess convenient sonochemical approach using a simple polyelectrolyte, polymethylacrylic acid (PMAA), as a capping sizes comparable to the Fermi wavelength agent. The optical and fluorescence properties of the Ag nanoclusters can be easily controlled by varying the of electrons (i.e., the de Broglie wavelength synthetic conditions, such as sonication time, stoichiometry of the carboxylate groups to Ag؉, and polymer of the electrons at the Fermi level: ϳ0.5 nm molecular weight. for Ag and Au). Such nanoclusters have re- ceived increasing attention in recent years because their optical, electrical, and chemi- KEYWORDS: fluorescence · nanoclusters · silver · sonochemistry · ultrasound cal properties are significantly different than their larger cousins (i.e., noble metal nanoparticles).1Ϫ5 These nanoclusters are clusters in aqueous solutions using a com- of significant interest because they provide mon polyelectrolyte, polymethylacrylic acid (PMAA), as the capping agent to stabilize the bridge between atomic and nanoparti- and protect the Ag nanoclusters in the cle behavior in noble metals. Silver and gold solution. nanoclusters are generally fluorescent upon Sonochemistry has found important syn- photoexcitation.2,6Ϫ9 Silver nanoclusters are thetic applications in materials especially fluorescent and have been chemistry.29,30 The chemical effects of high proved to be excellent fluorophores for intensity ultrasound derive primarily from chemical sensing, bioimaging, and single- acoustic cavitation: the formation, growth, molecule studies after the observation of and implosive collapse bubbles in a liquid fluorescence from Ag nanoclusters.10Ϫ17 irradiated with ultrasound.31,32 Localized hot The synthesis of Ag nanoclusters in spots with temperatures of ϳ5000 K and aqueous solutions, however, is difficult be- pressures of hundreds of bars can be gener- cause Ag nanoclusters tend to aggregate: ated during ultrasonic irradiation of wa- Ag nanoclusters will grow continuously, ter.32 As a consequence, highly reactive spe- forming larger nanoparticles and reducing ● ● ● cies, including HO2 ,H,OH, and perhaps their surface energy, until their growth is Ϫ eaq , are formed during aqueous stopped by preformed templates or cap- sonolysis,33Ϫ36 similar to the effects of ␥-ray ping agents. DNA, polymers, dendrimers, or deep-UV irradiation of aqueous solutions. polymer capsules, polymer microgels, and While there have been a number of excel- multiarm star polymers have each been lent studies on the preparation of noble used as protecting and stabilizing agents metal nanoparticles by sonochemical re- to prepare fluorescent Ag nanoclusters in ductions in aqueous or alcohol 18Ϫ27 aqueous solutions. Water-soluble solutions,37Ϫ42 to the best of our knowl- *Address correspondence to highly fluorescent Ag nanoclusters have edge, there is no prior report of the synthe- [email protected]. been prepared from the radiolytic, chemi- sis of ultrasmall metal nanoclusters using a Received for review May 6, 2010 cal, or photochemical reduction of silver sonochemical method. and accepted May 24, 2010. salts in aqueous solutions containing such Published online May 27, 2010. 2,28 capping agents. Here we present a new RESULTS AND DISCUSSION 10.1021/nn100987k and easily controlled sonochemical synthe- Sonochemical reduction of Agϩ still re- sis of water-soluble fluorescent Ag nano- quires the use of a template or capping © 2010 American Chemical Society www.acsnano.org VOL. 4 ▪ NO. 6 ▪ 3209–3214 ▪ 2010 3209 ARTICLE -Figure 1. (a) UV؊vis spectra and (b) fluorescence emission spectra of the solution containing PMAA and AgNO3 after in creasing length of sonication time; the excitation spectrum shown in (b) corresponds to the 90 min sample with an emission wavelength of 610 nm (inset: solution of the Ag nanoclusters illuminated by a UV lamp with 365 nm excitation). TEM images of as-prepared Ag nanoclusters from different lengths