Iron and Steel Industry

Total Page:16

File Type:pdf, Size:1020Kb

Iron and Steel Industry Office of Air and Radiation September 2012 AVAILABLE AND EMERGING TECHNOLOGIES FOR REDUCING GREENHOUSE GAS EMISSIONS FROM THE IRON AND STEEL INDUSTRY Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the Iron and Steel Industry Prepared by the Sector Policies and Programs Division Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711 September 2012 Table of Contents Tables .............................................................................................................................................. v Figures............................................................................................................................................ vi Abbreviations and Acronyms ....................................................................................................... vii EPA Contact................................................................................................................................... ix I. Introduction ................................................................................................................................. 1 II. Purpose of this Document .......................................................................................................... 1 III. Organization of This Document................................................................................................ 1 IV. Description of the Iron and Steel Industry ................................................................................ 1 V. Energy Programs and Management Systems ............................................................................. 5 A. Formal Energy Programs .................................................................................................. 5 B. Energy Performance Benchmarks on Plant- and Industry-specific Basis ......................... 8 C. Industry Energy Efficiency Initiatives .............................................................................. 8 VI. Summary of GHG Control Measures ....................................................................................... 8 VII. Energy Efficiency Improvement Measures for the Steel Industry………………..………….9 A. Sintering at Integrated Iron and Steel Plants ................................................................... 13 B. Cokemaking .................................................................................................................... 15 C. Blast Furnace at Integrated Iron and Steel Plants ........................................................... 17 D. Basic Oxygen Furnace at Integrated Iron and Steel Plants ............................................. 20 E. Casting .......................................................................................................................... 21 F. Rolling Mills, General Measures ..................................................................................... 23 G. Hot Rolling Mills ............................................................................................................ 24 H. Cold Rolling Mills .......................................................................................................... 28 I. Finishing Operations......................................................................................................... 28 J. General Measures for Energy Efficiency Improvements ................................................. 29 K. Energy Efficiency Options for Electric Arc Furnace Steelmaking ................................. 30 VIII. References ............................................................................................................................ 37 Appendix A. Emerging Techniques for GHG Control ............................................................... A-1 A.1 Long-Term Opportunities to Reduce CO 2 Emissions ................................................ A-1 A.2 Near-Term Technologies ............................................................................................. A-2 A.3 Energy Improvement Technologies from U.S. Department of Energy ...................... A-4 Appendix B. The U.S. Steel Industry ......................................................................................... B-1 B.1 Plants and Locations .................................................................................................... B-1 B.2 Energy Intensity .......................................................................................................... B-4 Appendix C. Detailed Estimates of Energy Costs and Savings .................................................. C-1 Appendix D. Processes and Emissions in the Iron and Steel Industry ....................................... D-1 D.1 Overview of Processes in the Iron and Steel Industry ................................................ D-1 D.1.1 Sinter Production………………………………………………………………D-1 D.1.2 Blast Furnace Iron Production…………………………………………………D-2 D.1.3 Basic Oxygen Furnaces Steelmaking Process……………………... ……...….D-3 D.1.4 Electric Arc Furnace Steelmaking…………………………………………..…D-4 D.1.5 Casting and Finishing……………………………………………………….....D-4 D.1.6 Other Steel Finishing Processes and Combustion Sources…………………....D-5 iii D.1.7 Coke Production………………………………………………………………D-6 D.2 Greenhouse Gas Emissions from Steelmaking Processes............................................D-8 D.2.1 GHG Emissions from Sinter Plants…………………………………………...D-8 D.2.2 GHG Emissions from Blast Furnaces……………………………………........D-8 D.2.3 GHG Emissions from Basic Oxygen Furnaces……………………………......D-8 D.2.4 GHG Emissions from Electric Arc Furnace………………………………...