Melting Furnaces
Total Page:16
File Type:pdf, Size:1020Kb
Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability OF responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe 'I privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or *, any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available COPY. Available to DOE and DOE contractors from US. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: (865)576-8401 Facsimile: (865)576-5728 E-Mail: rePorts@,adonis.osti.gov Online ordering: h ttu://www .doc.eovibridae Available to the public from U.S. Department of Commerce National Technical Information Service 5285 Port Royal Rd Springfield, VA 22 161 Telephone: (800)553-6847 Facsimile: (703)605-6900 E-Mail: orders~!ntis.fedworld.eov Online order: l~tt~:l~www.n~is.~ov/hcl~/ordcr1netl~ods.as~?loc=7-~-O~o1~~1i~~ SAND2005-1 196 Unlimited Release Printed February 2005 Development of Models and Online Diagnostic Monitors of the High- Temperature Corrosion of Refractories in Oxy/Fuel Glass Furnaces Final Project Report Mark D. Allendorf Robert H. Nilson Steven F. Rice Stewart K. Griffiths Peter M. Walsh* Nancy Yang Sandia National Laboratories ~arlE. Spear' Mariano Velez' Pennsylvania State University University of Missouri, Rolla Benjamin Bugeat Amul Gupta Ovidiu Marin Monopa, Inc. M. Usman Ghani American Air Liquide Ed Wolfe ANH Repactories George Pecoraro' PPG Industries, Inc. Abstract " This report summarizes the results of a five-year effort to understand the mechanisms and develop models that I predict the corrosion of refractories in oxygen-fuel glass-melting furnaces. Thermodynamic data for the Si-0-(Na or - K) and AI-0-(Na or K) systems are reported, allowing equilibrium calculations to be performed to evaluate corrosion of silica- and alumina-based refractories under typical furnace operating conditions. A detailed analysis of processes contributing to corrosion is also presented. Using this analysis, a model of the corrosion process was developed and used to predict corrosion rates in an actual industrial glass furnace. The rate-limiting process is most likely the transport of NaOH(gas) through the mass-transport boundary layer from the furnace atmosphere to the crown surface. Corrosion rates predicted on this basis are in better agreement with observation than those produced by any other mechanism, although the absolute values are highly sensitive to the crown temperature and the NaOH(gas) concentration at equilibrium and at the edge of the boundary layer. Finally, the project explored the development of excimer laser induced fragmentation (ELIF) fluorescence spectroscopy for the detection of gas- phase alkali hydroxides (e.g., NaOH) that are predicted to be the key species causing accelerated corrosion in these furnaces. The development of ELIF and the construction of field-portable instrumentation for glass furnace applications are reported and the method is shown to be effective in industrial settings. 3 Acknowledgments The authors wish to thank R. D. Moore and J. Neufeld (Gallo Glass Co., Modesto, CA) for generously providing detailed information concerning operating conditions and the design of the Tank 1 oxy-fuel furnace and Amul Gupta (Monofrax Inc., Falconer, NY)for conducting detailed laboratory corrosion tests and analysis. For their financial support, we are grateful to: the U.S. Dept. of Energy (DOE) Office of Industrial Technologies Program Glass Industry of the Future Team; American Air Liquide, BOC Gases, PPG Industries Inc., Praxair Inc., Techneglas, and Visteon Automotive Systems; and the DOE Environmental Management Science Program funded by the Office of Environmental Management's Office of Science and Technology, and administered jointly with the Office of Energy Research under contract DE-AC05-960R22464 with Lockheed Martin Energy Research Corporation. 4 Table of Contents Chapter 1 Introduction ......................................................................................................................................... 7 Chapter 2 Thermodynamic Analysis of Silica Refractory Corrosion in Glass-Melting Furnaces ..................... 13 Abstract ........................................................................................................................................................ 13 Introduction .................................................................................................................................................. 13 Corrosion Mechanisms, Thermodynamic Data. and Modeling Approach................................................... 15 Corrosion Analysis. Predictions. and Discussion: ....................................................................................... 25 Equilibrium predictions of silica corrosion by Na- or K-containing species ....................................................... 25 Implications for “Ratholing” in Refractory Joints ....................................................................................... 31 t Thermodynamics ofthe Si02/Na20/Ca0System ........................................................................................ 31 Summary and Conclusions........................................................................................................................... 32 References 33 J .................................................................................................................................................... Chapter 3 Thermodynamic Analysis of Alumina Refractory Corrosion by Sodium or Potassium Hydroxide in Glass-Melting Furnaces ............................................................................................................................... 35 Abstract ........................................................................................................................................................ 35 Introduction.................................................................................................................................................. 35 Equilibrium Modeling Approach ................................................................................................................. 37 Results .......................................................................................................................................................... 41 Summary and Conclusions........................................................................................................................... 51 References .................................................................................................................................................... 52 Chapter 4 Analytical Models for High-Temperature Corrosion of Silica Refractories in Glass-Melting Furnaces ....................................................................................................................................................... 53 Abstract ........................................................................................................................................................ 53 Introduction .................................................................................................................................................. 54 Phenomenology of Corrosion ...................................................................................................................... 57 Vapor Phase Transport ofNaOH(g) to Crown Surface ............................................................................... 58 Kinetics of Reaction at LiquidGrain Interface ............................................................................................ 64 Diffusion ofNa20 through the Liquid Product Layer ................................................................................. 68 Capillary Suction of Silicate Melt into Brick Pores ..................................................................................... 73 CFD Methods ............................................................................................................................................... 79 Computational Fluid Dynamic Modeling of Corrosion ............................................................................... 81 Summary and Conclusions........................................................................................................................... 83 References .................................................................................................................................................... 85 Chapter 5 Detection of NAOH vapor in glass fiunaces