North American Robotics Growing, but Faces Global Challenges
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Irobot Corporation Irobot Designs, Develops and Sells Robots That Make a Difference
iRobot Corporation iRobot designs, develops and sells robots that make a difference. iRobot invests significant resources to manufacture, promote and protect its products and related intellectual property. iRobot registered trademarks are protected under U.S. and international law; iRobot reserves the right to bring action against the infringement of legally protected trademarks and products. iRobot regularly monitors the Internet, including auction sites, in order to protect its intellectual property rights. Unauthorized reselling, marketing or auctioning using iRobot copyrighted items is illegal and can result in liability for damages, criminal penalties and termination of eBay selling privileges. iRobot notifies eBay of auction listings containing unauthorized uses of iRobot copyrights and trademarks. eBay complies with iRobot's request by taking appropriate action in accordance to its user policies. This includes the removal of auctions from the eBay website that illegally offer copyrighted terms and products. Only iRobot brand products, as supplied and distributed by iRobot Corporation, and delivered as manufactured, in the carton to the original customer purchaser, is warranted by iRobot Corporation against manufacturing defects in materials and workmanship for the qualifyinglimited warranty period. iRobot Affiliate Program If you are an online retailer and want to earn commission by selling iRobot products on your website, you may opt to participate in the iRobot Affiliate Program. iRobot selects partners based on corporate guidelines and federal law. Through the iRobot Affiliate Program, Approved Affiliates may earn cash by promoting iRobot products on their website by directing consumers from your site to the iRobot Online Store. The program is free to join and easy to use. -
Robotics and Autonomous Systems
Spring 2015 Industry Study Final Report Robotics and Autonomous Systems The Dwight D. Eisenhower School for National Security and Resource Strategy National Defense University Fort McNair, Washington, D.C. 20319-5062 i ROBOTICS AND AUTONOMOUS SYSTEMS 2015 ABSTRACT: The Robotics and Autonomous Systems (RAS) industry plays a critical role producing America’s preferred means of global power projection: unmanned aircraft systems. But in a larger sense, RAS technology has also altered the defense industry’s relationship with DoD, as the defense sector increasingly finds itself following commercial sector innovations. This report outlines the major issues affecting the defense sector of the RAS industry and DoD’s ability to acquire and employ RAS. It then makes recommendations to enable DoD to better capitalize on the technology, strengthen its relationship with the industry and ultimately improve the nation’s warfighting capability. BG Mordechay Baruch, Israeli Defense Force LTC Clinton Cox, US Army Mr. Terry Emmert, Office Secretary Defense COL Daniel Friend, US Army Mr. Riley Jay, National Geospatial Agency Lt Col Linell Letendre, US Air Force Lt Col Robert Masaitis, US Air Force Mr. David Mico, Dept of State Lt Col Kevin Murray, US Marine Corps Lt Col Richard Neitzey, US Marine Corps Dr. Jeffery Paull, Dept of Navy CDR Jerome Smith, US Navy COL Stephanie Tutton, US Army Mr. Thomas Wilson, Veterans Affairs Lt Col Lori Winn, US Air Force CAPT Matthew Pregmon, US Navy, Faculty lead COL David Shugart, US Army, Faculty ii PLACES VISITED Domestic: -
Global Inventory of AUV and Glider Technology Available for Routine Marine Surveying
