VOLCANIC SHOW CAVES William R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pu'u Wa'awa'a Management Plan
Management Plan for the Ahupua‘a of Pu‘u Wa‘awa‘a and the Makai Lands of Pu‘u Anahulu July 15, 2003 State of Hawaii Department of Land and Natural Resources Division of Forestry and Wildlife Division of State Parks Acknowledgements In June 2002, the Pu‘u Wa‘awa‘a Advisory Council (PAC) was formed to function in a consultative capacity with Department of Land and Natural Resources (DLNR) staff involved in planning efforts for Pu‘u Wa‘awa‘a. The PAC is comprised of the following community members, who represent a wide range of expertise and interests in the various components and actions proposed in this plan: Corky Bryan Mick Castillo Dick Hoeflinger Ku‘ulei Keakealani Kepa Maly Bob Okawa Rob Pacheco Jon Sabati Michael Tomich Peter Vitousek Through a series of meetings, the PAC has reviewed several drafts of the plan and provided considerable feedback and input to DLNR staff. Many of the PAC’s suggestions have been incorporated or are now represented in this plan. The dedication, candor, and cooperation displayed by the PAC is graciously acknowledged by the DLNR. Components of this Plan relating to trails, access, ecotourism, cultural considerations, archeological resources and environmental education include modified text originally presented in a proposal by Ka ‘Ahahui o Pu‘u Wa‘awa‘a, or the “Hui”. The DLNR Management Team wishes to acknowledge and thank the Hui for permission to use these materials. Editorial Note The management objectives proposed in this management plan are not presented in a prioritized or sequential format. They are grouped by category. -
Karst Features — Where and What Are They?
Karst Features — Where and What are They? This story was made with Esri's Story Map Journal. Read the interactive version on the web at https://arcg.is/jCmza. Iowa Geological and Water Survey Bureau completed a detailed mapping project of bedrock geologic units, key subsurface horizons, and surficial karst features in the Iowa portion of the Upper Iowa River Watershed in 2011. In the report, they note that “One of the primary goals of the study was to gain more thorough understanding of relationships between bedrock geology and karst features within the watershed.” Black River Falls photo courtesy of Larry Reis. Sinkholes Esri, HERE, Garmin, FAO, USGS, NGA, EPA, NPS According to the GIS data from the Iowa DNR, the UIR Watershed has 6,649 known sinkholes in the Iowa portion of the watershed. Although this number is very precise, sinkhole development is actually an active process in the UIR Watershed so the actual number of sinkholes changes over time as some are filled in through natural or human processes and others are formed. One of the most numerous karst features found in the UIR Watershed, sinkholes are formed when specific types of underlying bedrock are gradually dissolved, creating voids in the subsurface. When soils and other materials above these voids can no longer bridge the gap created in the bedrock, a collapse occurs. Photo Courtesy of USGS Sinkholes vary in size and shape and can and do occur in any type of land use in the UIR Watershed, from row crop to forest, and even in roads. According to the Iowa Geologic Survey, sinkholes are often connected to underground bedrock fractures and conduits, from minor fissures to enlarged caverns, which allow for rapid movement of water from sinkholes vertically and laterally through the subsurface. -
Groundwater Issues in the Paleozoic Plateau a Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery
GGroundwaterroundwater IssuesIssues inin tthehe PaleozoicPaleozoic PlateauPlateau A Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery Iowa Groundwater Association Field Trip Guidebook No. 1 Iowa Geological and Water Survey Guidebook Series No. 27 Dunning Spring, near Decorah in Winneshiek County, Iowa September 29, 2008 In Conjunction with the 53rd Annual Midwest Ground Water Conference Grand River Center, Dubuque, Iowa, September 30 – October 2, 2008 Groundwater Issues in the Paleozoic Plateau A Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery Iowa Groundwater Association Field Trip Guidebook No. 1 Iowa Geological and Water Survey Guidebook Series No. 27 In Conjunction with the 53rd Annual Midwest Ground Water Conference Grand River Center, Dubuque, Iowa, September 