Reclassification of the Polyphyletic Genus Prosthecomicrobium to Form Two Novel Genera, Vasilyevaea Gen

Total Page:16

File Type:pdf, Size:1020Kb

Reclassification of the Polyphyletic Genus Prosthecomicrobium to Form Two Novel Genera, Vasilyevaea Gen View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central International Journal of Systematic and Evolutionary Microbiology (2010), 60, 2960–2966 DOI 10.1099/ijs.0.018234-0 Reclassification of the polyphyletic genus Prosthecomicrobium to form two novel genera, Vasilyevaea gen. nov. and Bauldia gen. nov. with four new combinations: Vasilyevaea enhydra comb. nov., Vasilyevaea mishustinii comb. nov., Bauldia consociata comb. nov. and Bauldia litoralis comb. nov. Benjamin Yee,1,2 Gary E. Oertli,1 John A. Fuerst2 and James T. Staley1 Correspondence 1Department of Microbiology, University of Washington, Seattle, WA 98193, USA James T. Staley 2School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia [email protected] Species of the genus Prosthecomicrobium are noted for their numerous cellular appendages or prosthecae that extend from the cells. This investigation confirms that the genus is polyphyletic based on an extensive analysis of the 16S rRNA gene sequences of several named species of the genus. The analyses indicate that some Prosthecomicrobium species are more closely related to non-prosthecate genera, including Devosia, Labrenzia, Blastochloris, Methylosinus, Mesorhizobium and Kaistia, than they are to other species of the genus Prosthecomicrobium. For this reason, two of the Prosthecomicrobium clades which are polyphyletic with the type species, Prosthecomicrobium pneumaticum, are renamed as new genera. The currently named species Prosthecomicrobium enhydrum, Prosthecomicrobium mishustinii, Prosthecomicrobium consociatum and Prosthecomicrobium litoralum are reclassified in two new genera, Vasilyevaea gen. nov. and Bauldia gen. nov. with four new combinations: Vasilyevaea enhydra comb. nov. (the type species) and Vasilyevaea mishustinii comb. nov., and Bauldia consociata comb. nov. and Bauldia litoralis comb. nov. (the type species). The type strain of Vasilyevaea enhydra is strain 9bT (5ATCC 23634T 5VKM B-1376T). The type strain of the other species in this genus is Vasilyevaea mishustinii strain 17T (5VKM B-2499T 5CCM 7569T). The type strain of Bauldia litoralis is strain 524-16T (5 NCIB 2233T 5ATCC 35022T). The type strain of the other species in this genus is Bauldia consociata strain 11T (5VKM B-2498T 5CCM 7594T). Bacteria of the genus Prosthecomicrobium, which is a consociatum (Lafitskaya et al., 1976; Vasil’eva et al., 1991). member of the class Alphaproteobacteria, reproduce by The names of the latter two species were recently validly budding and produce several cellular appendages or published (Vasil’eva et al., 2009). prosthecae that extend from each cell in all directions. The primary phenotypic, differentiating features among They were first described from isolates obtained from fresh species of the genus Prosthecomicrobium are morphological, water (Staley, 1968). Subsequently, other species were in particular the number and length of the prosthecae and reported that were isolated from various other habitats whether or not cells are motile. Other differentiating including soil (Vasil’eva et al., 1974), pulp mill aeration features among species of these aerobic bacteria are colony ponds, and brackish and marine water (Stanley et al., 1979; pigmentation, carbon source utilization and presence of Bauld et al., 1983; Schlesner et al., 1989). Species with gas vesicles. validly published names include Prosthecomicrobium pneu- maticum, P. enhydrum (Staley, 1968), P. litoralum (Bauld Phylogenetic analyses of 16S rRNA genes of strains et al., 1983), P. hirschii (Staley, 1984), P. mishustinii and P. representing species of the genus Prosthecomicrobium have revealed the polyphyletic nature of the group, which The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene forms several independent clusters within the class sequences determined in this study are FJ560749, FJ560750 and Alphaproteobacteria (Schlesner et al., 1989; Oertli et al., GQ221761–GQ221768. 