of sonication: (c) 60 min, (d) 90 min (inset shows a single magnified Ag nanocluster), and (e) 180 min. agent to prevent the aggregation of Ag nanoclusters also serves as OH● radical scavengers to prevent oxida- to form large Ag nanoparticles. PMAA (whose carboxy- tion of small silver clusters to form silver oxide.44,45 lic acid groups have a strong affinity for silver ions and Meanwhile, the secondary radicals formed from reac- silver surfaces) has been shown to be a versatile tem- tion of PMAA with OH● exhibit strong reducing power plate for preparing Ag nanoclusters under UV and produce Ag atoms associated with the polymer irradiation.25,43 The charged carboxylate groups pro- chains. vide stability for Ag nanoclusters and prevent further We demonstrate that sonication of aqueous AgNO3 growth of nanoclusters to large nanoparticles. PMAA solutions with dissolved PMAA results in the formation of Ag nanoclusters. To prepare Ag nanoclusters, a freshly prepared solution of AgNO3 was mixed with an aqueous PMAA (Mw ϭ 9500, sodium salt) solution. The molar ratio of carboxylate groups (from the methacrylic acid units) to Agϩ was 1:1. The pH value of the result- ing solution was adjusted to 4.5 to form a compacted coil conformation of PMAA, which has been claimed to favor the formation of Ag nanoclusters.43 The solution was sparged with Ar for 2 h and then sonicated for vari- ous time intervals. As shown in Figure 1a, upon sonica- tion, the initially colorless solution gradually turns pink (90 min) and then dark red (180 min). The resulting Ag nanoclusters are highly fluorescent (Figure 1b) and have been characterized by transmission electron mi- croscopy (TEM) (Figure 1cϪe), which shows that the Figure 2. Fluorescence emission spectra of sonochemically pre- pared Ag nanoclusters (90 min sonication) at different excitation sonochemically prepared Ag nanoclusters are less than wavelengths. 2 nm in diameter. These ultrasmall Ag nanoclusters are 3210 VOL. 4 ▪ NO. 6 ▪ XU AND SUSLICK www.acsnano.org ARTICLE Figure 3. (a) Absorption spectra and (b) fluorescence emission spectra of sonochemically prepared fluorescent Ag nano- -clusters (60 min sonication) from samples with different ratios of polymethylacrylic acid carboxylate groups to Ag؉,asla beled. The excitation spectra are identical to that of Figure 1b. more clearly visible with a dark-field image, as shown Furthermore, the Ag nanoclusters sonochemically pre- in Figure S1 in Supporting Information. pared are stable under Ar; essentially no change in fluo- The evolution of absorption and fluorescence of rescence intensity was observed even after 1 month the sonochemically prepared Ag nanoclusters with du- storage in the dark (under Ar). ration of sonication has proved interesting. Before son- There is a strong relationship between a Ag nano- ication, the solution showed no absorption in the range cluster size and its fluorescence excitation and emis- of 300Ϫ800 nm. After 10 min sonication, a peak around sion wavelengths.23,43 We clearly have a distribution of 440 nm appeared and further sonication increases the Ag nanocluster sizes present, as revealed in Figure 2, intensity of this peak. As sonication continues (Figure which shows the emission spectra of Ag nanocluster so- 1a), a shoulder at 520 nm grows in, the peak at 440 nm lutions at various excitation wavelengths. For excita- gradually disappears, the 520 nm peak gradually blue tion wavelengths between 450 and 570 nm, the maxi- shifts to 490 nm, and finally a new absorption peak mum emission is observed at an excitation wavelength around 390 nm begins to emerge after sonicating for of 510 nm. The emission maximum was found to shift 180 min. A similar trend has been observed in UV- to longer wavelengths with increasing excitation wave- irradiated formation of Ag nanoclusters in polymer mi- lengths, which confirms a distribution of Ag nanoclus- crogels.21 Absorbance in the region from 440 