…D-9 D.2.5 GHG Emissions from Coke Plants……………………………………….…....D-9 iv Tables Table 1. Energy Efficiency Technologies and Measures Available for Integrated Steel and Coke Production in the U.S. ....................................................................................................................................... 10 Table 2. Energy Efficiency Technologies and Measures Available for Electric Arc Furnace Steel Production inthe U.S. ........................................................................................................................................ 12 Table B-1. List of Coke Plants by City and State ............................................................................................... B-1 Table B-2. List of Integrated Iron and Steel Plants by City and State ................................................................ B-2 Table B-3. List of EAF Steel Plants by City and State ....................................................................................... B-3 Table B-4. Electricity Generation in the Iron and Steel Industry ……………………………………………...B-6 Table B-5. U.S. Slab Casting Units Installed 1994–2000................................................................................... B-7 Table C-1. Energy Efficiency Technologies and Measures Applied to Integrated Steel Manufacturing in the U.S. ....................................................................................................................................................... C-2 Table C-2. Energy Efficiency Technologies and Measures Applied to EAF Steel Production in the U.S. ..................................................................................................................................................... C-5 Table D-4. Estimates of GHG Emissions in 2010 for Iron and Steel Sector Using Emission Factors ……..….D-10 v Figures Figure 1. Routes to steelmaking.................................................................................. ……………2 Figure B-1. Historical energy consumption in the Iron and Steel industry……………….....….B-5 vi Abbreviations and Acronyms °C degrees Celsius °F degrees Fahrenheit AC alternating current ACCCI American Coke and Coal Chemicals Institute AISI American Iron and Steel Institute AIST Association for Iron & Steel Technology Al 2O3 aluminum oxide ANSI American National Standards Institute AOD argon-oxygen decarburization BACT best available control technology BFG blast furnace gas BOF basic oxygen furnaces Btu British thermal unit CaO calcium oxide CCAP Center for Clean Air Policy cm centimeter CCS carbon capture and sequestration CHP combined heat and power CFD computational fluid dynamics CH 4 methane CO carbon monoxide CO 2 carbon dioxide COG coke oven gas DC direct current DOE United States Department of Energy DRI direct reduced iron EAF electric arc furnaces EMS energy management systems EPA United States Environmental Protection Agency FeO iron oxide Ft feet ft 3 cubic foot g/m 3 grams per cubic meter GHG greenhouse gas GJ gigajoule gr/ft 3 grains per cubic foot hr hour in inch(es) IPCC Intergovernmental Panel on Climate Change ISO International Standards Organization kg kilogram vii kVA kilovolt amps kWh kilowatt hour lb pounds m meter(s) m3 cubic meter MMBtu million British thermal units MgO magnesium oxide mm millimeters NO x nitrogen oxide PM particulate matter -6 PM 2.5 particulate matter with a diameter less than 2.5 micrometers (10 m) PSD prevention of significant deterioration PSH paired straight hearth R&D research and development scf standard cubic feet SiO 2 silicon dioxide SOx sulfur oxide ton ton (short, English) tonne metric ton (equal to 1.102 short tons) tpy tons (short) per year UHP ultra-high power ULCOS ultra-low CO 2 steelmaking U.S. United States VSD variable-speed drive yr year viii EPA Contact Dr. Donna Lee Jones (D243-02)
Recommended publications
  • ROUND the BEND TEAM Being Through Our Efforts
    Round the bend Farm A CENTER FOR RESTORATIVE COMMUNITY 1 LETTER FROM THE It’s been an AMAZING monarch year for us here at RTB. We even offered CO-VISIONARIES a monarch class in July Desa & Nia Van Laarhoven and we’ve been hatching & Geoff Kinder some at RTB to increase s fall descends on Round the Bend Farm their odds. (RTB), vivid colors mark the passage of time. Autumn’s return grounds us amid Aeach day’s frenetic news cycles. It reminds us of the deeper cycle that connects us all to the earth and to each other. And yet one news story, from late September, has done the same. More than 7.5 million people came together in cities and villages across the planet to call in unison for an environmentally just and sustainable world. This is a story that speaks to RTB’s mission and purpose and demonstrates the concept of Restorative Community that’s so central to our existence. You can see it in the image that juxtaposed September’s global crowds with the prior year’s solitary Swedish protester. You can hear it in the words spoken by an Indigenous Brazilian teen to 250,000 people lining the streets of New York City. Restorative Community is a force multiplier for our own personal commitments to justice, health and peace. It nurtures and supports us as individuals, unites and strengthens us as a movement and harnesses our differences in service of our common goals. In community, we respect, enjoy and learn from each other. As you page through this year’s annual report, we hope you experience the same! We’re This past year, we continued to expand our inspired and encouraged by what we’ve Restorative Community at RTB, more than accomplished this year and we’re honored to doubling the number of people who visited serve our community in ever new ways.