2006). Furthermore, chemotaxonomic analysis of fatty 2960 018234 G 2010 IUMS Printed in Great Britain Vasilyevaea and Bauldia, new prosthecate genera acids, in which three identified type species were included, separated from the other named species of the genus also indicated that at least five distinct subgroups exist Prosthecomicrobium by the genera Methylosinus, Blastochloris within the current genus Prosthecomicrobium (Sittig & and Kaistia within the class Alphaproteobacteria. Therefore, Schlesner, 1993). The reason for the polyphyly is not P. pneumaticum is more closely related to the methane- understood; however, two explanations are possible. First, oxidizing bacteria Methylosinus trichosporium and the genes that are responsible for the formation of Methylocystis echinoides (Whittenbury et al., 1970) and the prosthecae may be ancestral to the family that contains phototrophic bacterial genus Blastochloris (Keppen & these bacteria. Then, through evolution, some of the genera Gorlenko, 1975; Hiraishi, 1997) than it is to other species and species lost these genes whereas others retained them. of the genus Prosthecomicrobium. Alternatively, one could postulate that genetic exchange has There is strong bootstrap support in Fig. 1 (.75 % at the occurred in which the genes responsible for prosthecae primary and secondary nodes of the trees) for the formation were transferred from one prosthecate species to clustering of the other species of the genus Pros- another closely related, non-prosthecate species through thecomicrobium with other genera and separate from the horizontal gene transfer. Perhaps the genome sequences of type species P. pneumaticum. Therefore, this is the basis for several representative prosthecate and non-prosthecate the reclassification of several described species of the genus species in this group will aid in resolving this issue. Prosthecomicrobium into new genera. Until now, no attempt has been made to reclassify the Consider the described species P. enhydrum and P. genus Prosthecomicrobium to reflect its polyphyletic nature. mishustinii that form an isolated group with Devosia In this paper, we report the results we have obtained from neptuniae (Fig. 1). The phylogenetic difference between this further comparative phenotypic and phylogenetic analyses. cluster and P. pneumaticum is illustrated by a comparison Based on these findings, we propose the reclassification of of P. pneumaticum and P. enhydrum, which share only several species of the genus Prosthecomicrobium into two 93.3 % 16S rRNA gene sequence similarity (data not new genera. shown). Furthermore, these two species have different 16S rRNA gene reference sequences were selected from phospholipids and fatty acids (Sittig & Schlesner, 1993). representatives of different orders within the class Alpha- For example, the phospholipids of P. pneumaticum include proteobacteria. These were then compared to 16S rRNA large amounts of phosphatidylglycerol, phosphatidyletha- gene sequences of the various species of the genus nolamine and phosphatidyldimethylethanolamine with Prosthecomicrobium including all type strains (Oertli et lower amounts of bisphosphatidylglycerol whereas P. al., 2006) as well as others from the RNA database (Cole et enhydrum contains only phosphatidylglycerol and bispho- al., 2003). The sequence match tool within the RDP-II sphatidylglycerol (Sittig & Schlesner, 1993). Since P. website was used to identify the sequences for alignment enhydrum and P. mishustinii are clustered independently based on best matches. Sequence alignment for phyloge- of P. pneumaticum, we propose a new genus, Vasilyevaea netic tree reconstruction was performed using the NAST gen. nov., with two species, Vasilyevaea enhydra comb. nov. (Nearest Alignment Space Termination; DeSantis et al., and Vasilyevaea mishustinii comb. nov., for this novel 2006) function available at the Greengenes website (http:// cluster. It should be noted that although these two species greengenes.lbl.gov) (DeSantis et al., 2006) and the are quite closely related to one another with 98.9 % 16S alignment was also subjected to Lane masking (Lane, rRNA gene sequence similarity, they are separate species 1991) of ambiguous sites using the column masking tool based upon DNA hybridization analyses (Vasil’eva et al., available at the Greengenes website. 1991). Phylogenetic trees were reconstructed using TreeFinder Similarly, P. litoralum and P. consociatum (with 97.1 % 16S (Jobb et al., 2004) by applying the substitution model of rRNA gene sequence similarity between them) form a clade GTR+I+G, the optimal substitution model selected by that is separate from the type species P. pneumaticum, with Modelgenerator (Keane et al., 2006). A maximum- which they have only 93.7 % and 94.4 % rRNA gene likelihood tree was reconstructed using TreeFinder (Jobb sequence similarity, respectively, as well as from et al., 2004). Distance and maximum-parsimony trees were Vasilyevaea enhydra comb. nov. and other clusters contain- reconstructed using the PHYLIP package (Felsenstein, 2007). ing members of the genus Prosthecomicrobium. A new Bootstrap analysis was performed using 1000 replicates for genus is therefore proposed for this group of prosthecate all trees. Similarity values were calculated using PHYLIP. bacteria, Bauldia gen. nov., with two species, Bauldia litoralis comb. nov. and Bauldia consociata comb. nov. The 16S rRNA gene sequence tree of the genus Prosthecomicrobium and those genera and species to which Prosthecomicrobium hirschii strains
