Co-Crystallisation of Α,Ω-Dicarboxylic Acids with Nicotinamide and Isonicotinamide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) Patent Application Publication (10) Pub. No.: US 2015/0337275 A1 Pearlman Et Al
US 20150337275A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0337275 A1 Pearlman et al. (43) Pub. Date: Nov. 26, 2015 (54) BOCONVERSION PROCESS FOR Publication Classification PRODUCING NYLON-7, NYLON-7.7 AND POLYESTERS (51) Int. C. CI2N 9/10 (2006.01) (71) Applicant: INVISTATECHNOLOGIES S.a.r.l., CI2P 7/40 (2006.01) St. Gallen (CH) CI2PI3/00 (2006.01) CI2PI3/04 (2006.01) (72) Inventors: Paul S. Pearlman, Thornton, PA (US); CI2P 13/02 (2006.01) Changlin Chen, Cleveland (GB); CI2N 9/16 (2006.01) Adriana L. Botes, Cleveland (GB); Alex CI2N 9/02 (2006.01) Van Eck Conradie, Cleveland (GB); CI2N 9/00 (2006.01) Benjamin D. Herzog, Wichita, KS (US) CI2P 7/44 (2006.01) CI2P I 7/10 (2006.01) (73) Assignee: INVISTATECHNOLOGIES S.a.r.l., (52) U.S. C. St. Gallen (CH) CPC. CI2N 9/13 (2013.01); C12P 7/44 (2013.01); CI2P 7/40 (2013.01); CI2P 13/005 (2013.01); (21) Appl. No.: 14/367,484 CI2P 17/10 (2013.01); CI2P 13/02 (2013.01); CI2N 9/16 (2013.01); CI2N 9/0008 (2013.01); (22) PCT Fled: Dec. 21, 2012 CI2N 9/93 (2013.01); CI2P I3/04 (2013.01); PCT NO.: PCT/US2012/071.472 CI2P 13/001 (2013.01); C12Y 102/0105 (86) (2013.01) S371 (c)(1), (2) Date: Jun. 20, 2014 (57) ABSTRACT Embodiments of the present invention relate to methods for Related U.S. Application Data the biosynthesis of di- or trifunctional C7 alkanes in the (60) Provisional application No. -
Malonic Acid
SIGMA-ALDRICH sigma-aldrich.com Material Safety Data Sheet Version 4.1 Revision Date 09/20/2012 Print Date 03/13/2014 1. PRODUCT AND COMPANY IDENTIFICATION Product name : Malonic acid Product Number : M1296 Brand : Sigma-Aldrich Supplier : Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA Telephone : +1 800-325-5832 Fax : +1 800-325-5052 Emergency Phone # (For : (314) 776-6555 both supplier and manufacturer) Preparation Information : Sigma-Aldrich Corporation Product Safety - Americas Region 1-800-521-8956 2. HAZARDS IDENTIFICATION Emergency Overview OSHA Hazards Toxic by inhalation., Harmful by ingestion., Irritant GHS Classification Acute toxicity, Inhalation (Category 5) Acute toxicity, Oral (Category 4) Skin irritation (Category 3) Serious eye damage (Category 1) GHS Label elements, including precautionary statements Pictogram Signal word Danger Hazard statement(s) H302 Harmful if swallowed. H316 Causes mild skin irritation. H318 Causes serious eye damage. H333 May be harmful if inhaled. Precautionary statement(s) P280 Wear protective gloves/ eye protection/ face protection. P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. HMIS Classification Health hazard: 2 Flammability: 1 Physical hazards: 0 NFPA Rating Health hazard: 2 Fire: 1 Sigma-Aldrich - M1296 Page 1 of 7 Reactivity Hazard: 0 Potential Health Effects Inhalation Toxic if inhaled. Causes respiratory tract irritation. Skin Harmful if absorbed through skin. Causes skin irritation. Eyes Causes eye irritation. Ingestion Harmful if swallowed. 3. COMPOSITION/INFORMATION ON INGREDIENTS Synonyms : Propanedioic acid Formula : C3H4O4 Molecular Weight : 104.06 g/mol Component Concentration Malonic acid CAS-No. -
Step Formation Constants of Some Malonato Lanthanide Chelate Species Marvin Lee Adolphson Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1969 Step formation constants of some malonato lanthanide chelate species Marvin Lee Adolphson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physical Chemistry Commons Recommended Citation Adolphson, Marvin Lee, "Step formation constants of some malonato lanthanide chelate species " (1969). Retrospective Theses and Dissertations. 3809. https://lib.dr.iastate.edu/rtd/3809 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 70-13,563 ADOLPHSON, Marvin Lee, 1941- STEP FORMATION CONSTANTS OF SOME MÀLONATO LANTHANIDE CHELATE SPECIES. Iowa State University, Ph.D., 1969 Chemistiy, physical University Microfilms, Inc., Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED STEP FORMATION CONSTANTS OF SOME MALONATO LANTHANIDE CHELATE SPECIES by Marvin Lee Adolphson A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Physical Chemistry Approved; Signature was redacted for privacy. In/Charge of Major Work Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University Ames, Iowa 1969 ii TABLE OF CONTENTS Page INTRODUCTION 1 COMPUTATIONS 4 EXPERIMENTAL DETAILS 15 EXPERIMENTAL RESULTS 35 DISCUSSION 56 SUMMARY 88 BIBLIOGRAPHY 89 ACKNOWLEDGMENT S 94 APPENDIX 95 1 INTRODUCTION The motivations for this research were fourfold. -
