Sputtering Targets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dealloyed Pt Core-Shell Nanoparticles
The Strem Product Line OUR LINE OF RESEARCH CHEMICALS Custom Synthesis Biocatalysts & Organocatalysts Electronic Grade Chemicals cGMP Facilities Fullerenes High Purity Inorganics & Alkali Metals FDA Inspected Ionic Liquids Ligands & Chiral Ligands Drug Master Files Metal Acetates & Carbonates Metal Alkoxides & beta-Diketonates Complete Documentation Metal Alkyls & Alkylamides Metal Carbonyls & Derivatives Metal Catalysts & Chiral Catalysts Metal Foils, Wires, Powders & Elements Metal Halides, Hydrides & Deuterides Metal Oxides, Nitrates, Chalcogenides Metal Scavengers Metallocenes Nanomaterials Organofluorines Organometallics Organophosphines & Arsines Porphines & Phthalocyanines Precious Metal & Rare Earth Chemicals Volatile Precursors for MOCVD, CVD & ALD Strem Chemicals, Inc. Strem Chemicals, Inc. 7 Mulliken Way 15, rue de l’Atome Dexter Industrial Park Zone Industrielle Newburyport, MA 01950-4098 F-67800 BISCHHEIM (France) U.S.A. Tel.: +33 (0) 3 88 62 52 60 Fax: +33 (0) 3 88 62 26 81 Office Tel: (978) 499-1600 Email: [email protected] Office Fax: (978) 465-3104 Toll-free (U.S. & Canada) Strem Chemicals, Inc. Tel: (800) 647-8736 Postfach 1215 Fax: (800) 517-8736 D-77672 KEHL, Germany Tel.: +49 (0) 7851 75879 Dealloyed Pt core-shell nanoparticles: Email: [email protected] Fax: +33 (0) 3 88 62 26 81 Active and durable electrocatalysts for low-temperature Email: [email protected] www.strem.com Polymer Electrolyte Membrane Fuel Cells (PEMFCs) Strem Chemicals UK, Ltd. by Professor Dr. Peter Strasser An Independent Distributor of Strem Chemicals Products Newton Hall, Town Street Strem Chemicals Chemist Finds Newton, Cambridge, CB22 7ZE, UK Tel.: +44 (0)1223 873 028 New Way to Drive to Work Fax: +44 (0)1223 870 207 by Dr. -
Bismuth Antimony Telluride
ci al S ence Mahajan et al., J Material Sci Eng 2018, 7:4 ri s te & a E M n DOI: 10.4172/2169-0022.1000479 f g o i n l e a e n r r i n u g o Journal of Material Sciences & Engineering J ISSN: 2169-0022 Research Article Article OpenOpen Access Access Study and Characterization of Thermoelectric Material (TE) Bismuth Antimony Telluride Aniruddha Mahajan1*, Manik Deosarkar1 and Rajendra Panmand2 1Chemical Engineering Department, Vishwakarma Institute of Technology, Pune, India 2Centre for Materials Electronics and Technology (C-MET), Dr. Homi Bhabha Road, Pune, India Abstract Thermoelectric materials are used to convert the heat to electricity with no moving parts, in the present work an attempt has been made to prepare it for power generation function. Bismuth antimony telluride nanopowders were prepared by using mechanochemical method. Three different materials; Bismuth Telluride, (Bi0.75Sb0.25)2Te 3 and (Bi0.5Sb0.5)2Te 3 were synthesized. XRD and TEM analysis was carried out to confirm the results. The particle size of the material was determined by using FESEM analysis. The two alloys of Bismuth Telluride such prepared were converted in the pellet form using vacuum hydraulic pressure and their Seebeck coefficients were determined to test the material suitability for its use as a thermoelectric device. Their power factor measurement and Hall effect measurements were carried out at room temperature. Keywords: Bismuth telluride; Mechanochemical method; energy in one form into another. Use of TE solid materials Applications Nanoparticals; Seebeck coefficients in heat pump and refrigeration is well known [14] and it is now expanded such as cooled seats in luxury automobiles [15]. -
5Th FORUM on NEW MATERIALS
TABLE OF CONTENTS 5th FORUM ON NEW MATERIALS OPENING SESSION ................................................................................ 11 Symposium FA - ADVANCED FOSSIL FUEL ENERGY TECHNOLOGIES: THE MATERIALS DEMAND Oral Presentations Session FA-1 - Fossil Fuel Combustion FA-1.1 Improved or New Materials ................................................................................ 13 FA-1.2 Membranes for O2 Separation and Adsorbents for CO2 Capture ................................................................................ 14 FA-1.3 Thermal and Protective Coatings ................................................................................ 15 FA-1.4 Long-term Creep and Fatigue ................................................................................ 16 FA-1.5 Corrosion and Erosion ................................................................................ 16 Session FA-2 - Gasification and Gas Clean-up FA-2.1 Catalysts for Water-gas Shift and for Fuel Production ................................................................................ 17 FA-2.2 Membranes for H2 Separation and CO2-selective Membranes ................................................................................ 18 FA-2.3 High Temperature Seals ................................................................................ 19 Poster Presentations ................................................................................ 19 Symposium FB - MATERIALS AND PROCESS INNOVATIONS IN HYDROGEN PRODUCTION AND STORAGE Oral Presentations -
