Reviewers Caution NASA Over Plans for Nuclear-Powered Craft

Total Page:16

File Type:pdf, Size:1020Kb

Reviewers Caution NASA Over Plans for Nuclear-Powered Craft news Culture clash Free for all Bad taste Logged on Lack of cash US biomedical agency Consumer review Exhibition counts threatens to hurt prepares for open falls foul of food the contribution of Europe’s heritage publication chemist’s ire slide rules p114 p115 p117 p119 JPL/NASA Up in the air: NASA is struggling to fund the development of the nuclear-powered craft proposed for the JIMO mission to Jupiter’s moons. Reviewers caution NASA over plans for nuclear-powered craft Tony Reichhardt,Washington NASA officials claim that some of the Weighing the costs and long travel times An ambitious NASA project to use nuclear upfront investment in designing JIMO will against the scientific return, planetary scien- reactors to power spacecraft may be heading make future nuclear missions cheaper. But tist Reta Beebe of New Mexico State Univers- for trouble, based on early reactions in Con- either way, the project promises to consume ity in Las Cruces said at the meeting that the gress and from scientists studying future a significant fraction of the agency’s current nuclear missions could be a hard sell with space missions that would depend on them. annual space science budget of $4 billion. scientists.“This is not inspiring,”she said. Later this month, NASA will choose an JIMO would unquestionably be a big step Jerry Grey, a space-policy expert with the industrial contractor to begin designing its up in technology. Its nuclear reactor would American Institute of Aeronautics and Astro- first such spacecraft,the proposed Jupiter Icy provide at least 10,000 watts of electricity for nautics who recently chaired a space nuclear- Moons Orbiter (JIMO). The mission, tenta- scientific instruments, against the 300 watts power round table in Washington, says that tively planned for launch around 2015, has available to the Cassini spacecraft now building JIMO poses no technical showstop- strong personal backing from the agency’s orbiting Saturn. The power boost would pers,but “it ain’t gonna be easy”.It will require administrator Sean O’Keefe. allow sophisticated equipment such as ice- a thorough ground testing programme, and NASA surprised the scientific community penetrating radars to fly for the first time and the risk of failure will still be high. Virtually last year by proposing JIMO, which would would greatly increase the volume of data everything on the mission will be new tech- orbit several of Jupiter’s moons at close range, from cameras and other instruments. nology that will need to run for a decade or and would be more technically capable than But a National Academy of Sciences panel, more without breaking down in space. any scientific spacecraft ever built. asked by NASA to look at the value of nuclear Daunting as these challenges are, JIMO is But many scientists are concerned about power for space missions,met in Washington also off to a bad start politically. This summer the mission’s cost and political viability. on 31 August to 2 September and seemed the House appropriations committee cut NASA won’t even hazard a guess on the final underwhelmed by presentations from NASA $230 million from next year’s budget request price tag until definition studies are com- managers on possible follow-on missions to of $438 million for Project Prometheus. pleted next summer, says Ray Taylor, who JIMO. A Neptune mission, for example, Unless the money is restored by the Senate,the heads Project Prometheus, the broader would still take nearly 20 years to return sci- effect on the programme would be “severe”, nuclear programme that includes JIMO. But entific data, offering no real advantage over says Taylor, who claims that Congress sup- estimates to build the nuclear propulsion conventional missions. And it would require ports the project, and had to cut its funding system alone run as high as $4.5 billion, and much bigger rockets than the largest planned because of competing budget demands. “To the spacecraft structure and science instru- US launch vehicle to deliver the craft to our knowledge,there’s a tremendous amount ments would add billions more. Earth orbit before it headed into deep space. of support”for it going ahead,he says. ■ NATURE | VOL 431 | 9 SEPTEMBER 2004 | www.nature.com/nature 113 © 2004 Nature Publishing Group.