Dibasic Acids for Nylon Manufacture
- e Report No. 75 DIBASIC ACIDS FOR NYLON MANUFACTURE by YEN-CHEN YEN October 1971 A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA CONTENTS INTRODUCTION, ....................... 1 SUMMARY .......................... 3 General Aspects ...................... 3 Technical Aspects ..................... 7 INDUSTRY STATUS ...................... 15 Applications and Consumption of Sebacic Acid ........ 15 Applications and Consumption of Azelaic Acid ........ 16 Applications of Dodecanedioic and Suberic Acids ...... 16 Applications of Cyclododecatriene and Cyclooctadiene .... 17 Producers ......................... 17 Prices ........................... 18 DIBASIC ACIDS FOR MANUFACTURE OF POLYAMIDES ........ 21 CYCLOOLIGOMERIZATIONOF BUTADIENE ............. 29 Chemistry ......................... 29 Ziegler Catalyst ..................... 30 Nickel Catalyst ..................... 33 Other Catalysts ..................... 34 Co-Cyclooligomerization ................. 34 Mechanism ........................ 35 By-products and Impurities ................ 37 Review of Processes .................... 38 A Process for Manufacture of Cyclododecatriene ....... 54 Process Description ................... 54 Process Discussion .................... 60 Cost Estimates ...................... 60 A Process for Manufacture of Cyclooctadiene ........ 65 Process Description ................... 65 Process Discussion .................... 70 Cost Estimates ...................... 70 A Process for Manufacture of Cyclodecadiene -
Crystallization of Malonic and Succinic Acids on Sams: Toward the General Mechanism of Oriented Nucleation on Organic Monolayers†
pubs.acs.org/Langmuir © 2009 American Chemical Society Crystallization of Malonic and Succinic Acids on SAMs: Toward the General Mechanism of Oriented Nucleation on Organic Monolayers† Boaz Pokroy,‡ Victoria Fay Chernow, and Joanna Aizenberg* School of Engineering and Applied Sciences, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138. ‡ Current address: Department of Materials Engineering, Israel Institute of Technology, Haifa 32000, Israel. Received July 25, 2009. Revised Manuscript Received September 2, 2009 Self-assembled monolayers (SAMs) were shown to induce very specific oriented growth of simple organic and inorganic crystals. Here we present a detailed study of the mechanism by which SAMs control the oriented nucleation by examining a more complex case of crystallization of bifunctional organic molecules. Malonic and succinic acids were grown on the SAMs of HS(CH2)10CO2H and HS(CH2)11CO2H supported on gold films. Each SAM induced a very controlled, specific orientation of the crystals. The preferred nucleating planes always exhibited an alignment of one of the carboxylic acid groups in the molecules of the growing crystal with the carboxylic acid groups on the surface of the SAMs. These results suggest that the translation of the structural information through the interface occurs by stereochemical registry such that the functional groups in the SAM play the role of an oriented surrogate layer for the nucleating crystal. These findings are very important to the understanding of the underlying principles by which various organic surfaces;and most probably also biological templates;control the crystallization process. Introduction templates to control the formation of both organic and inorganic An understanding of crystal nucleation and growth and the materials. -
Metabolomics of Metformin's Cardioprotective Effect in Acute
Sys Rev Pharm 2021;12(3):100-109 A multifaceted revieMw jouernatl ian thbe fioeld lofophamrmaciycs Of Metformin's Cardioprotective Effect In Acute Doxorubicin Induced- Cardiotoxicity In Rats Lubna Zuhair Abdul Karim *, Inam Sameh Arif **, Fouad A. Al Saady *** *Pharmacist, Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University, M.Sc. program, Iraq. **Assist.Prof., Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University, Iraq. *** Assist. Prof., Department of pharmaceutical chemistry, College of Pharmacy, Mustansiriyah University, Iraq. Corresponding author: Lubna Zuhair Abdul Karim *e-mail: [email protected] ABSTRACT Doxorubicin (DOX) is a powerful anticancer agent with sever cardiotoxic side Keywords: metabolomics, cardiotoxicity, doxorubicin, cardioprotection, effect which limits the clinical use. Metformin (MET) is antihyperglycemic drug metformin. with potential cardioprotective effect via AMP-activated protein kinase (AMPK) (increases fatty acid oxidation, decreases the production of ROS, maintaining Correspondence: energy homeostasis and apoptosis). Metabolomics technology deals with Lubna Zuhair Abdul Karim systematic study of chemical fingerprints of metabolite profiles. Different *Pharmacist, Department of Pharmacology and Toxicology, College of Pharmacy, metabolic processes can be identified which will give information of any change Mustansiriyah University, M.Sc. program, Iraq. in the metabolic profile of tissues as well as of biofluids after drug -
