<<

5. Propositional Truth functions

The Lecture What are truth functions?

! Truth functions are generalizations of the familiar connectives ¬, ∧, ∨, →, !. ! Computers are ultimately based on truth functions that are welded into microprosessors inside the computer. ! Truth functions have interesting mathematical properties.

Last Jouko Väänänen: Propositional logic viewed Truth

! A truth function (also called a connective) is any function f from the set {0,1}n to the set {0,1}, for some n.. ! A truth function of n variables is called n-ary. A 2-ary truth function is called binary. ! Truth functions can be identified with truth tables. ! We have already defined the connectives ¬, ∧, ∨, →, ! ! We identify these with the corresponding truth functions.

Last Jouko Väänänen: Propositional logic viewed More binary truth functions

x y f(x,y) x y f(x,y) 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 x y f(x,y) x y f(x,y) 0 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions

¬ ∧ ! → v

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Last Jouko Väänänen: Propositional logic viewed A ternary truth function

x y z f 1 1 1 (x,y,z)0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1

Last Jouko Väänänen: Propositional logic viewed A new connective: , also known as NAND

Last Jouko Väänänen: Propositional logic viewed Definability of truth functions

! Disjunction can be defined in terms of and conjunction: A ∨ B = ¬(¬A ∧ ¬B) ! Sheffer stroke A|B can be defined in terms of negation and conjunction:   A|B = ¬(A ∧ B) ! Negation and conjunction can be defined in terms of the Sheffer stroke:   ¬A = A|A   A∧B = (A|B)|(A|B)

Last Jouko Väänänen: Propositional logic viewed Universal sets of connectives

! A set T of truth functions is universal if every truth function can be defined in terms of functions in T. A function f is universal if the set {f} is. ! Every truth function can be defined in terms of the Sheffer stroke, i.e. the Sheffer stroke is a universal connective. ! Microprocessors are built from ”gates” that are essentially connectives. It suffices to manufacture Sheffer stroke (NAND) gates as all others can be built from them. ! {¬,∧}, {¬,∨}, {¬,→} are also universal.

Last Jouko Väänänen: Propositional logic viewed Propositional formulas define truth functions

! Suppose A is a propositional formula

built from proposition symbols p1,...,pn. ! A defines the following truth function:

 fA(x1,...,xn)=the of A under

the valuation that gives pi the value xi for i=1,...,n.

Last Jouko Väänänen: Propositional logic viewed Propositional formulas cover all truth functions

! : Every truth x y z f(x,y,z) function is defined by some propositional 1 1 1 1 formula. 1 1 0 0 ! Proof: Look at the truth 1 0 1 1 table of f and pick the rows where f gets value 1 0 0 0 1. 0 1 1 0 ! We represent f as the 0 1 0 1 ”disjunction” of those rows. 0 0 1 0 0 0 0 0

Last Jouko Väänänen: Propositional logic viewed Capturing a truth function with a formula

! We look for a propositi- p0 p1 p2 A onal formula the truth 1 1 1 1 table of which has 1 on exactly the same rows 1 1 0 0 as f. 1 0 1 1 1 0 0 0 ! A=(p0 ∧ p1 ∧ p2) ∨ 0 1 1 0  (p0 ∧ ¬p1 ∧ p2) ∨ 0 1 0 1  (¬p0 ∧ p1 ∧ ¬p2) 0 0 1 0 ! If there is no row with one, 0 0 0 0 we let A be p0∧ ¬p0 .

Last Jouko Väänänen: Propositional logic viewed Applications

! {¬,∧,∨} is a universal set of connectives, even just {¬,∧}. ! Every propositional formula A can be expressed in an equivalent form

A1 ∨ ... ∨ An,

 where each Ai is of the form

B1 ∧ ... ∧ Bm,

 and each Bi is a proposition symbol or its negation. This is the disjunctive normal form (denoted DNF) of A.

Last Jouko Väänänen: Propositional logic viewed