Recommended publications
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • Microbial Community Structure Dynamics in Ohio River Sediments During Reductive Dechlorination of Pcbs
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS Andres Enrique Nunez University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Nunez, Andres Enrique, "MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS" (2008). University of Kentucky Doctoral Dissertations. 679. https://uknowledge.uky.edu/gradschool_diss/679 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Andres Enrique Nunez The Graduate School University of Kentucky 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Andres Enrique Nunez Director: Dr. Elisa M. D’Angelo Lexington, KY 2008 Copyright © Andres Enrique Nunez 2008 ABSTRACT OF DISSERTATION MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS The entire stretch of the Ohio River is under fish consumption advisories due to contamination with polychlorinated biphenyls (PCBs). In this study, natural attenuation and biostimulation of PCBs and microbial communities responsible for PCB transformations were investigated in Ohio River sediments. Natural attenuation of PCBs was negligible in sediments, which was likely attributed to low temperature conditions during most of the year, as well as low amounts of available nitrogen, phosphorus, and organic carbon.
    [Show full text]
  • Metabolites Produced by Kaistia Sp. 32K Promote Biofilm
    biology Article Metabolites Produced by Kaistia sp. 32K Promote Biofilm Formation in Coculture with Methylobacterium sp. ME121 Yoshiaki Usui 1, Tetsu Shimizu 2, Akira Nakamura 2 and Masahiro Ito 1,3,* 1 Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma 374-0193, Japan; [email protected] 2 Faculty of Life and Environmental Sciences, and Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki305-8572, Japan; [email protected] (T.S.); [email protected] (A.N.) 3 Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama 350-8585, Japan * Correspondence: [email protected]; Tel.: +81-273-82-9202 Received: 31 July 2020; Accepted: 11 September 2020; Published: 13 September 2020 Abstract: Previously, we reported that the coculture of motile Methylobacterium sp. ME121 and non-motile Kaistia sp. 32K, isolated from the same soil sample, displayed accelerated motility of strain ME121 due to an extracellular polysaccharide (EPS) produced by strain 32K. Since EPS is a major component of biofilms, we aimed to investigate the biofilm formation in cocultures of the two strains. The extent of biofilm formation was measured by a microtiter dish assay with the dye crystal violet. A significant increase in the amount of biofilm was observed in the coculture of the two strains, as compared to that of the monocultures, which could be due to a metabolite produced by strain 32K. However, in the coculture with strain 32K, using Escherichia coli or Pseudomonas aeruginosa, there was no difference in the amount of biofilm formation as compared with the monoculture. Elevated biofilm formation was also observed in the coculture of strain ME121 with Kaistia adipata, which was isolated from a different soil sample.
    [Show full text]
  • Taxonomy and Systematics of Plant Probiotic Bacteria in the Genomic Era
    AIMS Microbiology, 3(3): 383-412. DOI: 10.3934/microbiol.2017.3.383 Received: 03 March 2017 Accepted: 22 May 2017 Published: 31 May 2017 http://www.aimspress.com/journal/microbiology Review Taxonomy and systematics of plant probiotic bacteria in the genomic era Lorena Carro * and Imen Nouioui School of Biology, Newcastle University, Newcastle upon Tyne, UK * Correspondence: Email: [email protected]. Abstract: Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics. Keywords: phylogeny; plant; probiotic; PGPR; IAA; ACC; genome; metagenomics Abbreviations: ACC 1-aminocyclopropane-1-carboxylate ANI average nucleotide identity FAO Food and Agriculture Organization DDH DNA-DNA hybridization IAA indol acetic acid JA jasmonic acid OTUs Operational taxonomic units NGS next generation sequencing PGP plant growth promoters WHO World Health Organization PGPR plant growth-promoting rhizobacteria 384 1.
    [Show full text]
  • Microbial Community Composition During Degradation of Organic Matter
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Bodenökologie Microbial community composition during degradation of organic matter Stefanie Elisabeth Wallisch Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. A. Göttlein Prüfer der Dissertation: 1. Hon.-Prof. Dr. M. Schloter 2. Univ.-Prof. Dr. S. Scherer Die Dissertation wurde am 14.04.2015 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 03.08.2015 angenommen. Table of contents List of figures .................................................................................................................... iv List of tables ..................................................................................................................... vi Abbreviations .................................................................................................................. vii List of publications and contributions .............................................................................. viii Publications in peer-reviewed journals .................................................................................... viii My contributions to the publications ....................................................................................... viii Abstract
    [Show full text]
  • Nor Hawani Salikin
    Characterisation of a novel antinematode agent produced by the marine epiphytic bacterium Pseudoalteromonas tunicata and its impact on Caenorhabditis elegans Nor Hawani Salikin A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Faculty of Science August 2020 Thesis/Dissertation Sheet Surname/Family Name : Salikin Given Name/s : Nor Hawani Abbreviation for degree as give in the University : Ph.D. calendar Faculty : UNSW Faculty of Science School : School of Biological, Earth and Environmental Sciences Characterisation of a novel antinematode agent produced Thesis Title : by the marine epiphytic bacterium Pseudoalteromonas tunicata and its impact on Caenorhabditis elegans Abstract 350 words maximum: (PLEASE TYPE) Drug resistance among parasitic nematodes has resulted in an urgent need for the development of new therapies. However, the high re-discovery rate of antinematode compounds from terrestrial environments necessitates a new repository for future drug research. Marine epiphytic bacteria are hypothesised to produce nematicidal compounds as a defence against bacterivorous predators, thus representing a promising, yet underexplored source for antinematode drug discovery. The marine epiphytic bacterium Pseudoalteromonas tunicata is known to produce a number of bioactive compounds. Screening genomic libraries of P. tunicata against the nematode Caenorhabditis elegans identified a clone (HG8) showing fast-killing activity. However, the molecular, chemical and biological properties of HG8 remain undetermined. A novel Nematode killing protein-1 (Nkp-1) encoded by an uncharacterised gene of HG8 annotated as hp1 was successfully discovered through this project. The Nkp-1 toxicity appears to be nematode-specific, with the protein being highly toxic to nematode larvae but having no impact on nematode eggs.
    [Show full text]
  • Deoxyribonucleic Acid Base Sequence Homologies of Some Budding and Prosthecate Bacterla RICHARD L
    JOURNAL OF BACTERIOLOGY, Apr. 1972, p. 256-261 Vol. 110, No. 1 Copyright © 1972 American Society for Microbiology Printed in U.S.A. Deoxyribonucleic Acid Base Sequence Homologies of Some Budding and Prosthecate Bacterla RICHARD L. MOORE' AND PETER HIRSCH2 Department of Microbiology and Public Health, Michigan State University, East Lansing, Michigan 48823 Received for publication 21 December 1971 The genetic relatedness of a number of budding and prosthecate bacteria was determined by deoxyribonucleic acid (DNA) homology experiments of the di- rect binding type. Strains of Hyphomicrobium sp. isolated from aquatic habi- tats were found to have relatedness values ranging from 9 to 70% with strain "EA-617," a subculture of the Hyphomicrobium isolated by Mevius from river water. Strains obtained from soil enrichments had lower values with EA-617, ranging from 3 to 5%. Very little or no homology was detected between the amino acid-utilizing strain Hyphomicrobium neptunium and other Hyphomi- crobium strains, although significant homology was observed with the two Hyphomonas strains examined. No homology could be detected between pros- thecate bacteria of the genera Rhodomicrobium, Prosthecomicrobium, Ancal- omicrobium, or Caulobacter, and Hyphomicrobium strain EA-617 or H. nep- tunium LE-670. The grouping of Hyphomicrobium strains by their relatedness values agrees well with a grouping according to the base composition of their DNA species. It is concluded that bacteria possessing cellular extensions repre- sent a widely diverse group of organisms. Two genera of bacteria, Hyphomicrobium drum, P. pneumaticum, Ancalomicrobium adetum, and Rhodomicrobium, are listed under the and Caulobacter crescentus were obtained from J. T. family of Hyphomicrobiaceae in the seventh Staley (Seattle); Rhodomicrobium vannielii was re- edition of Bergey's Manual of Determinative ceived from H.
    [Show full text]
  • A Comparative Analysis of the Moose Rumen Microbiota and the Pursuit of Improving Fibrolytic Systems
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2015 A Comparative Analysis Of The oM ose Rumen Microbiota And The Pursuit Of Improving Fibrolytic Systems. Suzanne Ishaq Pellegrini University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Animal Sciences Commons, Microbiology Commons, and the Molecular Biology Commons Recommended Citation Pellegrini, Suzanne Ishaq, "A Comparative Analysis Of The oosM e Rumen Microbiota And The urP suit Of Improving Fibrolytic Systems." (2015). Graduate College Dissertations and Theses. 365. https://scholarworks.uvm.edu/graddis/365 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. A COMPARATIVE ANALYSIS OF THE MOOSE RUMEN MICROBIOTA AND THE PURSUIT OF IMPROVING FIBROLYTIC SYSTEMS. A Dissertation Presented by Suzanne Ishaq Pellegrini to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy Specializing in Animal, Nutrition and Food Science May, 2015 Defense Date: March 19, 2015 Dissertation Examination Committee: André-Denis G. Wright, Ph.D., Advisor Indra N. Sarkar, Ph.D., MLIS, Chairperson John W. Barlow, Ph.D., D.V.M. Douglas I. Johnson, Ph.D. Stephanie D. McKay, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT The goal of the work presented herein was to further our understanding of the rumen microbiota and microbiome of wild moose, and to use that understanding to improve other processes.
    [Show full text]
  • 1471-2180-9-5.Pdf
    BMC Microbiology BioMed Central Research article Open Access Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes Kuo-Chang Lee1, Richard I Webb2, Peter H Janssen3, Parveen Sangwan4, Tony Romeo5, James T Staley6 and John A Fuerst*1 Address: 1School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, 2Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia, 3AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand, 4CSIRO Manufacturing and Materials Technology, Private Bag 33, Clayton South Victoria 3169, Australia, 5University of Sydney, Sydney, New South Wales, Australia and 6Department of Microbiology, University of Washington, Seattle, WA 98195, USA Email: Kuo-Chang Lee - [email protected]; Richard I Webb - [email protected]; Peter H Janssen - [email protected]; Parveen Sangwan - [email protected]; Tony Romeo - [email protected]; James T Staley - [email protected]; John A Fuerst* - [email protected] * Corresponding author Published: 8 January 2009 Received: 14 May 2008 Accepted: 8 January 2009 BMC Microbiology 2009, 9:5 doi:10.1186/1471-2180-9-5 This article is available from: http://www.biomedcentral.com/1471-2180/9/5 © 2009 Lee et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The phylum Verrucomicrobia is a divergent phylum within domain Bacteria including members of the microbial communities of soil and fresh and marine waters; recently extremely acidophilic members from hot springs have been found to oxidize methane.
    [Show full text]
  • Bomló Növényi Anyagok Dominálta Sekély Tavak Összehasonlító Mikrobiológiai Elemzése
    Eötvös Loránd Tudományegyetem, Természettudományi Kar Biológia Doktori Iskola Kísérletes Növénybiológia Program Bomló növényi anyagok dominálta sekély tavak összehasonlító mikrobiológiai elemzése - DOKTORI ÉRTEKEZÉS - Készítette: MENTES ANIKÓ Témavezető: Doktori iskola vezető: Doktori programvezető: DR. FELFÖLDI TAMÁS PROF. DR. ERDEI ANNA DR. KOVÁCS M. GÁBOR habil. adjunktus egyetemi tanár habil. egyetemi docens ELTE TTK MIKROBIOLÓGIAI TANSZÉK BUDAPEST 2019 „It is hard to describe the exact route to scientific achievement, but a good scientist doesn’t get lost as he travels it.” „A tudományos eredményhez vezető pontos útvonalat nehéz leírni, de a jó tudós miközben ezen az úton jár, nem téved el.” Isaac Asimov Epigraph in Book of Science and Nature Quotations (1988) Tartalomjegyzék 1. Rövidítésjegyzék ........................................................................................................................................... 4 2. Bevezetés ....................................................................................................................................................... 6 3. Irodalmi áttekintés ......................................................................................................................................... 8 3.1. Sekély tavak ........................................................................................................................................... 8 3.1.1. A sekély tavak általános jellemzői .................................................................................................
    [Show full text]
  • Bacteria Associated with Vascular Wilt of Poplar
    Bacteria associated with vascular wilt of poplar Hanna Kwasna ( [email protected] ) Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu https://orcid.org/0000-0001- 6135-4126 Wojciech Szewczyk Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu Marlena Baranowska Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu Jolanta Behnke-Borowczyk Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu Research Article Keywords: Bacteria, Pathogens, Plantation, Poplar hybrids, Vascular wilt Posted Date: May 27th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-250846/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/30 Abstract In 2017, the 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. Leaves appeared smaller, turned yellow-brown, and were shed prematurely. Twigs and smaller branches died. Bark was sunken and discolored, often loosened and split. Trunks decayed from the base. Phloem and xylem showed brown necrosis. Ten per cent of trees died in 1–2 months. None of these symptoms was typical for known poplar diseases. Bacteria in soil and the necrotic base of poplar trunk were analysed with Illumina sequencing. Soil and wood were colonized by at least 615 and 249 taxa. The majority of bacteria were common to soil and wood. The most common taxa in soil were: Acidobacteria (14.757%), Actinobacteria (14.583%), Proteobacteria (36.872) with Betaproteobacteria (6.516%), Burkholderiales (6.102%), Comamonadaceae (2.786%), and Verrucomicrobia (5.307%).The most common taxa in wood were: Bacteroidetes (22.722%) including Chryseobacterium (5.074%), Flavobacteriales (10.873%), Sphingobacteriales (9.396%) with Pedobacter cryoconitis (7.306%), Proteobacteria (73.785%) with Enterobacteriales (33.247%) including Serratia (15.303%) and Sodalis (6.524%), Pseudomonadales (9.829%) including Pseudomonas (9.017%), Rhizobiales (6.826%), Sphingomonadales (5.646%), and Xanthomonadales (11.194%).
    [Show full text]
  • An Aryl-Homoserine Lactone Quorum-Sensing Signal Produced by a Dimorphic Prosthecate Bacterium
    An aryl-homoserine lactone quorum-sensing signal produced by a dimorphic prosthecate bacterium Lisheng Liaoa,b, Amy L. Schaeferb, Bruna G. Coutinhob, Pamela J. B. Brownc, and E. Peter Greenberga,b,1 aIntegrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, People’s Republic of China; bDepartment of Microbiology, University of Washington, Seattle, WA 98195; and cDivision of Biological Sciences, University of Missouri, Columbia, MO 65211 Contributed by E. Peter Greenberg, June 12, 2018 (sent for review May 15, 2018; reviewed by Helen E. Blackwell and Clay Fuqua) Many species of Proteobacteria produce acyl-homoserine lactone predict whether a LuxI homolog is in the ACP- or CoA-dependent (AHL) compounds as quorum-sensing (QS) signals for cell density- family (11–13). We became interested in the α-Proteobacterium dependent gene regulation. Most known AHL synthases, LuxI-type Prosthecomicrobium hirschii when its genome sequence was pub- enzymes, produce fatty AHLs, and the fatty acid moiety is derived lished (14). This dimorphic prosthecate bacterium has genes coding from an acyl-acyl carrier protein (ACP) intermediate in fatty acid for an AHL QS system, and we predicted the luxI homolog codes for biosynthesis. Recently, a class of LuxI homologs has been shown to a member of the CoA-utilizing family. P. hirschii is a saprophyte that use CoA-linked aromatic or amino acid substrates for AHL synthe- can be isolated from freshwater lakes (15) and exhibits two different sis. By using an informatics approach, we found the CoA class of cell morphologies. Some cells have multiple long prostheca, and LuxI homologs exists primarily in α-Proteobacteria.
    [Show full text]