APPENDIX G Acid Dissociation Constants
harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants § ϭ 0.1 M 0 ؍ (Ionic strength ( † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form. -
8342 RA Rosin Flux Paste
8342 RA Rosin Flux Paste MG Chemicals UK Limited Version No: A-1.0 2 Issue Date: 12/08/2019 Safety Data Sheet (Conforms to Regulation (EU) No 2015/830) Revision Date: 14/01/2021 L.REACH.GBR.EN SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING 1.1. Product Identifier Product name 8342 Synonyms SDS Code: 8342; 8342-50G | UFI: MKH0-J0US-C00M-20WV Other means of identification RA Rosin Flux Paste 1.2. Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses flux paste Uses advised against Not Applicable 1.3. Details of the supplier of the safety data sheet Registered company name MG Chemicals UK Limited MG Chemicals (Head office) Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Address 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada Kingdom Telephone +(44) 1663 362888 +(1) 800-201-8822 Fax Not Available +(1) 800-708-9888 Website Not Available www.mgchemicals.com Email [email protected] [email protected] 1.4. Emergency telephone number Association / Organisation Verisk 3E (Access code: 335388) Emergency telephone numbers +(44) 20 35147487 Other emergency telephone +(0) 800 680 0425 numbers SECTION 2 HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture Classification according to regulation (EC) No 1272/2008 H334 - Respiratory Sensitizer Category 1, H319 - Eye Irritation Category 2, H317 - Skin Sensitizer Category 1 [CLP] [1] Legend: 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI 2.2. Label elements Hazard pictogram(s) SIGNAL WORD DANGER Hazard statement(s) H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled. -
Amt-10-1373-2017-Supplement.Pdf
Supplement of Atmos. Meas. Tech., 10, 1373–1386, 2017 http://www.atmos-meas-tech.net/10/1373/2017/ doi:10.5194/amt-10-1373-2017-supplement © Author(s) 2017. CC Attribution 3.0 License. Supplement of New insights into atmospherically relevant reaction systems using direct analysis in real-time mass spectrometry (DART-MS) Yue Zhao et al. Correspondence to: Barbara J. Finlayson-Pitts (bjfi[email protected]) The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence. 31 1. Particle size distributions for amine-reacted diacids and -cedrene secondary organic 32 aerosol (SOA) particles. 33 1.1 Amine-reacted diacid particles. 34 At the exit of the flow reactor, size distributions of the amine-reacted diacid particles were 35 collected using a scanning mobility particle sizer (SMPS, TSI) consisting of an electrostatic 36 classifier (model 3080), a long differential mobility analyzer (DMA, model 3081) and a 37 condensation particle counter (model 3025A or 3776). Typical surface weighted size 38 distributions for (a) malonic acid (C3), (b) glutaric acid (C5), and (c) pimelic acid (C7) reacted 39 particles are presented in Fig. S1, with size distribution statistics given in Table S1. To reflect 40 the ~10% loss of amine-diacid particles in the denuder, a correction factor, Cf, of 1.1 was applied 41 when calculating the fraction of amine in the particles, fp. 3 (a) Malonic acid particles 1.6 (b) Glutaric acid particles ) ) w/o denuder -3 w/o denuder -3 w/ denuder w/ denuder cm cm 1.2 2 2 2 cm cm -4 -4 0.8 (10 (10 p p 1 0.4 dS/dlogD dS/dlogD 0 0.0 100 1000 100 1000 D (nm) D (nm) 42 p p 3 (c) Pimelic acid particles w/o denuder ) -3 w/ denuder Figure S1. -
A Previously Undescribed Pathway for Pyrimidine Catabolism