Appendix 1. Global Inventory of AUVs and Gliders Global Inventory of AUV and Glider Technology available for Routine Marine Surveying Project Leaders: Dr Russell Wynn (NOC) and Dr Elizabeth Linley (NERC) Report Prepared by: Dr James Hunt (NOC) Inventory correct as of September 2013 1 Return to Contents Appendix 1. Global Inventory of AUVs and Gliders Contents United Kingdom Institutes ................................................................. 16 Marine Autonomous and Robotic Systems (MARS) at National Oceanography Centre (NOC), Southampton ................................. 17 Autonomous Underwater Vehicles (AUVs) at MARS ................................... 18 Autosub3 ...................................................................................................... 18 Technical Specification for Autosub3 ......................................................... 18 Autosub6000 ................................................................................................ 19 Technical Specification .............................................................................. 19 Autosub LR ...................................................................................................... 20 Technical Specification .............................................................................. 20 Air-Launched AUVs ........................................................................................ 21 Gliders at MARS .............................................................................................. 22 Teledyne -
Understanding Domestic Robot Owners Ja-Young Sung1, Rebecca E
Housewives or Technophiles?: Understanding Domestic Robot Owners Ja-Young Sung1, Rebecca E. Grinter1, Henrik I. Christensen1, Lan Guo2 1 Center for Robotics and Intelligent Machines 2Siemens Medical Solutions Inc. Georgia Institute of Technology 51 Valley Stream Pkwy 85 5th Street, Atlanta GA 30332 USA Malvern, PA 19355 USA {jsung, beki,hic}@cc.gatech.edu [email protected] ABSTRACT Roomba users. Among other domestic robots that serve household Despite the growing body of Human-Robot Interaction (HRI) tasks, such as Scooba, Robomower and Dressman, we selected research focused on domestic robots, surprisingly little is known Roomba for three main reasons. First, Roomba have been very about the demographic profile of robot owners and their influence successful in the United States and that gave us wide accessibility on usage patterns. In this paper, we present the results of a survey to Roomba owners making it easier to recruit a large sample size. of 379 iRobot’s Roomba owners, that identified their Second, Roomba is one of the longest available domestic robots, demographic and usage trends. The outcome of the survey and we hypothesize that its adoption may have gone beyond suggests that Roomba users are equally likely to be men or “early adopters” or leading users, allowing us to capture a broader women, and they tend to be younger with high levels of education range of experiences. Third, and most importantly, Roomba is an and technical backgrounds. Their adoption and use patterns exemplary case for understanding how householders respond to illustrate the important role that gift exchange plays in adoption, robotic products that replace blue-collar work in the home, which and how the robot changes cleaning routines and creates non- some researchers believe to be the future of home robotic cleaning activities. -
Sharkninja V Irobot Corporation IPR2020-00734
[email protected] Paper No. 11 571-272-7822 Entered: October 6, 2020 UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE PATENT TRIAL AND APPEAL BOARD SHARKNINJA OPERATING LLC, SHARKNINJA MANAGEMENT LLC, AND SHARKNINJA SALES COMPANY, Petitioner, v. IROBOT CORPORATION, Patent Owner. IPR2020-00734 Patent 9,921,586 B2 Before TERRENCE W. McMILLIN, AMANDA F. WIEKER, and JASON W. MELVIN, Administrative Patent Judges. MELVIN, Administrative Patent Judge. DECISION Granting Institution of Inter Partes Review 35 U.S.C. § 314 IPR2020-00734 Patent 9,921,586 B2 I. INTRODUCTION SharkNinja Operating LLC, SharkNinja Management LLC, and SharkNinja Sales Company (“Petitioner”) filed a Petition (Paper 1, “Pet.”) requesting institution of inter partes review of claims 1–19 of U.S. Patent No. 9,921,586 B2 (Ex. 1001, “the ’586 patent”). iRobot Corporation (“Patent Owner”) filed a Preliminary Response. Paper 6. After our email authorization, Petitioner filed a Preliminary Reply (Paper 7) and Patent Owner filed a Preliminary Sur-Reply (Paper 9). Pursuant to 35 U.S.C. § 314 and 37 C.F.R. § 42.4(a), we have authority to determine whether to institute review. An inter partes review may not be instituted unless “the information presented in the petition . and any response . shows that there is a reasonable likelihood that the petitioner would prevail with respect to at least 1 of the claims challenged in the petition.” 35 U.S.C. § 314(a). For the reasons set forth below, we conclude that Petitioner has shown a reasonable likelihood it will prevail in establishing the unpatentability of at least one challenged claim, and we institute inter partes review. -