Recommended publications
  • From the Hubble Space Telescope
    Teacher’s Guide From the Hubble Space Telescope Exploring Space and Cyberspace An electronic field trip via interactive television and on-line networks into America’s classrooms Project Notes Programs and Initial Air Dates and Times Contingency Announcement Program 2 Making YOUR Observations Field research on a scientific frontier is March 14, 1996, 13:00-14:00 Eastern inherently unpredictable. Even traditional school trips are subject to weather and dis- Program 3 Announcing YOUR Results ruptions. An electronic field trip is no dif- Live from the Hubble Space April 23, 1996, 13:00-14:00 Eastern ferent: the Telescope programs are dependent on the Please Note: HST operating normally, NASA’s Tracking and Data Relay Satellites being available, Program 1 The Great Planet Debate and all domestic satellite links holding (see first aired November 9, 1995, as an introduction Activity 2D, page 24 below, for more to the entire project. (For videotapes, see below) background on how the electronic images get from Pluto to you!) The production Primary Satellite Coordinates team has put in place contingency plans for most eventualities. In the event of tempo- Ku-band: PBS K-12 Learning Services:Telstar 401, 97 degrees rary loss of signal, live programming will West, transponder 8, horizontal, 11915 Mhz, audio on 6.2 and 6.8 continue from ground sites, interspersed Please note: this refers to carriage on the primary satellite used by PBS. Carriage on with pre-taped segments. the satellite itself does not guarantee broadcast by any individual PBS station. Please Register for on-line Live from the check local listings well in advance of air time to verify local arrangements! An on-line Hubble Space Telescope updates or check listing of confirmed carriage by local stations and educational networks will be acces- our Web site: sible between March 1, 1996 and April 23, 1996.
    [Show full text]
  • Electric Propulsion System Modeling for the Proposed Prometheus 1 Mission
    NASA/TM—2005-213892 AIAA–2005–3891 Electric Propulsion System Modeling for the Proposed Prometheus 1 Mission Douglas Fiehler QSS Group, Inc., Cleveland, Ohio Ryan Dougherty Jet Propulsion Laboratory, Pasadena, California David Manzella Glenn Research Center, Cleveland, Ohio September 2005 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key part meetings sponsored or cosponsored by in helping NASA maintain this important role. NASA. The NASA STI Program Office is operated by • SPECIAL PUBLICATION. Scientific, Langley Research Center, the Lead Center for technical, or historical information from NASA’s scientific and technical information. The NASA programs, projects, and missions, NASA STI Program Office provides access to the often concerned with subjects having NASA STI Database, the largest collection of substantial public interest. aeronautical and space science STI in the world. The Program Office is also NASA’s institutional • TECHNICAL TRANSLATION. English- mechanism for disseminating the results of its language translations of foreign scientific research and development activities. These results and technical material pertinent to NASA’s are published by NASA in the NASA STI Report mission. Series, which includes the following report types: Specialized services that complement the STI • TECHNICAL PUBLICATION. Reports of Program Office’s diverse offerings include completed research or a major significant creating custom thesauri, building customized phase of research that present the results of databases, organizing and publishing research NASA programs and include extensive data results .
    [Show full text]
  • Solar System Exploration: a Vision for the Next Hundred Years
    IAC-04-IAA.3.8.1.02 SOLAR SYSTEM EXPLORATION: A VISION FOR THE NEXT HUNDRED YEARS R. L. McNutt, Jr. Johns Hopkins University Applied Physics Laboratory Laurel, Maryland, USA [email protected] ABSTRACT The current challenge of space travel is multi-tiered. It includes continuing the robotic assay of the solar system while pressing the human frontier beyond cislunar space, with Mars as an ob- vious destination. The primary challenge is propulsion. For human voyages beyond Mars (and perhaps to Mars), the refinement of nuclear fission as a power source and propulsive means will likely set the limits to optimal deep space propulsion for the foreseeable future. Costs, driven largely by access to space, continue to stall significant advances for both manned and unmanned missions. While there continues to be a hope that commercialization will lead to lower launch costs, the needed technology, initial capital investments, and markets have con- tinued to fail to materialize. Hence, initial development in deep space will likely remain govern- ment sponsored and driven by scientific goals linked to national prestige and perceived security issues. Against this backdrop, we consider linkage of scientific goals, current efforts, expecta- tions, current technical capabilities, and requirements for the detailed exploration of the solar system and consolidation of off-Earth outposts. Over the next century, distances of 50 AU could be reached by human crews but only if resources are brought to bear by international consortia. INTRODUCTION years hence, if that much3, usually – and rightly – that policy goals and technologies "Where there is no vision the people perish.” will change so radically on longer time scales – Proverbs, 29:181 that further extrapolation must be relegated to the realm of science fiction – or fantasy.