30 – October 2, 2008 With contributions by M.K. Anderson Robert McKay Iowa DNR-Water Supply Engineering Iowa DNR-Geological and Water Survey Bruce Blair Jeff Myrom Iowa DNR-Forestry Iowa DNR-Solid Waste Michael Bounk Eric O’Brien Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Karen Osterkamp Lora Friest Iowa DNR-Fisheries Northeast Iowa Resource Conservation and Development Jean C. Prior Iowa DNR-Geological and Water Survey James Hedges Luther College James Ranum Natural Resources Conservation Service John Hogeman Winneshiek County Landfi ll Operator Robert Rowden Iowa DNR-Geological and Water Survey Claire Hruby Iowa DNR-Geographic Information Systems Joe Sanfi lippo Iowa DNR-Manchester Field Offi ce Bill Kalishek Gary Siegwarth Iowa DNR-Fisheries Iowa DNR-Fisheries George E. Knudson Mary Skopec Luther College Iowa DNR-Geological and Water Survey Bob Libra Stephanie Surine Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Huaibao Liu Paul VanDorpe Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Iowa Department of Natural Resources Richard Leopold, Director September 2008 CONTENTS INTRODUCTION . -
The Cavernicolous Fauna of Hawaiian Lava Tubes, 1
Pacific Insects 15 (1): 139-151 20 May 1973 THE CAVERNICOLOUS FAUNA OF HAWAIIAN LAVA TUBES, 1. INTRODUCTION By Francis G. Howarth2 Abstract: The Hawaiian Islands offer great potential for evolutionary research. The discovery of specialized cavernicoles among the adaptively radiating fauna adds to that potential. About 50 lava tubes and a few other types of caves on 4 islands have been investigated. Tree roots, both living and dead, are the main energy source in the caves. Some organic material percolates into the cave through cracks associated with the roots. Cave slimes and accidentals also supply some nutrients. Lava tubes form almost exclusively in pahoehoe basalt, usually by the crusting over of lava rivers. However, the formation can be quite complex. Young basalt has numerous avenues such as vesicles, fissures, layers, and smaller tubes which allow some intercave and interlava flow dispersal of cavernicoles. In older flows these avenues are plugged by siltation or blocked or cut by erosion. The Hawaiian Islands are a string of oceanic volcanic islands stretching more than 2500 km across the mid-Pacific. The western islands are old eroded mountains which are now raised coral reefs and shoals. The eight main eastern islands total 16,667 km2 and are relatively young in geologic age. Ages range from 5+ million years for the island of Kauai to 1 million years for the largest island, Hawaii (Macdonald & Abbott, 1970). The native fauna and flora are composed of those groups which dis persed across upwards of 4000 km of open ocean or island hopped and became successfully established. -
55Th Legislature - State of New Mexico - First Session, 2021
1 HOUSE MEMORIAL 12 2 55TH LEGISLATURE - STATE OF NEW MEXICO - FIRST SESSION, 2021 3 INTRODUCED BY 4 Cathrynn N. Brown and Gail Armstrong 5 6 7 8 9 10 A MEMORIAL 11 REQUESTING THE GOVERNOR TO ISSUE A PROCLAMATION RECOGNIZING 12 2021 AS THE "INTERNATIONAL YEAR OF CAVES AND KARST". 13 14 WHEREAS, caves and related landforms like sinkholes, 15 springs and sinking streams, collectively known as karst, 16 present some of the world's most dramatic landscapes; and 17 WHEREAS, caves and karst have diverse economic, ecologic, 18 scientific and cultural impacts around New Mexico, the United ] = delete = ] 19 States and the world; and 20 WHEREAS, Carlsbad Caverns national park alone has an 21 economic benefit of about thirty-four million dollars 22 ($34,000,000) each year for New Mexico; and 23 WHEREAS, other New Mexico cave tourist destinations 24 include Bottomless Lakes state park, Santa Rosa blue hole, the underscored material = new = material underscored material [bracketed 25 ice cave and Bandera volcano and El Malpais national monument; .219712.1 1 and 2 WHEREAS, the country's first underground wilderness was 3 established in New Mexico to protect the spectacular 4 Lechuguilla cave; and 5 WHEREAS, the country's first underground national 6 conservation area was established in New Mexico to protect the 7 equally amazing Fort Stanton-Snowy River Cave national 8 conservation area; and 9 WHEREAS, the primary water supplies for roughly fifteen 10 percent of New Mexico are karst aquifers, especially supporting 11 the communities in the southeast -
