5. Propositional Logic Truth Functions

5. Propositional Logic Truth Functions

5. Propositional Logic Truth functions The Lecture What are truth functions? ! Truth functions are generalizations of the familiar connectives ¬, ∧, ∨, →, !. ! Computers are ultimately based on truth functions that are welded into microprosessors inside the computer. ! Truth functions have interesting mathematical properties. Last Jouko Väänänen: Propositional logic viewed Truth function ! A truth function (also called a connective) is any function f from the set {0,1}n to the set {0,1}, for some n.. ! A truth function of n variables is called n-ary. A 2-ary truth function is called binary. ! Truth functions can be identified with truth tables. ! We have already defined the connectives ¬, ∧, ∨, →, ! ! We identify these with the corresponding truth functions. Last Jouko Väänänen: Propositional logic viewed More binary truth functions x y f(x,y) x y f(x,y) 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 x y f(x,y) x y f(x,y) 0 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed There are exactly 16 binary truth functions ¬ ∧ ! → v 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Last Jouko Väänänen: Propositional logic viewed A ternary truth function x y z f 1 1 1 (x,y,z)0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 Last Jouko Väänänen: Propositional logic viewed A new connective: Sheffer stroke, also known as NAND Last Jouko Väänänen: Propositional logic viewed Definability of truth functions ! Disjunction can be defined in terms of negation and conjunction: A ∨ B = ¬(¬A ∧ ¬B) ! Sheffer stroke A|B can be defined in terms of negation and conjunction: A|B = ¬(A ∧ B) ! Negation and conjunction can be defined in terms of the Sheffer stroke: ¬A = A|A A∧B = (A|B)|(A|B) Last Jouko Väänänen: Propositional logic viewed Universal sets of connectives ! A set T of truth functions is universal if every truth function can be defined in terms of functions in T.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    29 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us