    [Show full text]
  • Comet/Asteroid Protection System (CAPS): Preliminary Space-Based System Concept and Study Results
    NASA/TM-2005-213758 Comet/Asteroid Protection System (CAPS): Preliminary Space-Based System Concept and Study Results Daniel D. Mazanek, Carlos M. Roithmayr, and Jeffrey Antol Langley Research Center, Hampton, Virginia Sang-Young Park, Robert H. Koons, and James C. Bremer Swales Aerospace, Inc., Hampton, Virginia Douglas G. Murphy, James A. Hoffman, Renjith R. Kumar, and Hans Seywald Analytical Mechanics Associates, Inc., Hampton, Virginia Linda Kay-Bunnell and Martin R. Werner Joint Institute for Advancement of Flight Sciences (JIAFS) The George Washington University, Hampton, Virginia Matthew A. Hausman Colorado Center for Astrodynamics Research The University of Colorado, Boulder, Colorado Jana L. Stockum San Diego State University, San Diego, California May 2005 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical NASA Scientific and Technical Information (STI) conferences, symposia, seminars, or other Program Office plays a key part in helping NASA meetings sponsored or co-sponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program Office is operated by technical, or historical information from NASA Langley Research Center, the lead center for NASA’s programs, projects, and missions, often scientific and technical information. The NASA STI concerned with subjects having substantial Program Office provides access to the NASA STI public interest. Database, the largest collection of aeronautical and space science STI in the world. The Program Office is • TECHNICAL TRANSLATION. English- also NASA’s institutional mechanism for language translations of foreign scientific and disseminating the results of its research and technical material pertinent to NASA’s mission.
    [Show full text]
  • Newsletter 110 ª June 2002 NEWSLETTER
    Newsletter 110 ª June 2002 NEWSLETTER The American Astronomical Societys2000 Florida Avenue, NW, Suite 400sWashington, DC [email protected] AAS NEWS PRESIDENT’S COLUMN Wallerstein is Anneila I. Sargent, Caltech, [email protected] My term as President of the American Astronomical Society Russell Lecturer will end with our meeting in Albuquerque in June 2002. Usually This year, the AAS this letter would be the appropriate place to consider my bestows its highest honor, expectations and goals when I took up the gavel and compare the Henry Norris Russell these with what actually happened. Lectureship on George The events of 11 September 2001 caused me to write that kind Wallerstein, Professor of reflective letter in the December issue of this Newsletter.I Emeritus of Astronomy at won’t repeat myself here except to note that at that time there the University of seemed to be less enthusiasm to fund research in the physical Washington. Wallerstein is sciences than we had grown to expect when I took office. recognized in the award citation for “...his As I write this column, the prospects look much less bleak. In contributions to our another part of this Newsletter, Kevin Marvel discusses how understanding of the astronomy fared in the President’s FY ’03 budget request. George Wallerstein of the University of NASA’s Office of Space Science is doing very well indeed. In Washington will deliver his Russell Lecture abundances of the at the Seattle Meeting in January 2003. elements in stars and fact, the OSS budget has been increasing steadily since 1996 and clusters.