to 520 nm ters with different numbers of Ag atoms.23,43 Note that has been observed previously and ascribed to the for- essentially all Ag nanoclusters prepared to date by any mation of Ag nanoclusters, with shorter wavelength synthetic method show a similar phenomenon; that is, corresponding to smaller nanoclusters.21 The peak at the emission maximum shifts as the excitation wave- 390 nm is the characteristic surface plasmon band of length varies. The ability to control nanocluster distribu- larger Ag nanoparticles. tion to a single nanocluster size has not yet been A distinctive feature of our Ag nanoclusters is their achieved. Ϫ strong fluorescence, which is not observed for Ag nano- The stoichiometry of the carboxylate groups (RCO2 ) particles. An intense fluorescence emission band to Agϩ also plays an important role in the preparation around 610 nm is observed upon excitation at 510 nm of water-soluble fluorescent Ag nanoclusters. Figure 3 (Figure 1b). The maximum emission intensity occurs for shows the absorption and emission spectra of Ag nan- Ϫ ϩ Ag nanoclusters produced by sonication for 90 min. oclusters with different RCO2 /Ag ratios produced un- Prolonged sonication led to the gradual decrease of der the same sonication time with the same Agϩ con- Ϫ ϩ the fluorescence intensity as formation of large nonflu- centration. Excess carboxylate groups (RCO2 /Ag ϭ orescent Ag nanoparticles occurred (as confirmed in the 4/1 or 2/1) lead to the formation of smaller Ag nanoclus- absorption spectra plasmon band at 390 nm and by di- ters with an absorption peak around 440 nm, while Ϫ ϩ rect observation in the TEM, Figure 1e). The correspond- fewer carboxylate groups (RCO2 /Ag ϭ 1/4 or 1/8) ing fluorescence excitation spectrum at 90 min was re- yield larger Ag nanoclusters with an absorption peak Ϫ ϩ corded, which exhibited a peak at 510 nm and a weak around 520 nm.
Recommended publications
  • Understanding and Optimising Sonication Conditions for Crystallisation Processes
    Buenos Aires – 5 to 9 September, 2016 Acoustics for the 21st Century… PROCEEDINGS of the 22nd International Congress on Acoustics Sonochemistry and Sonoprocessing: Paper ICA2016-202 Understanding and optimising sonication conditions for crystallisation processes Nnamdi Ugochukwu(a), Madeleine Bussemaker(b), Judy Lee(c) (a)-(c) Chemical and Process Engineering University of Surrey, United Kingdom, [email protected] Abstract Crystallisation is a common technique adopted by many industries for separation and purification operations but it can suffer from unpredictable nucleation rates and inconsistencies in product qualities. To remediate these problems, ultrasound has been used to facilitate and control nucleation of crystals (sonocrystallisation), resulting in a more consistent and narrower size distribution of product. However, the mechanism behind sonocrystallization process is contentious and often reported is the continuous sonication of the system, which causes issues such as heating, probe surface erosion and cost of additional input energy. This study examines the influence of cavitation activity and different modes of pulse sonication on the crystallisation process. The results show a close association between cavitation activity, quantified in terms of sonoluminescence intensity, and the minimum crystal size obtained. In addition, the initial short sonication time 5 seconds proves to be effective for sonocrystallisation, showing results that are comparable to systems undergone 90seconds of sonication. Keywords: Acoustic cavitation, sonocrystallisation, sonoluminescence. 22nd International Congress on Acoustics, ICA 2016 Buenos Aires – 5 to 9 September, 2016 Acoustics for the 21st Century… Understanding and optimising sonication conditions for crystallisation processes 1 Introduction Antisolvent crystallisation is a common technique adopted by many industries for separation or purification operations[1].