    [Show full text]
  • Wear Behavior of Austempered and Quenched and Tempered Gray Cast Irons Under Similar Hardness
    metals Article Wear Behavior of Austempered and Quenched and Tempered Gray Cast Irons under Similar Hardness 1,2 2 2 2, , Bingxu Wang , Xue Han , Gary C. Barber and Yuming Pan * y 1 Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China; [email protected] 2 Automotive Tribology Center, Department of Mechanical Engineering, School of Engineering and Computer Science, Oakland University, Rochester, MI 48309, USA; [email protected] (X.H.); [email protected] (G.C.B.) * Correspondence: [email protected] Current address: 201 N. Squirrel Rd Apt 1204, Auburn Hills, MI 48326, USA. y Received: 14 November 2019; Accepted: 4 December 2019; Published: 8 December 2019 Abstract: In this research, an austempering heat treatment was applied on gray cast iron using various austempering temperatures ranging from 232 ◦C to 371 ◦C and holding times ranging from 1 min to 120 min. The microstructure and hardness were examined using optical microscopy and a Rockwell hardness tester. Rotational ball-on-disk sliding wear tests were carried out to investigate the wear behavior of austempered gray cast iron samples and to compare with conventional quenched and tempered gray cast iron samples under equivalent hardness. For the austempered samples, it was found that acicular ferrite and carbon saturated austenite were formed in the matrix. The ferritic platelets became coarse when increasing the austempering temperature or extending the holding time. Hardness decreased due to a decreasing amount of martensite in the matrix. In wear tests, austempered gray cast iron samples showed slightly higher wear resistance than quenched and tempered samples under similar hardness while using the austempering temperatures of 232 ◦C, 260 ◦C, 288 ◦C, and 316 ◦C and distinctly better wear resistance while using the austempering temperatures of 343 ◦C and 371 ◦C.
    [Show full text]
  • Evaluation of the Three-Phase, Electric Arc Melting Furnace for Treatment of Simulated, Thermally Oxidized Radioactive and Mixed Wastes (In Two Parts)
    PLEASE DO NOT REMOVE FRCM LIBRARY REPORT OF INVESTIGATIONS/1995 Evaluation of the Three-Phase, Electric Arc Melting Furnace for Treatment of Simulated, Thermally Oxidized Radioactive and Mixed Wastes (In Two Parts) 1. Design Criteria and Description of Integrated Waste Lk3 dt.!H':.(ll J '; Mil .~ " Treatment Facility f $ 1 ;~ *.,;;::wr')oMFp.·:~ '" ,,~ ~~f . \N," 00<?0 ,- , l By L. L. Oden, W. K. O'Connor, P. C. Turner, and A. D. Hartman UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MINES u.s. Department of the Interior Mission Statement As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally-owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participa­ tion in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration. Cover. ThenntJl waste tret1lment facility. T- ~---------- ~1 H Report of Investigations 9528 'I Evaluation of the Three-Phase, Electric Arc Melting Furnace for Treatment of Simulated, Thermally Oxidized Radioactive and Mixed Wastes !' ( (In Two Parts) 1. Design Criteria and Description of Integrated Waste Treatment Facility By L.
    [Show full text]
  • Society, Materials, and the Environment: the Case of Steel
    metals Review Society, Materials, and the Environment: The Case of Steel Jean-Pierre Birat IF Steelman, Moselle, 57280 Semécourt, France; [email protected]; Tel.: +333-8751-1117 Received: 1 February 2020; Accepted: 25 February 2020; Published: 2 March 2020 Abstract: This paper reviews the relationship between the production of steel and the environment as it stands today. It deals with raw material issues (availability, scarcity), energy resources, and generation of by-products, i.e., the circular economy, the anthropogenic iron mine, and the energy transition. The paper also deals with emissions to air (dust, Particulate Matter, heavy metals, Persistant Organics Pollutants), water, and soil, i.e., with toxicity, ecotoxicity, epidemiology, and health issues, but also greenhouse gas emissions, i.e., climate change. The loss of biodiversity is also mentioned. All these topics are analyzed with historical hindsight and the present understanding of their physics and chemistry is discussed, stressing areas where knowledge is still lacking. In the face of all these issues, technological solutions were sought to alleviate their effects: many areas are presently satisfactorily handled (the circular economy—a historical’ practice in the case of steel, energy conservation, air/water/soil emissions) and in line with present environmental regulations; on the other hand, there are important hanging issues, such as the generation of mine tailings (and tailings dam failures), the emissions of greenhouse gases (the steel industry plans to become carbon-neutral by 2050, at least in the EU), and the emission of fine PM, which WHO correlates with premature deaths. Moreover, present regulatory levels of emissions will necessarily become much stricter.