    [Show full text]
  • 982-R120461 October 1, 2005
    982-R120461 October 1, 2005 PROMETHEUS PROJECT National Aeronautics and Space Administration Final Report Jet Propulsion Laboratory California Institute of Technology Pasadena, California [This page intentionally left blank] 982-R120461 PROMETHEUS PROJECT OCTOBER 1, 2005 FINAL REPORT Signature Page Name Title Date Signature Randall Taylor Prometheus Project Closeout Manager i 982-R120461 PROMETHEUS PROJECT OCTOBER 1, 2005 FINAL REPORT [This page intentionally left blank] ii 982-R120461 PROMETHEUS PROJECT OCTOBER 1, 2005 FINAL REPORT Acknowledgement The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology, manages the Prometheus Project for the National Aeronautics and Space Administration’s Prometheus Nuclear Systems Program. iii 982-R120461 PROMETHEUS PROJECT OCTOBER 1, 2005 FINAL REPORT [This page intentionally left blank] iv 982-R120461 PROMETHEUS PROJECT OCTOBER 1, 2005 FINAL REPORT TABLE OF CONTENTS 1. INTRODUCTION..............................................................................................................1 1.1 Project Identification................................................................................................1 1.2 Project Summary......................................................................................................1 1.3 Project History .........................................................................................................2 1.4 Scope of Final Report ..............................................................................................4
    [Show full text]
  • The Future of Space Imaging
    The FutureofSpaceImaging The Future of Space Imaging Report of a Community-Based Study of an Advanced Camera for the Hubble Space Telescope hen Lyman Spitzer first proposed a great, W earth-orbiting telescope in , the nuclear energy source of stars had been known for just six years. Knowledge of galaxies beyond our own and the understanding that our universe is expanding were only about twenty years of age in the human consciousness. The planet Pluto was seventeen. Quasars, black holes, gravitational lenses, and detection of the Big Bang were still in the future—together with much of what constitutes our current understanding of the solar system and the cos- mos beyond it. In , forty-seven years after it was conceived in a for- gotten milieu of thought, the Hubble Space Telescope is a reality. Today, the science of the Hubble attests to the forward momentum of astronomical exploration from ancient times. The qualities of motion and drive for knowledge it exemplifies are not fixed in an epoch or a gen- eration: most of the astronomers using Hubble today were not born when the idea of it was first advanced, and many were in the early stages of their education when the glass for its mirror was cast. The commitments we make today to the fu- ture of the Hubble observatory will equip a new generation of young men and women to explore the astronomical frontier at the start of the st century. 1 2 3 4 5 6 7 8 9 FRONT & BACK COVER 1.Globular clusters containing young stars at the core of elliptical galaxy NGC 1275.
    [Show full text]
  • Nuclear Power to Advance Space Exploration Gary L
    Poster Paper P. 7.7 First Flights: Nuclear Power to Advance Space Exploration Gary L. Bennett E. W. Johnson Metaspace Enterprises EWJ Enterprises Emmett, Idaho Centerville, Ohio International Air & Space Symposium and Exposition Dayton Convention Center 14-17 July 2003 Dayton, Ohio USA r ... penni.. l .. 10 p~bli . h ..... ..,."b ll .~, ... ~ t .d til. <Op)'rigbt 0 ........ aomod oa tho fin' po_" ...... A1M.IIdd ..., yri ,hl, ... rit< .. AIM hrmi.. lou Dop a_I, 18(11 AI . ..od ... B<l1 Ori .... S.11e SIlO , R.stu. VA. 20191""-i44 FIRST FLIGHTS: NUCLEAR POWER TO ADVANCE SPACE EXPLORATION Gary L. Bennett E. W. Johnson Metaspace Enterprises EWJ Enterprises 5000 Butte Road 1017 Glen Arbor Court Emmett, Idaho 83617-9500 Centerville, Ohio 45459-5421 Tel/Fax: 1+208.365.1210 Telephone: 1+937.435.2971 E-mail: [email protected] E-mail: [email protected] Abstract One of the 20th century's breakthroughs that enabled and/or enhanced challenging space flights was the development of nuclear power sources for space applications. Nuclear power sources have allowed spacecraft to fly into regions where sunlight is dim or virtually nonexistent. Nuclear power sources have enabled spacecraft to perform extended missions that would have been impossible with more conventional power sources (e.g., photovoltaics and batteries). It is fitting in the year of the 100th anniversary of the first powered flight to consider the advancements made in space nuclear power as a natural extension of those first flights at Kitty Hawk to extending human presence into the Solar System and beyond. Programs were initiated in the mid 1950s to develop both radioisotope and nuclear reactor power sources for space applications.