    [Show full text]
  • Ultrasound Induced Cavitation and Resonance Amplification Using Adaptive Feedback Control System
    Master's Thesis Electrical Engineering Ultrasound induced cavitation and resonance amplification using adaptive feedback Control System Vipul. Vijigiri Taraka Rama Krishna Pamidi This thesis is presented as part of Degree of Master of Science in Electrical Engineering with Emphasis on Signal Processing Blekinge Institute of Technology (BTH) September 2014 Blekinge Institute of Technology, Sweden School of Engineering Department of Electrical Engineering (AET) Supervisor: Dr. Torbjörn Löfqvist, PhD, LTU Co- Supervisor: Dr. Örjan Johansson, PhD, LTU Shadow Supervisor/Examiner: Dr. Sven Johansson, PhD, BTH Ultrasound induced cavitation and resonance amplification using adaptive feedback Control System Master`s thesis Vipul, Taraka, 2014 Performed in Electrical Engineering, EISlab, Dep’t of Computer Science, Electrical and Space Engineering, Acoustics Lab, dep’t of Acoustics at Lulea University of Technology ii | Page This thesis is submitted to the Department of Applied signal processing at Blekinge Institute of Technology in partial fulfilment of the requirements for the degree of Master of Science in Electrical Engineering with emphasis on Signal Processing. Contact Information: Authors: Vipul Vijigiri Taraka Rama Krishna Pamidi Dept. of Applied signal processing Blekinge Institute of Technology (BTH), Sweden E-mail: [email protected],[email protected] E-mail: [email protected], [email protected] External Advisors: Dr. Torbjörn Löfqvist Department of Computer Science, Electrical and Space Engineering Internet: www.ltu.se Luleå University of technology (LTU), Sweden Phone: +46 (0)920-491777 E-mail: [email protected] Co-Advisor: Dr. Örjan Johansson Internet: www.ltu.se Department of the built environment and natural resources- Phone: +46 (0)920-491386 -Operation, maintenance and acoustics Luleå University of technology (LTU), Sweden E-mail: [email protected] University Advisor/Examiner: Dr.
    [Show full text]
  • Emulsification by Ultrasound: Relation Between Intensity and Emulsion Quality
    Indian Journal of Chemical Technology Vol. 4, November 1997, pp. 277-284 Emulsification by ultrasound: Relation between intensity and emulsion quality Sukti Mujumdar, P Senthil Kumar & A B Pandit* Department of Chemical Technology, University ofMumbai, Matunga, Mumbai 400 019. Received 28 April 1997; accepted 15 September 1997 Ultrasonic emulsification of oil and water was carried out and the effect of position of the ultrasound source from the interface on emulsion quality was studied using ultrasonic bath and horn. Correlations for the effect of distance of the ultrasound source from the interface on various emulsion properties such as dispersed phase fraction, droplet diameter were developed. Large variation in the emulsion properties with small changes in the position of ultrasound source was observed and correlated with an exponential type of equation. Discrepancies in the results of heterogeneous liquid phase systems reported in the literature were attributed to the small changes in the location of ultrasound source. Severe attenuation of ultrasound intensity by the oil layer was quantitatively established using decomposition of aqueous KI solution as a model reaction. The droplet diameter was predicted using Kolmogorov eddy length model. The collapse pressure developed in cavitation was determined indirectly and compares favorably with the reported values. The highly localised nature of cavitation phenomenon is also well established as a cause for the variation in the emulsion quality. Heterogeneous liquid-liquid systems hold an cavitationI. Ultrasound as a source is the one that important place in the domain of chemical has been studied extensively and commercially engineering. The success of the above systems that exploited to a significant extent.
    [Show full text]
  • A Review on Sonochemistry and Its Environmental Applications
    acoustics Review A Review on Sonochemistry and Its Environmental Applications Ba¸sakSavun-Hekimo˘glu Institute of Marine Sciences and Management, Istanbul University, 34134 Istanbul,˙ Turkey; [email protected] Received: 10 September 2020; Accepted: 23 October 2020; Published: 25 October 2020 Abstract: Sonochemistry is a significant contributor to green science as it includes: (i) the use of less toxic compounds and environmentally safe solvents, (ii) improvement of reaction conditions and selectivity, (iii) no toxic sludge generation, (iv) reduction in the energy use for chemical transformations, (v) reusability of materials. In water and wastewater treatment, ultrasound is used as an advanced oxidation process to eliminate refractory pollutants. Ultrasound is also used as a very effective sludge pretreatment technology in wastewater treatment plants to facilitate biogas production. Moreover, sonochemical synthesis of nanoparticles has recently attracted great attention as a greener protocol. This paper presents the main applications of ultrasound in environmental remediation and protection. The study also introduces mechanism for the degradation of pollutants from water via sonication in aqueous media and the principle factors affecting the cavitational effect. Keywords: ultrasound; sonocatalysis; water treatment; sludge pretreatment; nanomaterials 1. Introduction to Sonochemistry Sonochemistry is a field that studies the enhancement of chemical reaction and mass transfer rates under various ultrasonic conditions. Ultrasound is characterized as any sound wave at frequencies above normal human ear hearing range (i.e., above 16 kHz). The mechanism causing sonochemical effects in liquids is the phenomenon of acoustic cavitation. When ultrasound waves propagate in a liquid medium, they generate a repeating pattern of compressions and rarefactions to supply energy to the liquid phase.