    [Show full text]
  • Schoolcraft Blast Furnace
    Pictured Rocks National Lakeshore Schoolcraft National Park Service U.S. Department of the Interior Blast Furnace Schoolcraft furnace With surveyor William Burt’s discovery of iron ore near Teal Lake in Marquette County in 1844, Michigan’s Upper Peninsula suddenly became a hub of activity. The discovery led to construction of a vast mining and manufacturing industry using forges and blast furnaces. When the Civil War ended, many of the South’s furnaces had been destroyed by the war. Westward expansion was occurring across the plains and demand for iron boomed. It was during this era that many of the Upper Peninsula’s furnaces were constructed. There were advantages to smelting iron ore from charcoal fires. Iron produced in this manner was low in carbon content, making it highly fusable, strong, malleable and able to withstand shocks without cracking. The iron made fine wagon rims, horseshoes, and railroad wheels. Before the boom times were over, 29 separate furnaces were located on the Old Munising, ca. 1870 peninsula, though not all operated simultaneously. The business of iron making required more capital than was readily available in the area and financing and management of the operations was often complex. The first group of investors were from Philadelphia. They wished to develop a resort village on Munising Bay’s east shoreline in 1850. Some 87,000 acres of timber were purchased for $.85 an acre. A village was platted on the east shore of Munising Bay, lots were sold, and a dock was built. Henry Mather and Peter White acted as agents for the group of investors who created the Schoolcraft Iron Company in 1866.
    [Show full text]
  • Higher-Quality Electric-Arc Furnace Steel
    ACADEMIC PULSE Higher-Quality Electric-Arc Furnace Steel teelmakers have traditionally viewed Research Continues to Improve the electric arc furnaces (EAFs) as unsuitable Quality of Steel for producing steel with the highest- Even with continued improvements to the Squality surface finish because the process design of steelmaking processes, the steelmaking uses recycled steel instead of fresh iron. With over research community has focused their attention 100 years of processing improvements, however, on the fundamental materials used in steelmaking EAFs have become an efficient and reliable in order to improve the quality of steel. In my lab steelmaking alternative to integrated steelmaking. In at Carnegie Mellon University, we have several fact, steel produced in a modern-day EAF is often research projects that deal with controlling the DR. P. BILLCHRIS MAYER PISTORIUS indistinguishable from what is produced with the impurity concentration and chemical quality of POSCOManaging Professor Editorof Materials integrated blast-furnace/oxygen-steelmaking route. steel produced in EAFs. Science412-306-4350 and Engineering [email protected] Mellon University Improvements in design, coupled with research For example, we recently used mathematical developments in metallurgy, mean high-quality steel modeling to explore ways to control produced quickly and energy-efficiently. phosphorus. Careful regulation of temperature, slag and stirring are needed to produce low- Not Your (Great-) Grandparent’s EAF phosphorus steel. We analyzed data from Especially since the mid-1990s, there have been operating furnaces and found that, in many significant improvements in the design of EAFs, cases, the phosphorus removal reaction could which allow for better-functioning burners and a proceed further.
    [Show full text]
  • Elegancy D5.2.5
    ACT Project Number: 271498 Project name: ELEGANCY Project full title: Enabling a Low-Carbon Economy via Hydrogen and CCS ERA-Net ACT project Starting date: 2017-08-31 Duration: 36 months D5.2.5 Evaluation of the potential for hydrogen and CCS in the decarbonization of the Dutch steel industry Date: 2020-08-31 Organization name of lead participant for this deliverable: Utrecht University ACT ELEGANCY, Project No 271498, has received funding from DETEC (CH), BMWi (DE), RVO (NL), Gassnova (NO), BEIS (UK), Gassco, Equinor and Total, and is cofunded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712. Dissemination Level PU Public x CO Confidential, only for members of the consortium (including the Commission Services) Page iii Deliverable number: D5.2.5 Deliverable title: Evaluation of the potential for hydrogen and CCS in the decarbonization of the Dutch steel industry Work package: WP5 Case Studies Lead participant: UU Authors Name Organisation E-mail Lukas Weimann* UU [email protected] Matteo Gazzani UU [email protected] Gert Jan Kramer UU Joep Matser UU Annika Boldrini UU *Mark lead author with asterisk Keywords Integrated steelworks, decarbonization of steel industry, process optimization, Hisarna, electric- arc furnace, carbon capture and storage, hydrogen. Abstract The iron and steel industry accounts for 5 % of worldwide CO2 emissions. With 13 MtCO2eq annually, TATA Steel, which employs the traditional blast furnace – basic oxygen furnace steel making route, is one of the largest single point emitters in the Netherlands (and EU). Given the role of steel in present and future society, decarbonizing the steel industry is of paramount importance for a CO2 net-zero society.