    [Show full text]
  • Voyage to Jupiter. INSTITUTION National Aeronautics and Space Administration, Washington, DC
    DOCUMENT RESUME ED 312 131 SE 050 900 AUTHOR Morrison, David; Samz, Jane TITLE Voyage to Jupiter. INSTITUTION National Aeronautics and Space Administration, Washington, DC. Scientific and Technical Information Branch. REPORT NO NASA-SP-439 PUB DATE 80 NOTE 208p.; Colored photographs and drawings may not reproduce well. AVAILABLE FROMSuperintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 ($9.00). PUB TYPE Reports - Descriptive (141) EDRS PRICE MF01/PC09 Plus Postage. DESCRIPTORS Aerospace Technology; *Astronomy; Satellites (Aerospace); Science Materials; *Science Programs; *Scientific Research; Scientists; *Space Exploration; *Space Sciences IDENTIFIERS *Jupiter; National Aeronautics and Space Administration; *Voyager Mission ABSTRACT This publication illustrates the features of Jupiter and its family of satellites pictured by the Pioneer and the Voyager missions. Chapters included are:(1) "The Jovian System" (describing the history of astronomy);(2) "Pioneers to Jupiter" (outlining the Pioneer Mission); (3) "The Voyager Mission"; (4) "Science and Scientsts" (listing 11 science investigations and the scientists in the Voyager Mission);.(5) "The Voyage to Jupiter--Cetting There" (describing the launch and encounter phase);(6) 'The First Encounter" (showing pictures of Io and Callisto); (7) "The Second Encounter: More Surprises from the 'Land' of the Giant" (including pictures of Ganymede and Europa); (8) "Jupiter--King of the Planets" (describing the weather, magnetosphere, and rings of Jupiter); (9) "Four New Worlds" (discussing the nature of the four satellites); and (10) "Return to Jupiter" (providing future plans for Jupiter exploration). Pictorial maps of the Galilean satellites, a list of Voyager science teams, and a list of the Voyager management team are appended. Eight technical and 12 non-technical references are provided as additional readings.
    [Show full text]
  • Solar System Explorationsolar System Exploration
    https://ntrs.nasa.gov/search.jsp?R=20070014672 2019-08-29T18:40:29+00:00Z SolarSolar SystemSystem ExplorationExploration 2nd International Planetary Probe Workshop August, 2004 James Robinson Program Executive, Solar System Exploration Division NASA Science Mission Directorate Agenda • Introduction • Solar System Exploration – Highlights – Status of Programs • Technology Drivers and Plans • Summary Highlights Major accomplishments • Genesis completed sample collection period April 26, and heads home • MER successfully completed primary science mission April 26, and was approved to continue through Sep ‘04 • Robotic Lunar Exploration Program started, and 2008 Lunar Reconnaissance Orbiter AO released June 18 • Cassini-Huygens entered Saturn Orbit June 30th • Independent review of Huygens probe release end to end events started • 2 New Frontiers candidate missions selected July 15 for ΦA studies Discovery proposals received July16 in response to March AO • Kepler subsystems peer reviews started in preparation for PDR/NAR Oct • Deep Impact full up system T/V testing completed successfully • Dawn met all of its confirmation terms and conditions successfully • MESSENGER was successfully launched Highlights Major Issues/Concerns • New Horizons launch vehicle certification, launch approval, NEPA, LANL security/safety issue, typical of nuclear powered missions on low flight rate launch vehicles • Re-establishing the Discovery/New Frontiers Program Office (now at MSFC) • Reconciliation of full cost impact on programs • Maintaining focus on priorities
    [Show full text]
  • Vision for Space Exploration”