The Robotics Market First Half 2012 Results and Trends
The Robotics Market First Half 2012 Results and Trends This report is based on data supplied to RIA by its member companies. The numbers represent the industrial robot units ordered and shipped, plus the dollar value added to the total robot system. RIA does not include numbers that other countries reporting to the International Federation of Robotics might include as robot units; e.g., RIA does not include four axis chip placement devices in standard electronic assembly machines. Table of Contents 1. First Half News Release 2. First Half 2012 -Application Trends — New Orders • Assembling and Disassembling • Processing • Dispensing • Welding and Soldering (all materials) • Handling Operations/Machine Tending • Other First Half 2012 - Application Trends — Shipments • Assembling and Disassembling • Processing • Dispensing • Welding and Soldering (all materials) • Handling Operations/Machine Tending • Other 3. 2012 vs. 2011 New Orders and Shipments Totals — Units 2012 vs. 2011 New Orders and Shipments Totals — Dollars Robotic Industries Association 900 Victors Way, Suite140 Contact: Jeff Burnstein Ann Arbor, Michigan 48108 USA President Telephone: (734) 994-6088 (734) 994-6088 Fax: (734) 994-3338 [email protected] www.Robotics.org PRESS RELEASE North American Robotics Industry Posts Best Quarter Ever, According to New Statistics from RIA (Ann Arbor, Michigan – July 26, 2012) North American robotics companies sold more industrial robots in the second quarter of 2012 than any previous quarter in history, according to new statistics released by Robotic Industries Association (RIA), the industry’s trade group. A total of 5,556 robots valued at $403.1 million were sold to North American companies, a jump of 14% in units and 28% in dollars over the same quarter in 2011. -
Mobile Robotics: a Tool for Application-Based Integration of Multidisciplinary Undergraduate Concepts and Research
AC 2010-22: MOBILE ROBOTICS: A TOOL FOR APPLICATION-BASED INTEGRATION OF MULTIDISCIPLINARY UNDERGRADUATE CONCEPTS AND RESEARCH Carlotta Berry, Rose-Hulman Institute of Technology Dr. Berry is an assistant professor in the department of electrical and computer engineering at Rose-Hulman Institute of Technology. She is one of the principal investigators on the multidisciplinary educational robotics initiative and the Rose building undergraduate diversity program. Her research areas include the design and evaluation of human-robot interfaces and innovations in engineering education using active learning and mobile robotics. Page 15.877.1 Page © American Society for Engineering Education, 2010 “Mobile Robotics: A tool for application-based integration of multidisciplinary undergraduate concepts and research” Abstract This paper presents the development of a mobile robotics course at the primarily undergraduate engineering school, Rose-Hulman Institute of Technology. This course is one of the final courses in the multidisciplinary educational robotics certificate program. The purpose of this course is to use the robot to provide the students with an appreciation of their discipline and how it applies to other disciplines. It is hypothesized that students will gain a more realistic model of their future workplace demographic while also learning about robotics theory and the open areas of robotics research. Introduction Undergraduate students in science and engineering frequently express a desire to relate the abstract theory presented in class to real-world or practical application. One method that can be used to integrate component theory with system or practical application is robotics. Since robotics theory includes topics such as sensors, controls, mechatronics, kinematics, microcontroller programming, embedded systems and software development; it is an ideal model for multidisciplinary application. -
History of Robotics: Timeline