Selected Abstracts from the 2007 National Speleological Society Convention Marengo, Indiana
2007 NSS CONVENTION ABSTRACTS SELECTED ABSTRACTS FROM THE 2007 NATIONAL SPELEOLOGICAL SOCIETY CONVENTION MARENGO, INDIANA BIOSPELEOLOGY Palpigradida (1), Araneae (6), Opiliones (2), Pseudoscorpiones (3), Copepoda (5), Ostracoda (2), Decapoda (4), Isopoda (7), Amphipoda THE SUBTERRANEAN FAUNA OF INDIANA (12), Chilopoda (2), Diplopoda (4), Collembola (4), Diplura (1), Julian J. Lewis and Salisa L. Lewis Thysanura (1), Coleoptera (14), and Vertebrata (1). Vjetrenica is also Lewis & Associates LLC, Cave, Karst & Groundwater Biological Consulting; 17903 the type locality for 37 taxa, including16 endemics and 3 monotypic State Road 60, Borden, IN 47106-8608, USA, [email protected] genera: Zavalia vjetrenicae (Gastropoda), Troglomysis vjetrenicensis Within Indiana are two distinct cave areas, the south-central karst (Crustacea) and Nauticiella stygivaga (Coleoptera). Some groups have containing most of the state’s 2,000+ caves, and the glaciated southeastern not yet been studied or described (Nematoda, Oligochaeta, Thysanura). karst. Field work from 1971 to present resulted in sampling over 500 caves Due to changes in hydrology, highway building, intensive agriculture, for fauna. Approximately 100 species of obligate cavernicoles have been garbage delay, local quarrying, and lack of state protection mechanisms, discovered, with over 70 of these occurring in the south-central karst area. Vjetrenica is strongly endangered. Besides continuing research, protection Dispersal into the southeastern cave area was limited to the period after of the whole drainage area, along with sustainable cave management, is the recession of the Illinoian ice sheet, accounting for the paucity of fauna, necessary. with only 30 obligate cavernicoles known. The fauna of southeastern Indiana is believed to have dispersed into the area during the Wisconsin MARK-RECAPTURE POPULATION SIZE ESTIMATES OF THE MADISON glaciation, whereas the south-central karst has been available for CAVE ISOPOD, ANTROLANA LIRA colonization over a longer time. -
Glacier Caves: a Globally Threatened Subterranean Biome
Francis G. Howarth. Glacier caves: a globally threatened subterranean biome. Journal of Cave and Karst Studies, v. 83, no. 2, p. 66-70. DOI:10.4311/2019LSC0132 GLACIER CAVES: A GLOBALLY THREATENED SUBTERRANEAN BIOME Francis G. Howarth1 Abstract Caves and cave-like voids are common features within and beneath glaciers. The physical environment is harsh and extreme, and often considered barren and devoid of life. However, accumulating evidence indicates that these caves may support a diverse invertebrate fauna with species endemic to each region. As glaciers continue to disappear at an alarming rate due to global warming, they take their largely unknown fauna with them. Thus, glacier caves may harbor one of the most endangered ecosystems globally, and yet their biodiversity is among the least studied or known. Faunal surveys and ecological studies are urgently needed before all examples are lost. INTRODUCTION Glacier caves are voids within and beneath glaciers that are formed mostly by surface meltwater sinking into the glacier through crevasses, moulins, and fissures (Piccini and Mecchia, 2013; Smart, 2003; Kováč, 2018; Gulley and Fountain, 2019). Glacier caves can be enlarged by geothermal melting (Kiver and Mumma, 1971; Giggenbach, 1976), as well as by pressure and friction at the contact between the ice and bedrock. These caves are created by natural phenomena during the life of the glacier and are common features in glaciers. They are best developed in montane gla- ciers in comparison to polar glaciers, largely because of the steeper gradient, greater flow rate, and seasonally warmer temperatures (Smart, 2003). The cave structure is dynamic; for example, changing shape and course as the glacier flows downslope; enlarging during warm periods; and collapsing and deforming under pressure. -
Raw Sewage and Solid Waste Dumps in Lava Tube Caves of Hawaii Island