FY 1999 Budget Summary for DOE Materials Activities
me~~~~~dlP'go re ~n bs 811~~ ~~~ !Brl ~(~~ A1 Ag8 semi A S~~~~~~~~~I ~S~Zrrl rTi iiT~l·E )r~P~t ~ - li~ S..TTTT~~~~~~~TTTTTTT~ 0 0lT~ Table of Contents TABLE OF CONTENTS Pane Introduction ........... ... .......................................... .. ........ ..... ........ ... Membership List .................................... ............................ ... 3 Organization of the Report ...................................... .................. FY 1999 Budget Summary for DOE Materials Activities ......... ........................... .... 7 Distribution of Funds by Office ..................................................... 9 PROGRAM DESCRIPTIONS OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY ...................................... 10 Office of Building Technology, State and Community Programs ....................................... 12 Office of Building Systems .............................................................. 13 OFFICE OF INDUSTRIAL TECHNOLOGIES .............. ...................................... 15 Office of Industrial Strategies ........................ .... .......................... 19 Aluminum Vision Team ....................... .................................. 19 Forest Products Vision Team .......................................................... 25 Steel Vision Team ................................................. ................ 25 Glass Vision Team ............................................................ 25 Metal Casting Vision Team ................... ............................... 2........26 Mining -
Publikationsliste - List of Publications
Publikationsliste - List of Publications Philipp Gütlich (1) Die Reaktion von Aluminiumchlorid mit Chlorwasserstoff in 1,1,2,2- Tetrachloräthan und in Nitromethan Lieser, K.H.; Gütlich, P. Ber. Bunsenges. Phys. Chem. 1963, 67, 445 (2) Der Einfluß der Vorbehandlung auf den heterogenen Isotopenaustausch an derOberfläche von Ionenkristallen und die Bildung von Kationenkörpern und Anionenkörpern Gütlich, P.; Lieser, K.H. Z. Phys. Chem. (Neue Folge) 1965, 46, 3/4, 216 (3) Die spezifische Oberfläche von frisch gefälltem Bariumsulfat Gütlich, P; Lieser, K.H. Z. Phys. Chem. (Neue Folge) 1965, 46, 5/6, 257 (4) Die Geschwindigkeit des heterogenen Isotopenaustausches an der Oberfläche von Ionenkristallen Lieser, K.H.; Gütlich, P.; Rosenbaum, I. Radiochim. Acta 1965, 4, 216 (5) Die Temperaturabhängigkeit des heterogenen Isotopenaustausches an der Oberfläche von Ionenkristallen Lieser, K.H.; Gütlich, P.; Rosenbaum, I. Radiochim. Acta 1966, 5, 38 (6) Kinetics and Mechanism of Heterogeneous Exchange Reactions on the Surface of Ionic Crystals K.H. Lieser, K.H.; Gütlich, P.; Rosenbaum, I. Proc. Int. Atomic Energy Agency, Symp. "Exchange Reactions", Brookhaven 1965 (7) Exchange Equilibria on the Surface of Ionic Crystals Lieser, K.H.; Gütlich, P.; Hild, W.; Hecker, A.; Rosenbaum, I. Proc. Int. Atomic Energy Agency, Symp. "Exchange Reactions", Brookhaven 1965 (8) Hot-Atom Reaction Products in Crystals of Hexa- and Trivalent Chromium Compounds Gütlich, P.; Harbottle, G. Radiochim. Acta 1966, 5, 70 51 (9) A Study of Cr Retention and Annealing in Single Crystals of K2CrO4 Irradiated at Low Neutron Doses Gütlich, P.; Harbottle, G. Radiochim. Acta 1967, 8, 30 (10) Beiträge zur Anwendung des Mößbauer-Effekts in der Chemie Gütlich, P. -
D. I. Bletskan "Phase Equilibrium in the Binary Systems a IV
Journal of Ovonic Research Vol. 1, No. 5, October 2005, p. 53 - 60 PHASE EQUILIBRIUM IN THE SYSTEMS AIV – BVI Part. II Systems Germanium-Chalcogen D. I. Bletskan* Uzhgorod University, Uzhgorod, Ukraine The phases in the system germanium – chalcogen are reviewed. The phase transitions are discussed. 1.4 System Ge-S The phase diagram T-x of the binary system Ge-S has been firstly built by A. V. Novoselova et al. [39] using the data of thermal and X-ray analysis. Thereafter, the regions of the phase diagrams of the system Ge-S in the neighborhood of GeS and GeS2 have been carefully determined in [40-44] and are represented in Fig. 1.4. In this system there were found two stable chemical compounds, whose stoichiometric compositions correspond to GeS and GeSe2. The temperature conditions of GeS and GeS2 synthesis, the melting character and melting temperature, given in the literature, are different. Thus, the melting temperature of GeS, after the data of various authors are 938 K [39, 42], 940 K [40], 931 K [41, 46]. Many research reports [39, 42-44] show that GeS compound melts congruently. Nevertheless, in the papers [40, 41, 46] is demonstrated that, during very slow heating, GeS melts incongruently, according to the peritectic reaction: GeS(solid) = Ge(solid) + Liq(53 at.