    [Show full text]
  • Ultrasonic Dispersion of Nanoparticles for Environmental, Health and Safety Assessment – Issues and Recommendations
    Nanotoxicology, 2010; Early Online, 1–19 Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment – issues and recommendations JULIAN S. TAUROZZI1, VINCENT A. HACKLEY1, & MARK R. WIESNER2 1Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, and 2Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA (Received 9 July 2010; accepted 28 September 2010) Abstract Studies designed to investigate the environmental or biological interactions of nanoscale materials frequently rely on the use of ultrasound (sonication) to prepare test suspensions. However, the inconsistent application of ultrasonic treatment across laboratories, and the lack of process standardization can lead to significant variability in suspension characteristics. At present, there is widespread recognition that sonication must be applied judiciously and reported in a consistent manner that is quantifiable and reproducible; current reporting practices generally lack these attributes. The objectives of the present work were to: (i) Survey potential sonication effects that can alter the physicochemical or biological properties of dispersed nanomaterials (within the context of toxicity testing) and discuss methods to mitigate these effects, (ii) propose a method for standardizing the measurement of sonication power, and (iii) offer a set of reporting guidelines to facilitate the reproducibility of studies involving engineered nanoparticle suspensions obtained
    [Show full text]
  • Applications of Ultrasound to Materials Chemistry
    P1: PSA/SKH/SPD P2: PSA/APR/MBG QC: APR June 8, 1999 13:44 Annual Reviews AR086-10 Annu. Rev. Mater. Sci. 1999. 29:295–326 Copyright c 1999 by Annual Reviews. All rights reserved APPLICATIONS OF ULTRASOUND TO MATERIALS CHEMISTRY Kenneth S. Suslick Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; e-mail: [email protected] Gareth J. Price Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom; e-mail: [email protected] KEY WORDS: sonochemistry, cavitation, polymer chemistry, nanostructure, heterogeneous catalysis, biomaterials ABSTRACT The chemical effects of ultrasound derive primarily from acoustic cavitation. Bubble collapse in liquids results in an enormous concentration of energy from the conversion of the kinetic energy of the liquid motion into heating of the con- tents of the bubble. The high local temperatures and pressures, combined with extraordinarily rapid cooling, provide a unique means for driving chemical re- actions under extreme conditions. A diverse set of applications of ultrasound to enhance chemical reactivity has been explored with important uses in synthetic materials chemistry. For example, the sonochemical decomposition of volatile organometallic precursors in low-volatility solvents produces nanostructured ma- terials in various forms with high catalytic activities. Nanostructured metals, alloys, oxides, carbides and sulfides, nanometer colloids, and nanostructured supported catalysts can all be prepared by this general route. Another important application of sonochemistry in materials chemistry has been the preparation of biomaterials, most notably protein microspheres. Such microspheres have a wide range of biomedical applications, including their use in echo contrast agents for sonography, magnetic resonance imaging, contrast enhancement, and oxygen or drug delivery.
    [Show full text]
  • Sonication-Induced Modification of Carbon Nanotubes
    materials Article Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites Rossella Arrigo 1,2,* ID , Rosalia Teresi 1, Cristian Gambarotti 3, Filippo Parisi 4 ID , Giuseppe Lazzara 4 ID and Nadka Tzankova Dintcheva 1 1 Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy; [email protected] (R.T.); [email protected] (N.T.D.) 2 Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Viale T. Michel 5, 15121 Alessandria, Italy 3 Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy; [email protected] 4 Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; fi[email protected] (F.P.); [email protected] (G.L.) * Correspondence: [email protected]; Tel.: +39-013-122-9363 Received: 25 January 2018; Accepted: 1 March 2018; Published: 5 March 2018 Abstract: The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT’s original length occurs with increased sonication time.