William R. Halliday - Raw sewarge and sold waste dumps in lave tube caves of Hawaii Island. Journal of Cave and Karst Studies, v. 65, n. 1, p. 68-75. RAW SEWAGE AND SOLID WASTE DUMPS IN LAVA TUBE CAVES OF HAWAII ISLAND WILLIAM R. HALLIDAY Hawaii Speleological Survey, 6530 Cornwall Court, Nashville, TN 37205 USA [email protected] Lava tubes on the island of Hawaii (and elsewhere) are possible subsurface point sources of contamina- tion in addition to more readily identifiable sources on the surface. Human and animal waste, and haz- ardous and toxic substances dumped into lava tube caves are subject to rapid transport during flood events, which are the dominant type of groundwater flow through Hawaiian lava tubes. Although these waste materials may not be a major source of pollution when compared with some surface sources, this potential hazard should be evaluated much as in the case of karstic floodwater conduits. This paper explores the interaction of water flow and solid waste dumps and sewage in lava tubes and lava tube caves of Hawaii Island, Hawaii - an island almost as large as the state of Connecticut (Fig. 1)-and resulting potential threats to groundwater quality. In recent years, Hawaiian cavers and speleologists have become increasingly concerned about these occurrences. Some of the solid waste dumps can be seen to contain partially empty containers of toxic and/or hazardous substances (Fig. 2), including automotive and agricultural waste. Stinking raw sewage speaks for itself (Fig. 3), and members of the Hawaii chapter of the National Speleological Society have been shown the top of a septic tank or cesspool near Keaau said to consist of an unlined segment of lava tube cave. -
World Heritage Nomination – Iucn Technical Evaluation
WORLD HERITAGE NOMINATION – IUCN TECHNICAL EVALUATION CAVES OF THE AGGTELEK KARST AND SLOVAK KARST (HUNGARY / SLOVAKIA) EXTENSION TO INCLUDE DOBŠINSKÁ ICE CAVE (SLOVAKIA) Background note: The Dobšinská Ice Cave was part of the larger nomination from Slovakia considered by the 22nd session of the Bureau and Committee in 1998. The Committee report “recalled that the Bureau . decided to refer the nomination back to the State Party asking the Slovak authorities to consider incorporating the Dobšinská Ice Cave portion into the nearby World Heritage site of the Caves of The Aggtelek Karst and Slovak Karst. The report of the Committee session in 1998 shows that “the Committee did not inscribe the site on the World Heritage list” but that the State Party, the Centre and IUCN were encouraged by the Chairperson “to cooperate in the preparation of a revised nomination . .”. This nomination of the Dobšinská Ice Cave in Slovakia as an addition to the existing cave site in Hungary is the result of that cooperation. 1 DOCUMENTATION i) IUCN/WCMC Data Sheet: (7 references) ii) Additional Literature Consulted: Lalkovic, M. 1995. On the Problems of the Ice Filling in the Dobšinská Ice Cave. Acta Carsologica. Krasoslovni Zbornik XXIV; Courbon, P. et. al. 1989. Atlas of the Great Caves of the World; Waltham, T. 1974. Caves. Macmillan; Juberthie, C. 1995. Underground Habitats and their Protection. Nature and Environment No. 72. Council of Europe Press; Middleton, J. & T. Walthan. 1986. The Underground Atlas: A Gazetteer of The World's Cave Regions. St Mattin's Press; Watson, J. et al. 1997. Guidelines for Cave and Karst Protection. -
Meteorological Comparison of Three Cave Systems
Western Kentucky University TopSCHOLAR® Honors College Capstone Experience/Thesis Projects Honors College at WKU 2019 Meteorological Comparison of Three Cave Systems Matthew Wine Western Kentucky University, [email protected] Follow this and additional works at: https://digitalcommons.wku.edu/stu_hon_theses Part of the Geology Commons, and the Meteorology Commons Recommended Citation Wine, Matthew, "Meteorological Comparison of Three Cave Systems" (2019). Honors College Capstone Experience/Thesis Projects. Paper 835. https://digitalcommons.wku.edu/stu_hon_theses/835 This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Honors College Capstone Experience/Thesis Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. METEOROLOGICAL COMPARISON OF THREE CAVE SYSTEMS A Capstone Experience/Thesis Project Presented in Partial Fulfillment of the Requirements of the Degree Bachelor of Science with Honors College Graduate Distinction at Western Kentucky University By: Matthew Wine ***** Western Kentucky University 2019 CE/T Committee: Approved by: Dr. Patricia Kambesis, Advisor Dr. Greg Goodrich __________________________________ Dr. Dennis Wilson Advisor Department of Geography & Geology Copyright by: Matthew Wine 2019 ABSTRACT Cave systems are home to delicate underground ecosystems that can be affected by changes in surface atmospheric conditions which in turn affect underground meteorology. Modern human use of caves is typically for tourism, so understanding surface-underground weather-climate interactions is important when caves carry streams that are prone to flooding in response to surface precipitation. The purpose of this research is to document the effects of surface weather conditions on cave meteorology in three different cave system types located in different geographic locations including an island, the central USA, and at high elevations in British Columbia. -