    [Show full text]
  • 5. Sirhowy Ironworks
    Great Archaeological Sites in Blaenau Gwent 5. SIRHOWY IRONWORKS There were a number of ironworks in the area now covered by Blaenau Gwent County Borough, which provided all the raw materials they needed – iron ore, limestone and fuel, charcoal at first but later coal to make coke. The Sirhowy ironworks (SO14301010) are the only one where there is still something to see. The works were opened in 1778 with one blast furnace. Although it was originally blown by water power, in 1799 the owners invested in a Boulton and Watt steam engine. This gave them enough power to blow a second furnace, which started production in 1802. In the early years of the 19th century, the pig iron produced at Sirhowy was sent to the Tredegar works a little further down the valley where it was refined, until 1818 when the Sirhowy works were sold and started to send its pig iron to Ebbw Vale. A third furnace was added in 1826 and a fourth in 1839. But by the 1870s iron smelting at Sirhowy was no longer profitable, and the works finally closed in 1882. Like all ironworks in South Wales, the furnaces were built against a steep bank which enabled the ironworkers to load the charge of iron ore, limestone and coke or charcoal fuel more easily at the top of the furnace. All that is now left now are the remains of a bank of blast furnaces with the arches that would originally have linked them to the casting houses in front, and the building that originally housed the waterwheel.
    [Show full text]
  • National Register of Historic Places Multiple Property
    NFS Form 10-900-b 0MB No. 1024-0018 (Jan. 1987) United States Department of the Interior National Park Service National Register of Historic Places Multipler Propertyr ' Documentation Form NATIONAL This form is for use in documenting multiple property groups relating to one or several historic contexts. See instructions in Guidelines for Completing National Register Forms (National Register Bulletin 16). Complete each item by marking "x" in the appropriate box or by entering the requested information. For additional space use continuation sheets (Form 10-900-a). Type all entries. A. Name of Multiple Property Listing ____Iron and Steel Resources of Pennsylvania, 1716-1945_______________ B. Associated Historic Contexts_____________________________ ~ ___Pennsylvania Iron and Steel Industry. 1716-1945_________________ C. Geographical Data Commonwealth of Pennsylvania continuation sheet D. Certification As the designated authority under the National Historic Preservation Act of 1966, as amended, J hereby certify that this documentation form meets the National Register documentation standards and sets forth requirements for the listing of related properties consistent with the National Register criteria. This submission meets the procedural and professional requiremerytS\set forth iri36JCFR PafrfsBOfcyid the Secretary of the Interior's Standards for Planning and Evaluation. Signature of certifying official Date / Brent D. Glass Pennsylvania Historical & Museum Commission State or Federal agency and bureau I, hereby, certify that this multiple
    [Show full text]
  • Electrons, Life and the Evolution of Earth's Chemical Cycles
    Electrons, Life and the Evolution of Earth’s Chemical Cycles OCN 623 – Chemical Oceanography 23 April 2013 Adaption of Brian Glazer lecture (based on Falkowski and Godfrey (2008) Phil. Trans. R. Soc. B, 363: 2705-2716) © 2013 F.J. Sansone Outline Earth’s geological, geochemical and biological co- evolution since formation - Early Earth - Origins of life - The great oxidation event - Linkage between global O and N cycles - Alternate explanations for the great oxidation event - The rise of oxygen and the evolution of life - The Phanerozoic How Does the Earth Work as a Biosphere? All organisms derive energy for growth and maintenance by moving electrons from a substrate to a product All substrates and products must ultimately be recycled All metabolic processes on Earth are prokaryotic and were developed in the Archean and/or Proterozoic Eons Earth’s Geological, Geochemical and Biological Co-evolution Since Formation Earth, ~3.5 Ga Ago • Earth cools to <100˚C • Shallow sea environment – Land covered by low egg- shaped hills and pillow lavas – Silt layers – Scattered volcanic islands and evaporite lagoons • Tides higher – Moon closer to Earth, days shorter • Atmosphere –CO2-rich, no O2 – UV-drenched landscape Faint Sun Paradox High atmospheric CO2 and CH4 important in early Earth -- balanced weak Sun to maintain temp Recycling of Atmospheric CO2 Liquid water on early Earth allowed a hydrologic cycle, carbonate and silicate mineral weathering to develop: 2+ - CaCO3 + CO2 + H2O = Ca + 2HCO3 2+ - CaSiO3 +2CO2 +3H2O = Ca + 2HCO3 + H4SIO4 Uptake
    [Show full text]
  • Is Extraterrestrial Organic Matter Relevant to the Origin of Life on Earth?