    [Show full text]
  • Applications of Ultrasound to Materials Chemistry
    bubble is in resonance, it is well-coupled to the sound field, it can absorb energy efficiently, and it can grow rapidly in a single cycle. Once it has grown, however, Applications it is no longer well-coupled to the sound field. At this point, the surface tension of the liquid combined with the next com- pression wave implosively collapse the of Ultrasound bubble on a submicrosecond time frame. A shock wave can be generated in the gas of the bubble in addition to the simple compressional heating of the gas. to Materials When gas is compressed, heating results. When gas is compressed this rapidly, the heating is nearly adiabatic. The heat has no time to flow out, so a very localized, Chemistry transient hot spot forms, and that hot spot is responsible for the chemistry that Kenneth S. Suslick is observed. The conditions formed during that transient cavitation are extreme. We have been able to measure temperatures and The following is an edited transcription of compresses this cavity, then another ex- pressures by comparative rate ther- the address that Kenneth S. Suslick, recipient pansion wave re-expands it. So we have mometry and by using sonolumines- of an MRS Medal Award, gave at the 1994 an oscillating bubble going back and cence as a spectroscopic probe of the MRS Fall Meeting. Suslick received this forth, say, 20,000 times a second. species formed during cavitation. Our honor for "incisive studies of the chemical As this bubble oscillates, it grows current best estimates of the hot-spot effects of ultrasound on solids and surfaces through several mechanisms, one of conditions give temperatures above and the use of sonochemistry as a new syn- which is rectified diffusion.
    [Show full text]
  • Impact of Ultrasonic Frequency on Aqueous Sonoluminescence and Sonochemistry
    3796 J. Phys. Chem. A 2001, 105, 3796-3802 Impact of Ultrasonic Frequency on Aqueous Sonoluminescence and Sonochemistry Michael A. Beckett and Inez Hua* School of CiVil Engineering, Purdue UniVersity, West Lafayette, Indiana 47907-1284 ReceiVed: September 13, 2000; In Final Form: December 8, 2000 A comprehensive investigation of ultrasonic frequency and its role in sonochemical activity and sonolumi- nescence (SL) has been performed. SL spectra and intensity were examined at four frequencies (205, 358, 618, and 1071 kHz) and in the presence of varying argon and oxygen saturation ratios. A series of high- energy reactions induced by the extreme temperatures and pressures obtained within a microbubble during acoustic cavitation contribute to the broad continuum characteristic of SL spectra. Chemical reactivity was also measured at all four frequencies. 1,4-Dioxane decomposition and hydrogen peroxide formation were chosen as representative sonochemical processes. A 358 kHz value was the optimal frequency for maximum SL intensity and chemical reaction rates. The impact of a hydroxyl radical scavenger, bicarbonate ion, on SL intensity and H2O2 formation was also examined. Results from this investigation indicate that nonlinear bubble implosions play a more significant role at lower frequencies whereas higher species flux rates influence chemical reactivity at higher frequencies. Introduction frequency effects on sonochemical activity and SL performed under equivalent reactor conditions. The purpose of this The ultrasonic irradiation of a solution induces acoustic investigation is to understand the impact of frequency and sparge cavitation, a transient process that promotes chemical activity. gas on SL and sonochemical reactivity during ultrasonic Acoustic cavitation is generated by the growth of preexisting irradiation.