Bulletin of the National Speleological Society
H.h. '. II BULLETIN OF THE NATIONAL SPELEOLOGICAL SOCIETY VOLUME 31 NUMBER 3 Contents PARADISE ICE CAVES, WASHINGTON MICROECOSYSTEMS IN LEHMAN CAVE, NEVADA JULY 1969 IL H. Hobbs Ill Information for [ontrihutors BULLETIN To the Bulletin of THE NATIONAL SPELEDLDGil:AL SOl:IETY Papers in any discipline of speleology are considered for publication in the BULLETIN. The upper limit for length is about 10,000 words or approximately 40 pages of manuscript, typed double-spaced. At least one copy but preferably two VOLUME 31, NUMBER 3 JULY 1969 copies of the manuscript (typed, double-spac~d) should be submitted to the Editor, CONTENTS Jerry D. Vineyard, Missouri Geological Survey, Box 250, Rolla, Missouri 65401. Photographs and line drawings, if required, should be submitted with the manuscript. THE PARADISE ICE CAVES, WASHINGTON : AN EXTENSIVE In general, prints and line drawings will be photo-reduced to the size necessary for GLACIER CAVE SYSTEM ........ Charles H. Anderson and William R. Halliday 55 use in the BULLETIN. MICROECOSYSTEMS IN LEHMAN CAVE, NEVADA .................................... N. Stark 73 For general style, see papers in this BULLETIN. Abstracts are required for all papers. Abstracts should be brief and informative. Captions are required for all Published quarterly by the NATIONAL SPELEOLOGICAL SOCIETY illustrations, and all unusual symbols used should be explained. References to the literature should be by author and date, with specific pages Suhscription rate in ef feet January l. J Q6Q : $6.00. where desirable. Literature cited should be listed in an end bibliography with entries arranged alphabetically by author's last names. For book , give total pages; for Office Addre$: journal papers, inclusive pages. -
The Norwegian Partner of CAVEICE, an ERANET Project on Cave Ice Microbiology and Isotope Stratigraphy
Cave ice microbiom along a Chronosequence in Svarhamar Ice Cave, North Norway The Norwegian partner of CAVEICE, an ERANET project on cave ice Lise Øvreås(1) & Stein-Erik Lauritzen (2), Departments of Biology (1) and Earth Sciences (2), microbiology and isotope stratigraphy University of Bergen [email protected]; [email protected] Entrances at two Levels (40m difference) Ice mass Figure 1. Key map, Svarthamar cave Fig 2. Close-up of ice stratigraphy Fig. 3. Outline of Svarthamar cave. Ice mass indicated Background and project description Ice caves represent highly that ice accumulation preserved and relatively commenced after AD 1200 unexposed ice environments (Lauritzen 1996 & et al. 2005), constituting a unique archive for Fig. 5. studying the impact of climate As the entire Chrono sequence and anthropogenic pollution on is exposed inside the cave (Figs. the microorganisms living there. 2 &4) ice cores will be drilled and Still there is only scarce samples covering the entire time information about the indigenous span. The ice core will be melted ice-microbiota, and their slowly and the ice water will be vulnerability to climate change. filtered onto 0.2 µM filter to In this project we will study the collect the microbial biomass, total and active microbial which will be used for RNA and communities from ice caves of DNA extraction. The functional different climate and pollution variability of total and active- exposures in order to embedded microbiome will be understand the microbial determined by direct sequencing Fig. 4. Part of the exposed ice mass (1990) diversity and metabolisms along using illumina sequencing a Chrono sequence model technology of metagenomes and reflecting the impact of both metatranscriptome from the ice climate and environmental and be compared with other ice pollution on cave ice and glacier caves processed microbioms.