% S) (1.4) In the system Ge-S, on the germanium side, there is a large domain (3÷45 at.% S) of layer separation in the liquid state (stratification) with one phase rich in germanium and a phase with the composition approaching GeS. -
High-Throughput Physical Vapour Deposition Flexible Thermoelectric Generators
www.nature.com/scientificreports OPEN High-throughput physical vapour deposition fexible thermoelectric generators Received: 14 January 2019 Katrina A. Morgan 1, Tian Tang2, Ioannis Zeimpekis 1, Andrea Ravagli1, Chris Craig1, Accepted: 25 February 2019 Jin Yao1, Zhuo Feng1, Dmitry Yarmolich3, Clara Barker 2, Hazel Assender2 & Published: xx xx xxxx Daniel W. Hewak1 Flexible thermoelectric generators (TEGs) can provide uninterrupted, green energy from body-heat, overcoming bulky battery confgurations that limit the wearable-technologies market today. High- throughput production of fexible TEGs is currently dominated by printing techniques, limiting material choices and performance. This work investigates the compatibility of physical vapour deposition (PVD) techniques with a fexible commercial process, roll-to-roll (R2R), for thermoelectric applications. We demonstrate, on a fexible polyimide substrate, a sputtered Bi2Te3/GeTe TEG with Seebeck coefcient (S) of 140 μV/K per pair and output power (P) of 0.4 nW per pair for a 20 °C temperature diference. For the frst time, thermoelectric properties of R2R sputtered Bi2Te3 flms are reported and we demonstrate the ability to tune the power factor by lowering run times, lending itself to a high- speed low-cost process. To further illustrate this high-rate PVD/R2R compatibility, we fabricate a TEG using Virtual Cathode Deposition (VCD), a novel high deposition rate PVD tool, for the frst time. This Bi2Te3/Bi0.5Sb1.5Te3 TEG exhibits S = 250 μV/K per pair and P = 0.2 nW per pair for a 20 °C temperature diference. Termoelectric generators (TEGs) can provide constant power for fexible electronic platforms. Using the body’s warmth, they do not rely on solar power, unlike photovoltaic generators, or on the user’s ftness, unlike elec- tromagnetic induction generators. -
WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK). -
Design Principles for Oxide Thermoelectric Materials
University of California Santa Barbara Design principles for oxide thermoelectric materials A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Michael W Gaultois Committee in charge: Professor Ram Seshadri, Chair Professor Galen D. Stucky Professor Peter C. Ford Professor Carlos G. Levi March 2015 The Dissertation of Michael W Gaultois is approved. Professor Galen D. Stucky Professor Peter C. Ford Professor Carlos G. Levi Professor Ram Seshadri, Committee Chair March 2015 Design principles for oxide thermoelectric materials Copyright c 2015 by Michael W Gaultois iii Talent is cheap; dedication is expensive. It will cost you your life. { Bertoldo di Giovanni iv Acknowledgements To my teachers and mentors, who have been patiently guiding me to this point. Ram, Andrew, Arthur, I've learned so much from each of you about such different things. Ram, I couldn't hope to find a more supportive mentor to help me develop into a mature scientist. Being a scientist is more than a career, it's a way of life. You have helped me develop scientific aesthetic, and have shown me how to conduct myself in research, and collaborative endeavours. Everything is interesting, but I will continually strive to focus on what is important. To the MeRL, which has been a warm and welcoming home, as well as a dynamic and exuberant research community to belong to. I have discovered what it means to be a part of a research community, and it has been my great pleasure and honor to work with such amazing people, at such an incredible institution. -
High Purity Inorganics