A previously undescribed pathway for pyrimidine catabolism Kevin D. Loh*†, Prasad Gyaneshwar*‡, Eirene Markenscoff Papadimitriou*§, Rebecca Fong*, Kwang-Seo Kim*, Rebecca Parales¶, Zhongrui Zhouʈ, William Inwood*, and Sydney Kustu*,** *Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102; ¶Section of Microbiology, 1 Shields Avenue, University of California, Davis, CA 95616; and ʈCollege of Chemistry, 8 Lewis Hall, University of California, Berkeley, CA 94720-1460 Contributed by Sydney Kustu, January 19, 2006 The b1012 operon of Escherichia coli K-12, which is composed of tive N sources. Here we present evidence that the b1012 operon seven unidentified ORFs, is one of the most highly expressed codes for proteins that constitute a previously undescribed operons under control of nitrogen regulatory protein C. Examina- pathway for pyrimidine degradation and thereby confirm the tion of strains with lesions in this operon on Biolog Phenotype view of Simaga and Kos (8, 9) that E. coli K-12 does not use either MicroArray (PM3) plates and subsequent growth tests indicated of the known pathways. that they failed to use uridine or uracil as the sole nitrogen source and that the parental strain could use them at room temperature Results but not at 37°C. A strain carrying an ntrB(Con) mutation, which Behavior on Biolog Phenotype MicroArray Plates. We tested our elevates transcription of genes under nitrogen regulatory protein parental strain NCM3722 and strains with mini Tn5 insertions in C control, could also grow on thymidine as the sole nitrogen several genes of the b1012 operon on Biolog (Hayward, CA) source, whereas strains with lesions in the b1012 operon could not. -
The Human Urine Metabolome
The Human Urine Metabolome Souhaila Bouatra1, Farid Aziat1, Rupasri Mandal1, An Chi Guo2, Michael R. Wilson2, Craig Knox2, Trent C. Bjorndahl1, Ramanarayan Krishnamurthy1, Fozia Saleem1, Philip Liu1, Zerihun T. Dame1, Jenna Poelzer1, Jessica Huynh1, Faizath S. Yallou1, Nick Psychogios3, Edison Dong1, Ralf Bogumil4, Cornelia Roehring4, David S. Wishart1,2,5* 1 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, 2 Department of Computing Sciences, University of Alberta, Edmonton, Alberta, Canada, 3 Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, 4 BIOCRATES Life Sciences AG, Innsbruck, Austria, 5 National Institute for Nanotechnology, Edmonton, Alberta, Canada Abstract Urine has long been a ‘‘favored’’ biofluid among metabolomics researchers. It is sterile, easy-to-obtain in large volumes, largely free from interfering proteins or lipids and chemically complex. However, this chemical complexity has also made urine a particularly difficult substrate to fully understand. As a biological waste material, urine typically contains metabolic breakdown products from a wide range of foods, drinks, drugs, environmental contaminants, endogenous waste metabolites and bacterial by-products. Many of these compounds are poorly characterized and poorly understood. In an effort to improve our understanding of this biofluid we have undertaken a comprehensive, quantitative, metabolome-wide characterization of human urine. This involved both computer-aided literature mining and comprehensive, quantitative experimental assessment/validation. The experimental portion employed NMR spectroscopy, gas chromatography mass spectrometry (GC-MS), direct flow injection mass spectrometry (DFI/LC-MS/MS), inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) experiments performed on multiple human urine samples. -
Experiment 2: Two Step Synthesis of Ethyl 4-Methoxycinnamate
Experiment 2: Two step synthesis of ethyl 4-methoxycinnamate Background Why is ethyl 4-methoxycinnamate (1) interesting? First, it is the analog of octyl 4-methoxycinnamate (2), a UV light blocker found in Bain de Soleil All Day Sunblock and Coppertone Sport. The derivatives of 4-methoxycinnamic acid absorb UVB radiation due to their high level of conjugation. They are also oil soluble. UVB radiation promotes dermal cell DNA damage causing skin cancer. Octyl 4-methoxycinnamate is used in sunscreen over ethyl 4-methoxycinnamate because of its higher molar absorptivity ε and its greater lipophilicity. O R O O R = -CH3CH3 ethyl 4-methoxycinnamate (1) R = octyl 4-methoxycinnamate (2) Figure 1: Derivatives of 4-methoxycinnamic acid Second, a two step synthesis is put forth so that you can practice multi-step synthesis using a variety of laboratory techniques before diving into Honors Cup. Step 1 is the Verley-Doebner modification of the Knoevenagel condensation.1 The Knoevenagel condensation reaction dates from 1896 and is a facile one-step method of forming new carbon- carbon bonds under mild reaction conditions. It utilizes a weak amine base such as piperidine to initially form an enolate anion derived from a 1,3-dicarbonyl compound. The enolate subsequently acts as a nucleophile in the condensation with another carbonyl compound. This carbonyl is often an aldehyde and the reaction mechanism bears striking similarity to that of the aldol condensation. The isolated product is generally an α,β-conjugated carboxylic acid, formed via ready dehydration of the intermediate β-hydroxydicarbonyl compound and subsequent saponification and decarboxylation.