History of Robotics: Timeline This history of robotics is intertwined with the histories of technology, science and the basic principle of progress. Technology used in computing, electricity, even pneumatics and hydraulics can all be considered a part of the history of robotics. The timeline presented is therefore far from complete. Robotics currently represents one of mankind’s greatest accomplishments and is the single greatest attempt of mankind to produce an artificial, sentient being. It is only in recent years that manufacturers are making robotics increasingly available and attainable to the general public. The focus of this timeline is to provide the reader with a general overview of robotics (with a focus more on mobile robots) and to give an appreciation for the inventors and innovators in this field who have helped robotics to become what it is today. RobotShop Distribution Inc., 2008 www.robotshop.ca www.robotshop.us Greek Times Some historians affirm that Talos, a giant creature written about in ancient greek literature, was a creature (either a man or a bull) made of bronze, given by Zeus to Europa. [6] According to one version of the myths he was created in Sardinia by Hephaestus on Zeus' command, who gave him to the Cretan king Minos. In another version Talos came to Crete with Zeus to watch over his love Europa, and Minos received him as a gift from her. There are suppositions that his name Talos in the old Cretan language meant the "Sun" and that Zeus was known in Crete by the similar name of Zeus Tallaios. -
An Industrial Robotics Course for Manufacturing Engineers
Paper ID #15654 An Industrial Robotics Course for Manufacturing Engineers Dr. Jeffrey L. Newcomer, Western Washington University Dr. Jeffrey L. Newcomer is a Professor of Manufacturing Engineering and Chair of the Engineering and Design Department at Western Washington University. He received his Ph.D. in Mechanical Engineering from Rensselaer Polytechnic Institute. c American Society for Engineering Education, 2016 An Industrial Robotics Course for Manufacturing Engineers For many years the automobile industry was the home to more than half of the robots used in U.S. manufacturing. Recently, however, many other industries have been or are planning to introduce robots into their manufacturing processes.1 In the Pacific Northwest region several companies in aerospace, electronics, apparel, and commercial cookware have either introduced robots or ex- panded their use in recent years. As such, an introduction to robotics in the context of manufac- turing is becoming more important for students pursuing degrees in Manufacturing Engineering. There is, however, always a challenge when teaching robotics to find the correct balance between application and modeling. Many robotics courses taught in Electrical or Mechanical Engineering Departments have a tendency to emphasize modeling over application, but a well-prepared Man- ufacturing Engineer needs to understand where the challenges in robotics applications lie as well as understanding what is going on ‘under the hood’. A quick survey of the 21 ABET accredited Manufacturing Engineering programs indicates that only five have a manufacturing specific ro- botics course, and three of those are special topics courses that are not offered consistently.2 Other programs have robotics integrated into a general automation class, have cross-listed classes with other programs, or have graduate classes on robotics that are available to seniors, so there are not the same opportunities for depth or focus on manufacturing applications. -
"Rethink Robotics: Finding a Market". Stanford Casepublisher 204-2013
S TANFORD U NIVERSITY 2 0 1 3 - 2 0 4 - 1 S CHOOL OF E NGINEERING C ASEP UBLISHER Rev. June 3, 2013 Duhamel et al. “Rethink Robotics - Finding a Market” Stanford CasePublisher 204-2013-1. 