    IS EXTRATERRESTRIAL ORGANIC MATTER RELEVANT TO THE ORIGIN OF LIFE ON EARTH? D. C. B. WHITTET Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A. (Received 19 August 1996) Abstract. I review the relative importance of internal and external sources of prebiotic molecules on Earth at the time of life's origin 3.7 Gyr ago. The ef®ciency of synthesis in the Earth's atmosphere was critically dependent on its oxidation state. If the early atmosphere was non-reducing and CO2- dominated, external delivery might have been the dominant source. Interplanetary dust grains and micrometeorites currently deliver carbonaceous matter to the Earth's surface at a rate of 3 5 7 10 kg/yr (equivalent to a biomass in 2 Gyr), but this may have been as high as 5 10 kg/yr (a biomass in only 10 Myr) during the epoch of late bombardment. Much of the incoming material is in the form of chemically inactive kerogens and amorphous carbon; but if the Earth once had a dense (10-bar) atmosphere, small comets rich in a variety of prebiotic molecules may have been suf®ciently air-braked to land non-destructively. Lingering uncertainties regarding the impact history of the Earth and the density and composition of its early atmosphere limit our ability to draw ®rm conclusions. 1. Introduction In at least one sense, a connection between the Universe at large and life in our small corner of it is inevitable. The hydrogen, carbon, nitrogen, oxygen, and other elements that make up our bodies and other living things were created billions of years ago in the interiors of stars and, in the case of hydrogen, in the the Big Bang itself (see Trimble, 1997, in this volume for an eloquent review).
    [Show full text]
  • Thermal Analysis of an Industrial Furnace
    energies Article Thermal Analysis of an Industrial Furnace Mirko Filipponi 1,*, Federico Rossi 1, Andrea Presciutti 1, Stefania De Ciantis 1, Beatrice Castellani 1 and Ambro Carpinelli 2 1 CIRIAF (Centro Interuniversitario di Ricerca sull’Inquinamento e sull’Ambiente), Università degli Studi di Perugia, Via G. Duranti 67, 06125 Perugia, Italy; [email protected] (F.R.); [email protected] (A.P.); [email protected] (S.D.C.); [email protected] (B.C.) 2 Divisione Fucine di Acciai Speciali Terni, V.le B.Brin 218, 05100 Terni, Italy; [email protected] * Correspondence: mirko.fi[email protected]; Tel.: +39-0744-492-969 Academic Editor: Francesco Asdrubali Received: 17 May 2016; Accepted: 10 October 2016; Published: 18 October 2016 Abstract: Industries, which are mainly responsible for high energy consumption, need to invest in research projects in order to develop new managing systems for rational energy use, and to tackle the devastating effects of climate change caused by human behavior. The study described in this paper concerns the forging industry, where the production processes generally start with the heating of steel in furnaces, and continue with other processes, such as heat treatments and different forms of machining. One of the most critical operations, in terms of energy loss, is the opening of the furnace doors for insertion and extraction operations. During this time, the temperature of the furnaces decreases by hundreds of degrees in a few minutes. Because the dispersed heat needs to be supplied again through the combustion of fuel, increasing the consumption of energy and the pollutant emissions, the evaluation of the amount of lost energy is crucial for the development of systems which can contain this loss.
    [Show full text]