    Order Code RS21720 Updated June 9, 2005 CRS Report for Congress Received through the CRS Web Space Exploration: Issues Concerning the “Vision for Space Exploration” Marcia S. Smith Resources, Science, and Industry Division Summary On January 14, 2004, President George W. Bush announced new goals for the National Aeronautics and Space Administration (NASA), directing the agency to focus on returning humans to the Moon by 2020, and eventually sending them to Mars and “worlds beyond.” Most of the funding for this “Vision for Space Exploration” is to be redirected from other NASA activities, including terminating the space shuttle program in 2010, and ending U.S. participation in the International Space Station by FY2017. Space science, earth science, and aeronautics programs also would be impacted. In 2004, NASA estimated the cost for returning humans to the Moon at about $64 billion through FY2020 (excluding robotic probes). An estimate for the other Vision goals was not provided. The President invited other countries to join. Whether to proceed with the Vision as outlined by the President, and its impact on NASA’s workforce and other activities, are being debated by Congress. This report is updated regularly. Overview of President George W. Bush’s Vision for Space Exploration On January 14, 2004, President George W. Bush announced new goals for the U.S. space program [http://www.whitehouse.gov/news/releases/2004/01/20040114-3.html]. Amplified by documents from the White House Office of Science and Technology Policy (OSTP) [http://www.ostp.gov] and NASA, the main features of this “Vision for Space Exploration” are the following.
    [Show full text]
  • 2003 Astronomy Magazine Index
    2003 astronomy magazine index Catchall (Martian crater), 11:30 observing Mars from, 7:32 hydrogen, 10:28 Subject index CCD (charge-coupled device) cameras, planets like, 6:48–53 Hydrus (constellation), 10:72–75 3:84–87, 5:84–87 seasons of, 3:72–73 A CCD techniques, 9:100–105 tilt of axis, 2:68, 5:72–73 I accidents, space-related, 7:42–47 Celestron C6-R (refractor), 11:84 EarthExplorer web site, 4:30 Achernar (star), 10:30 iceball, found beyond Pluto, 1:24 Celestron C8-N (reflector), 11:86 eclipses India, plans to visit Moon, 10:29 Advanced Camera for Surveys, 4:28 Celestron CGE-1100 (amateur telescope), in Australia (2003), 4:80–83 ALMA (Atacama Large Millimeter Array), infrared survey, 8:31 11:88 lunar integrating wavelengths, 4:24 3:36 Celestron NexStar 8 GPS (amateur telescope), of 2003, 5:18 Amalthea (Jupiter’s moon), 4:28 interferometry 1:84–87 of May 15, 2003, 5:60, 80–83, 88–89 techniques for, 7:48–53 Amateur Achievement Award, 9:32 Celestron NexStar 8i (amateur telescope), solar Andromeda Galaxy VLT interferometer, 2:32 11:89 of May 31, 2003, 5:80–83, 88–89 International Space Station, 3:31 picture of, 2:12–13 Centaurus A (NGC 5128) galaxy Edgar Wilson Award, 11:30 young stars in, 9:86–89 Internet, virtual observatories on, 9:80–85 1,000 Mira stars discovered in, 10:28 Egg Nebula, 8:36 Intes MK67 (amateur telescope), 11:89 Annefrank (asteroid), 2:32 picture of, 10:12–13 elliptical galaxies, 8:31 antineutrinos, 4:26 Io (Jupiter’s moon), 3:30 ripped apart satellite galaxy, 2:32 Eta Carinae (nebula), 5:29 ISAAC multi-mode instrument, 4:32 antisolar point, 10:18 Centaurus (constellation), 4:74–77 ETX-90EC (amateur telescope), 11:89 Antlia (constellation), 4:74–77 cepheid variable stars, 9:90–91 Europa (Jupiter’s moon), 12:30, 77 aphelion, 6:68–69 Challenger (space shuttle), 7:42–47 exoplanet magnetosphere, 11:28 J Apollo 1 (spacecraft), 7:42–47 J002E3 satellite, 1:30 Chamaeleon (constellation), 12:80–83 extrasolar planets.
    [Show full text]