    [Show full text]
  • Effect of Amplitude and Pulse in Low Frequency Ultrasound on Oil/Water Emulsions•
    Effect of amplitude and pulse in low frequency ultrasound on • oil/water emulsions María Alejandra Cabrera-Trujillo a, Luz Indira Sotelo-Díaz a*, María Ximena Quintanilla-Carvajal a Maestría en Diseño y Gestión de Procesos, Facultad de Ingeniería, Universidad de La Sabana, Campus Puente del Común, Bogotá, Colombia. [email protected]; [email protected] b Programa Gastronomía. EICEA Universidad de La Sabana, Puente del Común, Bogotá, Colombia. [email protected] Received: March 14th, de 2016. Received in revised form: August 8th, 2016. Accepted: August 31th, 2016 Abstract The application of ultrasound within advanced or emerging technologies requires selecting parameters that depend on the target application. This study evaluated pulse and amplitude parameters of oil/water emulsions (20:80% w/w) using low frequency probe ultrasound equipment (20 KHz). A categorical multilevel factorial design was used with Design Expert® in which the following pulse treatments were defined: continuous, pulse 20:20 (on:off) and pulse 30:30 (on:off), for five minutes. Six amplitudes (30, 36, 42, 48, 54 and 60 µm) were evaluated for the following response variables: separation of phases in emulsion, temperature and accumulated power. The results showed that the best condition to obtain an emulsion with less phase separation was the 20:20 (on:off) treatment with an amplitude of 42 µm. The ultrasound probe application parameters that were obtained will enable the design of stable products from low-fat emulsions. Keywords: Ultrasound probe, low frequency; emulsion; pulse; amplitude; phase separation. Efecto de la amplitud y pulsación en ultrasonido de sonda a baja frecuencia sobre emulsiones aceite/agua Resumen La aplicación de ultrasonido dentro del concepto de tecnologías avanzadas o emergentes, requiere de la selección de parámetros según sea el objetivo de su aplicación.
    [Show full text]
  • Towards Scale-Up of Graphene Production Via Nonoxidizing Liquid Exfoliation Methods Stafford, Jason; Patapas, A; Uzo, N; Matar, O; Petit, C
    Towards scale-up of graphene production via nonoxidizing liquid exfoliation methods Stafford, Jason; Patapas, A; Uzo, N; Matar, O; Petit, C DOI: 10.1002/aic.16174 Document Version Early version, also known as pre-print Citation for published version (Harvard): Stafford, J, Patapas, A, Uzo, N, Matar, O & Petit, C 2018, 'Towards scale-up of graphene production via nonoxidizing liquid exfoliation methods', AIChE Journal, vol. 64, no. 9, pp. 3246-3246. https://doi.org/10.1002/aic.16174 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
    [Show full text]
  • The Chemical Effects of Ultrasound Kenneth S. Suslick Stable Single
    The Chemical Effects of Ultrasound Kenneth S. Suslick School of Chemical Sciences University of Illinois at Urbana-Champaign • Acoustic Cavitation and Hot Spot Conditions • Sonochemical Synthesis of Nanomaterials • Heterogeneous Sonochemistry • Ultrasonic Spray Pyrolysis © 2010, K. S. Suslick Stable Single Bubble Cavitation ACOUSTIC PRESSURE LIQUID DENSITY m) 40 IMPLOSION SHOCKWAVE (?) 20 HOT SPOT BUBBLE RADIUS ( RAPID QUENCHING 0 0 50 100 150 TIME (s) © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Single Bubble Sonoluminescence piezoceramic hydrophone piezoceramic driver Photo in full room light for single bubble in H2SO4; glowing bubble clearly visible to the naked eye at 50 m. © 2010, K. S. Suslick Cavitational Collapse of a Single Bubble Strobed Single Bubble Rmax ~ 50 µm ~ hair diameter Rmin < 500 nm ~ large virus size Pacoustic ~ 1.5 Bar = 52 kHz sbsl ~ 50 ps to 1 ns © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick Lab Scale Sonochemical Rig Power Supply Suppliers: Piezoelectric Sonics & Materials, Transducer Branson, Mysonix, ACE Glass, and Titanium Horn even Aldrich! Collar & O-Rings Gas Inlet/Outlet Cooling Commercial Scale-up: Glass Cell bath Reaction 2 tons/hr coal gob Solution Lewis Corp. 21 kW, 1800 gal. © 2010, K. S. Suslick Multi-Bubble Sonoluminescence: 85% Sulfuric Acid 1 cm Ti horn 50 µm © 2010, K. S. Suslick © K. S. Suslick, 2007. www.scs.uiuc.edu/suslick What Are the Conditions Inside? Sonoluminescence as a Spectroscopic Probe © 2010, K. S. Suslick MBSL from Cr(CO)6 in Hexadecane 1200 Cr* 1000 800 600 Cr * Cr * Intensity 400 CH * C2 * C2 * 200 background continuum 0 350 400 450 500 550 600 Wavelength (nm) © 2010, K.
    [Show full text]