20 May 2013. RETHINK ROBOTICS - FINDING A MARKET T ABLE OF C ONTENTS Introduction 1. Industry Overview 2. History of Rethink Robotics 3. Management 4. Technology 5. Financing 6. Rethink Corporate Strategy 7. Future Trends 8. References 9. Exhibits 10. Authors Professors Micah Siegel (Stanford University) and Fred Gibbons (Stanford University) guided the de- velopment of this case using the CasePublisher service as the basis for class discussion rather than to i$us- trate either e%ective or ine%ective handling of a business situation. S TANFORD 204-2013-01 Rethink Robotics Introduction !Since 1980, millions of manufacturing jobs have been outsourced to reduce labor costs in order to maintain competitiveness in the evolving global market for products. "1] While reducing cost, this has reduced the number of middle-income jobs in developed na- tions. Furthermore, outsourcing has created problems for firms that now operate in politi- cally and/or economically unstable regions. "2] Rethink Robotics hopes that its automated manufacturing robot, Baxter, will enable domestic firms to competitively insource manufac- turing jobs and thus improve e%ciency. Rethink Robotics was founded by Rodney Brooks in 2008 to build a low-cost, adaptive manufacturing robot. The original name, Heartland Robotics, reflects the company's ambi- tions to combat outsourcing. "3] In a 2012 press release, Brooks stated, “Rethink Robot- ics…will do for manufacturing workers what the PC did for o%ce workers & increase their productivity by giving them direct access to technological tools.” "4] Their distinctive ro- botic workforce is marketed as simpler, safer, smarter, and cheaper than traditional indus- trial robots. -
Robotics Irobot Corp. (IRBT)
Robotics This report is published for educational purposes only by students competing in the Boston Security Analysts Society (BSAS) Boston Investment iRobot Corp. (IRBT) Research Challenge. 12/13/2010 Ticker: IRBT Recommendation: Sell Price: $22.84 Price Target: $15.20-16.60 Market Profile Figure 1.1: iRobot historical stock price Shares O/S 25 mm 25 Current price $22.84 52 wk price range $14.45-$23.00 20 Beta 1.86 iRobot 3 mo ADTV 0.14 mm 15 Short interest 2.1 mm Market cap $581mm 10 Debt 0 S & P 500 (benchmarked Jan-09) P/10E 25.2x 5 EV/10 EBITDA 13.5x Instl holdings 57.8% 0 Jan-09 Apr-09 Jul-09 Oct-09 Jan-10 Apr-10 Jul-10 Oct-10 Insider holdings 12.5% Valuation Ranges iRobot is a SELL: The company’s high valuation reflects overly optimistic expectations for home and military robot sales. While we are bullish on robotics, iRobot’s 52 wk range growth story has run out of steam. • Consensus is overestimating future home robot sales: Rapid yoy growth in 2010 home robot Street targets sales is the result of one-time penetration of international markets, which has concealed declining domestic sales. Entry into new markets drove growth in home robot sales in Q4 2009 and Q1 2010, 20-25x P/2011E but international sales have fallen 4% since Q1 this year, and we believe the street is overestimating international growth in 2011 (30% vs. our estimate of 18%). Domestic sales were down 29% in 8-12x Terminal 2009 and are up only 2.5% ytd. -
Using a Single Cell to Create an Entire Organ
Message from the LARS/SBR 2016 General and Program Chairs The 13th Latin American Robotics Symposium (LARS 2016) and the 4th Brazilian Symposium on Robotics (SBR 2016) aims to promote a comprehensive scientific meeting in the area of intelligent robotics, bringing together researchers and undergraduate and graduate students studying computer science, electrical engineering, mechatronics engineering, mechanical engineering, and related areas. LARS/SBR 2016 can be considered the most important Latin American robotics symposium. LARS/SBR 2016 was the major scientific/academic event of Robotica 2016. There were some co-located events: the 15th Latin American Robotics Competition (LARC 2016), 14th Brazilian Robotics Competition (CBR 2016—14th Competição Brasileira de Robótica), Brazilian Robotics Olympiad (OBR 2016—Olimpíada Brasileira de Robótica), Mostra Nacional de Robótica (MNR 2016), 7th Workshop of Robotics in Education (WRE 2016), and Workshop on Thesis and Dissertations (WTDR 2016). These events were the result of a joint action of the Brazilian Computer Society (SBC), the IEEE Latin American Robotics Council, and the IEEE Robotics and Automation Society Chapter of Brazil. The joint conferences were held October 8–12, 2016, in Recife, PE, Brazil. The papers accepted for presentation at the symposium covered a large spectrum of topics, including active sensory processing and control; aerial vehicles; autonomous vehicles; bio- inspired robotics; CAD-based robotics; computing architectures; education issues in robotics; human/robot interaction;