High Purity Inorganics www.alfa.com INCLUDING: • Puratronic® High Purity Inorganics • Ultra Dry Anhydrous Materials • REacton® Rare Earth Products www.alfa.com Where Science Meets Service High Purity Inorganics from Alfa Aesar Known worldwide as a leading manufacturer of high purity inorganic compounds, Alfa Aesar produces thousands of distinct materials to exacting standards for research, development and production applications. Custom production and packaging services are part of our regular offering. Our brands are recognized for purity and quality and are backed up by technical and sales teams dedicated to providing the best service. This catalog contains only a selection of our wide range of high purity inorganic materials. Many more products from our full range of over 46,000 items are available in our main catalog or online at www.alfa.com. APPLICATION FOR INORGANICS High Purity Products for Crystal Growth Typically, materials are manufactured to 99.995+% purity levels (metals basis). All materials are manufactured to have suitably low chloride, nitrate, sulfate and water content. Products include: • Lutetium(III) oxide • Niobium(V) oxide • Potassium carbonate • Sodium fluoride • Thulium(III) oxide • Tungsten(VI) oxide About Us GLOBAL INVENTORY The majority of our high purity inorganic compounds and related products are available in research and development quantities from stock. We also supply most products from stock in semi-bulk or bulk quantities. Many are in regular production and are available in bulk for next day shipment. Our experience in manufacturing, sourcing and handling a wide range of products enables us to respond quickly and efficiently to your needs. CUSTOM SYNTHESIS We offer flexible custom manufacturing services with the assurance of quality and confidentiality. -
Microwave Assisted Synthesis of Thermoelectric Nanostructures
ROYAL INSTITUTE OF TECHNOLOGY Microwave assisted synthesis of thermoelectric nanostructures: p- and n-type Bi2-xSbxTe3 VIKING ROOSMARK Master of Science Thesis Department of Applied Physics KTH – Royal Institute of Technology Stockholm, Sweden 2018 1 (37) Supervisor Mr. Bejan Hamawandi [email protected] Examiner Prof. Muhammet S. Toprak [email protected] Biomedical and X-Ray Physics KTH/Albanova SE-106 91 Stockholm TRITA-SCI-GRU 2018:416 2 (37) Abstract Improving the way energy can be obtained, is becoming increasingly important from both environmental and economical aspects. Thermoelectric (TE) materials can be a stepping stone in the right direction for better energy management, seeing how they can recycle waste heat and generate electricity from energy that otherwise would be wasted. In recent years TE materials have been the focus of several projects to find materials which can easily and inexpensively be used in devices to harvest heat and produce clean energy, which is aimed by this project. TE nanomaterials based on the Bi2-xSbxTe3 system with different stoichiometry (x) have been synthesized using a bottom-up microwave (MW) assisted synthesis method. Nanopowders have been consolidated with SPS into pellets to examine their TE transport properties. The purpose of the project was to fabricate p- and n-type TE materials with comparable thermal expansion, for the purpose of obtaining a high efficiency TE device with high durability. The MW assisted synthesis shows highly reproducible results with nanopowders having good uniformity with low to none batch to batch variation in the powder composition. One of the most important aspects of this technique is the process speed, the MW heating itself only takes 2-3 min to synthesize the desired TE material using the developed thermolysis route. -
Material Safety Data Sheet
LTS Research Laboratories, Inc. Safety Data Sheet Germanium Antimony Telluride ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 1. Product and Company Identification ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Trade Name: Germanium Antimony Telluride Chemical Formula: Ge2Sb2Te5 Recommended Use: Scientific research and development Manufacturer/Supplier: LTS Research Laboratories, Inc. Street: 37 Ramland Road City: Orangeburg State: New York Zip Code: 10962 Country: USA Tel #: 855-587-2436 / 855-lts-chem 24-Hour Emergency Contact: 800-424-9300 (US & Canada) +1-703-527-3887 (International) ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 2. Hazards Identification ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Signal Word: Danger Hazard Statements: H301: Toxic if swallowed H315: Causes skin irritation H319: Causes serious eye irritation H331: Toxic if inhaled H335: May cause respiratory irritation H373: May cause damage to organs through prolonged or repeated exposure Precautionary Statements: P210: Keep away from heat/sparks/open flames/hot surfaces – No Smoking P240: Ground/bond container and receiving equipment P241: Use explosion-proof electrical/ventilating/light/ equipment P261: Avoid breathing dust/fume/vapor P264: Wash thoroughly after handling P280: Wear protective gloves/protective clothing/eye protection/face protection P301+P310: IF SWALLOWED: