Siculibacillus Lacustris Gen. Nov., Sp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microbial Community Structure Dynamics in Ohio River Sediments During Reductive Dechlorination of Pcbs
University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS Andres Enrique Nunez University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Nunez, Andres Enrique, "MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS" (2008). University of Kentucky Doctoral Dissertations. 679. https://uknowledge.uky.edu/gradschool_diss/679 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Andres Enrique Nunez The Graduate School University of Kentucky 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Andres Enrique Nunez Director: Dr. Elisa M. D’Angelo Lexington, KY 2008 Copyright © Andres Enrique Nunez 2008 ABSTRACT OF DISSERTATION MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS The entire stretch of the Ohio River is under fish consumption advisories due to contamination with polychlorinated biphenyls (PCBs). In this study, natural attenuation and biostimulation of PCBs and microbial communities responsible for PCB transformations were investigated in Ohio River sediments. Natural attenuation of PCBs was negligible in sediments, which was likely attributed to low temperature conditions during most of the year, as well as low amounts of available nitrogen, phosphorus, and organic carbon. -
Deoxyribonucleic Acid Base Sequence Homologies of Some Budding and Prosthecate Bacterla RICHARD L
JOURNAL OF BACTERIOLOGY, Apr. 1972, p. 256-261 Vol. 110, No. 1 Copyright © 1972 American Society for Microbiology Printed in U.S.A. Deoxyribonucleic Acid Base Sequence Homologies of Some Budding and Prosthecate Bacterla RICHARD L. MOORE' AND PETER HIRSCH2 Department of Microbiology and Public Health, Michigan State University, East Lansing, Michigan 48823 Received for publication 21 December 1971 The genetic relatedness of a number of budding and prosthecate bacteria was determined by deoxyribonucleic acid (DNA) homology experiments of the di- rect binding type. Strains of Hyphomicrobium sp. isolated from aquatic habi- tats were found to have relatedness values ranging from 9 to 70% with strain "EA-617," a subculture of the Hyphomicrobium isolated by Mevius from river water. Strains obtained from soil enrichments had lower values with EA-617, ranging from 3 to 5%. Very little or no homology was detected between the amino acid-utilizing strain Hyphomicrobium neptunium and other Hyphomi- crobium strains, although significant homology was observed with the two Hyphomonas strains examined. No homology could be detected between pros- thecate bacteria of the genera Rhodomicrobium, Prosthecomicrobium, Ancal- omicrobium, or Caulobacter, and Hyphomicrobium strain EA-617 or H. nep- tunium LE-670. The grouping of Hyphomicrobium strains by their relatedness values agrees well with a grouping according to the base composition of their DNA species. It is concluded that bacteria possessing cellular extensions repre- sent a widely diverse group of organisms. Two genera of bacteria, Hyphomicrobium drum, P. pneumaticum, Ancalomicrobium adetum, and Rhodomicrobium, are listed under the and Caulobacter crescentus were obtained from J. T. family of Hyphomicrobiaceae in the seventh Staley (Seattle); Rhodomicrobium vannielii was re- edition of Bergey's Manual of Determinative ceived from H. -
A Comparative Analysis of the Moose Rumen Microbiota and the Pursuit of Improving Fibrolytic Systems
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2015 A Comparative Analysis Of The oM ose Rumen Microbiota And The Pursuit Of Improving Fibrolytic Systems. Suzanne Ishaq Pellegrini University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Animal Sciences Commons, Microbiology Commons, and the Molecular Biology Commons Recommended Citation Pellegrini, Suzanne Ishaq, "A Comparative Analysis Of The oosM e Rumen Microbiota And The urP suit Of Improving Fibrolytic Systems." (2015). Graduate College Dissertations and Theses. 365. https://scholarworks.uvm.edu/graddis/365 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. A COMPARATIVE ANALYSIS OF THE MOOSE RUMEN MICROBIOTA AND THE PURSUIT OF IMPROVING FIBROLYTIC SYSTEMS. A Dissertation Presented by Suzanne Ishaq Pellegrini to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy Specializing in Animal, Nutrition and Food Science May, 2015 Defense Date: March 19, 2015 Dissertation Examination Committee: André-Denis G. Wright, Ph.D., Advisor Indra N. Sarkar, Ph.D., MLIS, Chairperson John W. Barlow, Ph.D., D.V.M. Douglas I. Johnson, Ph.D. Stephanie D. McKay, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT The goal of the work presented herein was to further our understanding of the rumen microbiota and microbiome of wild moose, and to use that understanding to improve other processes. -
A Microbiotic Survey of Lichen-Associated Bacteria Reveals a New Lineage from the Rhizobiales
SYMBIOSIS (2009) 49, 163–180 ©Springer Science+Business Media B.V. 2009 ISSN 0334-5114 A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales Brendan P. Hodkinson* and François Lutzoni Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA, Tel. +1-443-340-0917, Fax. +1-919-660-7293, Email. [email protected] (Received June 10, 2008; Accepted November 5, 2009) Abstract This study uses a set of PCR-based methods to examine the putative microbiota associated with lichen thalli. In initial experiments, generalized oligonucleotide-primers for the 16S rRNA gene resulted in amplicon pools populated almost exclusively with fragments derived from lichen photobionts (i.e., Cyanobacteria or chloroplasts of algae). This effectively masked the presence of other lichen-associated prokaryotes. In order to facilitate the study of the lichen microbiota, 16S ribosomal oligonucleotide-primers were developed to target Bacteria, but exclude sequences derived from chloroplasts and Cyanobacteria. A preliminary microbiotic survey of lichen thalli using these new primers has revealed the identity of several bacterial associates, including representatives of the extremophilic Acidobacteria, bacteria in the families Acetobacteraceae and Brucellaceae, strains belonging to the genus Methylobacterium, and members of an undescribed lineage in the Rhizobiales. This new lineage was investigated and characterized through molecular cloning, and was found to be present in all examined lichens that are associated with green algae. There is evidence to suggest that members of this lineage may both account for a large proportion of the lichen-associated bacterial community and assist in providing the lichen thallus with crucial nutrients such as fixed nitrogen. -
Bomló Növényi Anyagok Dominálta Sekély Tavak Összehasonlító Mikrobiológiai Elemzése
Eötvös Loránd Tudományegyetem, Természettudományi Kar Biológia Doktori Iskola Kísérletes Növénybiológia Program Bomló növényi anyagok dominálta sekély tavak összehasonlító mikrobiológiai elemzése - DOKTORI ÉRTEKEZÉS - Készítette: MENTES ANIKÓ Témavezető: Doktori iskola vezető: Doktori programvezető: DR. FELFÖLDI TAMÁS PROF. DR. ERDEI ANNA DR. KOVÁCS M. GÁBOR habil. adjunktus egyetemi tanár habil. egyetemi docens ELTE TTK MIKROBIOLÓGIAI TANSZÉK BUDAPEST 2019 „It is hard to describe the exact route to scientific achievement, but a good scientist doesn’t get lost as he travels it.” „A tudományos eredményhez vezető pontos útvonalat nehéz leírni, de a jó tudós miközben ezen az úton jár, nem téved el.” Isaac Asimov Epigraph in Book of Science and Nature Quotations (1988) Tartalomjegyzék 1. Rövidítésjegyzék ........................................................................................................................................... 4 2. Bevezetés ....................................................................................................................................................... 6 3. Irodalmi áttekintés ......................................................................................................................................... 8 3.1. Sekély tavak ........................................................................................................................................... 8 3.1.1. A sekély tavak általános jellemzői ................................................................................................. -
Mxaf Gene, a Gene Encoding Alpha Subunit of Methanol Dehydrogenase in and False Growth of Acetic Acid Bacteria on Methanol
J. Gen. Appl. Microbiol., 55, 101‒110 (2009) Full Paper MxaF gene, a gene encoding alpha subunit of methanol dehydrogenase in and false growth of acetic acid bacteria on methanol Rei Suzuki, Puspita Lisdiyanti†, Kazuo Komagata, and Tai Uchimura* Laboratory of General and Applied Microbiology, Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156‒8502, Japan (Received September 30, 2008; Accepted November 21, 2008) MxaF gene, a gene encoding alpha subunit of methanol dehydrogenase, was investigated for acetic acid bacteria, and growth on methanol was examined for the bacteria by using various media. Of 21 strains of acetic acid bacteria studied, Acidomonas methanolica strains showed the presence of mxaF gene exclusively, and grew on a defi ned medium containing methanol. Further, none of the strains tested of which the growth on methanol had been previously reported, except for Acidomonas methanolica, showed the presence of mxaF gene or the growth on methanol. Precautions were taken against false growth on compounds used for identifi cation of bacteria. Key Words—acetic acid bacteria; Acidomonas; growth on methanol; mxaF gene Introduction grow on methanol (Gosselé et al., 1983b), but this fi nding was rejected by using the same strains as Acetic acid bacteria grow on a variety of sugars, theirs (Uhlig et al., 1986; Urakami et al., 1989). Further, sugar alcohols, and alcohols, and produce corre- Acetobacter pomorum LTH 2458T was described to sponding oxidation products by incomplete oxidation grow on methanol (Sokollek et al., 1998), but it was of the compounds. However, confl icting data have not recognized (Cleenwerck et al., 2002). -
Starkeya Novella Type Strain (ATCC 8093T) Ulrike Kappler1, Karen Davenport2, Scott Beatson1, Susan Lucas3, Alla Lapidus3, Alex Copeland3, Kerrie W
Standards in Genomic Sciences (2012) 7:44-58 DOI:10.4056/sigs.3006378 Complete genome sequence of the facultatively chemolithoautotrophic and methylotrophic alpha Proteobacterium Starkeya novella type strain (ATCC 8093T) Ulrike Kappler1, Karen Davenport2, Scott Beatson1, Susan Lucas3, Alla Lapidus3, Alex Copeland3, Kerrie W. Berry3, Tijana Glavina Del Rio3, Nancy Hammon3, Eileen Dalin3, Hope Tice3, Sam Pitluck3, Paul Richardson3, David Bruce2,3, Lynne A. Goodwin2,3, Cliff Han2,3, Roxanne Tapia2,3, John C. Detter2,3, Yun-juan Chang3,4, Cynthia D. Jeffries3,4, Miriam Land3,4, Loren Hauser3,4, Nikos C. Kyrpides3, Markus Göker5, Natalia Ivanova3, Hans-Peter Klenk5, and Tanja Woyke3 1 The University of Queensland, Brisbane, Australia 2 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 3 DOE Joint Genome Institute, Walnut Creek, California, USA 4 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 5Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany *Corresponding author(s): Hans-Peter Klenk ([email protected]) and Ulrike Kappler ([email protected]) Keywords: strictly aerobic, facultatively chemoautotrophic, methylotrophic and heterotrophic, Gram-negative, rod-shaped, non-motile, soil bacterium, Xanthobacteraceae, CSP 2008 Starkeya novella (Starkey 1934) Kelly et al. 2000 is a member of the family Xanthobacteraceae in the order ‘Rhizobiales’, which is thus far poorly characterized at the genome level. Cultures from this spe- cies are most interesting due to their facultatively chemolithoautotrophic lifestyle, which allows them to both consume carbon dioxide and to produce it. This feature makes S. novella an interesting model or- ganism for studying the genomic basis of regulatory networks required for the switch between con- sumption and production of carbon dioxide, a key component of the global carbon cycle. -
Planctomycetes As Host-Associated Bacteria
Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories Odilon D. Kabore, Sylvain Godreuil, Michel Drancourt To cite this version: Odilon D. Kabore, Sylvain Godreuil, Michel Drancourt. Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environ- mental Niches in Clinical Microbiology Laboratories. Frontiers in Cellular and Infection Microbiology, Frontiers, 2020, 10, 10.3389/fcimb.2020.519301. hal-03149244 HAL Id: hal-03149244 https://hal-amu.archives-ouvertes.fr/hal-03149244 Submitted on 22 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License REVIEW published: 30 November 2020 doi: 10.3389/fcimb.2020.519301 Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches -
Aquatic Microbial Ecology 23:119
AQUATIC MICROBIAL ECOLOGY Vol. 23: 119–130, 2001 Published January 31 Aquat Microb Ecol Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing Laura B. Fandino*, Lasse Riemann**, Grieg F. Steward***, Richard A. Long, Farooq Azam Marine Biology Research Division, Scripps Institution of Oceanography, 8750 Biological Grade, San Diego, California 92037-0202, USA ABSTRACT: The relationship between bacterial 16S rRNA gene composition and carbon metabolism was analyzed during an intense dinoflagellate bloom off the Southern California coast during the spring of 1997. Bacterial numbers and rate processes, chlorophyll a, and the dissolved and particulate organic matter pools were measured during the bloom to provide a framework within which to assess bacterial community composition. Free bacteria were numerically dominant, generally comprising >90% of the total, and were responsible for >70% of bacterial production. Attached bacteria had higher cell-specific growth rates than free bacteria (range = 0.5 to 15.1 and 0.7 to 2.5 d–1, respectively) and had hydrolytic ectoenzyme activities at times more than an order of magnitude higher on a per cell basis. Denaturing gradient gel electrophoresis analysis of bacterial community composition indi- cated that: (1) the free and attached communities were distinct, and (2) marked shifts in bacterial community structure occurred concomitant with the peaks in attached enzyme activities, specific growth rates and DOC concentration. Of the 24 16S rDNA clones analyzed, 7 were related to the Cytophaga-like bacteria (CLB), 6 to the α-subclass and 5 to the γ-subclass of the Proteobacteria; 3 were related to oxygenic phototrophs, 2 were heteroduplexes and 1 was a possible chimera. -
Next-Generation Sequencing for Microbial Characterization Of
Next-Generation Sequencing For Microbial Characterization Of Biovermiculations From A Sulfuric Acid Cave In Apulia (Italy) Ilenia M.D’Angeli1, Jo De Waele1, Maria Grazia Ieva1, Stefan Leuko2, Martina Cappelletti3, Mario Parise4, Valme Jurado5, Ana Z. Miller5, Cesareo Saiz-Jimenez5 Afliation: 1Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy, ilenia.dangeli@alice. it; [email protected] 2DLR Deutsches Zentrum für Luf- und Raumfahrt Institute of Aerospace Medicine Radiation Biology, Köln, Germany, [email protected] 3Department of Pharmacy and Biotechnology, University of Bologna, Italy, [email protected] 4Department of Earth and Environmental Sciences, University “Aldo Moro” of Bari, Italy (ex CNR-IRPI Bari, Italy), [email protected] 5Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, Sevilla, Spain, [email protected]; anamiller@ irnas.csic.es; [email protected] Abstract Sulfuric acid cave systems host abundant microbial communities that can colonize several environments displaying a variety of morphologies, i.e. white flamentous mats foating on the water surface, white creamy moonmilk deposits on the walls, and biovermiculations. Up to date, only few reports have described the microbiological aspects behind biovermiculation geomicrobiology of Italian sulfuric acid caves despite their overall abundance. Here, we present the frst characterization of biovermiculation microbial populations from the Santa Cesarea Terme (Apulia, Italy) using next-generation sequencing and feld emission scanning electron microscopy (FESEM) approaches. We focused our analysis on biovermiculations from Fetida Cave located along the Adriatic Sea coastline. Tis cave is at sea level, and moving from the entrance to its inner part, it is possible to observe a decrease of marine infuence accompanied by a corresponding increase in the acidic efect of the upwelling waters. -
Mechanisms of Polar Growth in the Alphaproteobacterial Order
MECHANISMS OF POLAR GROWTH IN THE ALPHAPROTEOBACTERIAL ORDER RHIZOBIALES A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By MICHELLE A. WILLIAMS Dr. Pamela J.B. Brown, Dissertation Supervisor DECEMBER 2019 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled MECHANISMS OF POLAR GROWTH IN THE ALPHAPROTEOBACTERIAL ORDER RHIZOBIALES Presented by MICHELLE A. WILLIAMS A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. Pamela J.B. Brown Dr. David J. Schulz Dr. Elizabeth King Dr. Antje Heese ACKNOWLEDGEMENTS First, I would like to extend my sincerest appreciation to my advisor Pam Brown. You are the person who has truly been my encouragement and support through the ups and downs of the last five years. You have gone above and beyond to be a great mentor and friend. Thank you for all the Saturday meetings at Starbucks and the chats about career advice. It is a privilege to be one of the first members of your lab. Through your amazing example, I have grown so much as a critical thinker, designer of experiments and as a mentor to others. To my committee members, Dr. Libby King, Dr. David Schulz, and Dr. Antje Heese, thank you so much for the guidance and support you have provided me on my project and future career. Special thanks to Dr. George Smith, and Dr. Linda Chapman for always attending lab meeting and providing feedback on talks, posters and everything in between. -
Starkeya Novella Type Strain (ATCC 8093T) Ulrike Kappler1, Karen Davenport2, Scott Beatson1, Susan Lucas3, Alla Lapidus3, Alex Copeland3, Kerrie W
Standards in Genomic Sciences (2012) 7:44-58 DOI:10.4056/sigs.3006378 Complete genome sequence of the facultatively chemolithoautotrophic and methylotrophic alpha Proteobacterium Starkeya novella type strain (ATCC 8093T) Ulrike Kappler1, Karen Davenport2, Scott Beatson1, Susan Lucas3, Alla Lapidus3, Alex Copeland3, Kerrie W. Berry3, Tijana Glavina Del Rio3, Nancy Hammon3, Eileen Dalin3, Hope Tice3, Sam Pitluck3, Paul Richardson3, David Bruce2,3, Lynne A. Goodwin2,3, Cliff Han2,3, Roxanne Tapia2,3, John C. Detter2,3, Yun-juan Chang3,4, Cynthia D. Jeffries3,4, Miriam Land3,4, Loren Hauser3,4, Nikos C. Kyrpides3, Markus Göker5, Natalia Ivanova3, Hans-Peter Klenk5, and Tanja Woyke3 1 The University of Queensland, Brisbane, Australia 2 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 3 DOE Joint Genome Institute, Walnut Creek, California, USA 4 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 5Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany *Corresponding author(s): Hans-Peter Klenk ([email protected]) and Ulrike Kappler ([email protected]) Keywords: strictly aerobic, facultatively chemoautotrophic, methylotrophic and heterotrophic, Gram-negative, rod-shaped, non-motile, soil bacterium, Xanthobacteraceae, CSP 2008 Starkeya novella (Starkey 1934) Kelly et al. 2000 is a member of the family Xanthobacteraceae in the order ‘Rhizobiales’, which is thus far poorly characterized at the genome level. Cultures from this spe- cies are most interesting due to their facultatively chemolithoautotrophic lifestyle, which allows them to both consume carbon dioxide and to produce it. This feature makes S. novella an interesting model or- ganism for studying the genomic basis of regulatory networks required for the switch between con- sumption and production of carbon dioxide, a key component of the global carbon cycle.