Run Parameters Results Query Molecule

Total Page:16

File Type:pdf, Size:1020Kb

Run Parameters Results Query Molecule Run parameters Query Molecule Library screened FDA approved drugs Screening method Combined Date Fri May 29 15:13:33 2020 If you publish these results, please cite the SwissSimilarity website. Results DB00396, Progesterone DB00378, Dydrogesterone DB00990, Exemestane DB06710, Methyltestosterone Score : 0.995 Score : 0.955 Score : 0.718 Score : 0.651 DB00624, Testosterone DB01420, Testosterone Propionate DB00253, Medrysone DB00603, Medroxyprogesterone Acetat Score : 0.651 Score : 0.617 Score : 0.513 e Score : 0.399 DB00294, Etonogestrel DB00741, Hydrocortisone DB00367, Levonorgestrel DB00717, Norethindrone Score : 0.398 Score : 0.391 Score : 0.355 Score : 0.355 DB01395, Drospirenone DB09015, Potassium Canrenoate DB08804, Nandrolone decanoate DB01185, Fluoxymesterone Score : 0.345 Score : 0.199 Score : 0.182 Score : 0.151 DB00687, Fludrocortisone DB00896, Rimexolone DB06730, Gestodene DB01431, Allylestrenol Score : 0.117 Score : 0.115 Score : 0.107 Score : 0.105 DB06689, Ethanolamine Oleate DB00959, Methylprednisolone DB00860, Prednisolone DB00635, Prednisone Score : 0.105 Score : 0.088 Score : 0.088 Score : 0.088 DB00894, Testolactone DB00980, Ramelteon DB00421, Spironolactone DB06594, Agomelatine Score : 0.065 Score : 0.057 Score : 0.035 Score : 0.030 DB00202, Succinylcholine DB00461, Nabumetone DB01625, Isopropamide DB00546, Adinazolam Score : 0.029 Score : 0.028 Score : 0.027 Score : 0.026 DB01058, Praziquantel DB04839, Cyproterone acetate DB00351, Megestrol acetate DB01065, Melatonin Score : 0.025 Score : 0.024 Score : 0.024 Score : 0.023 DB00757, Dolasetron DB00981, Physostigmine DB01166, Cilostazol DB00806, Pentoxifylline Score : 0.022 Score : 0.021 Score : 0.021 Score : 0.021 DB04880, Enoximone DB06209, Prasugrel DB01168, Procarbazine DB00486, Nabilone Score : 0.020 Score : 0.019 Score : 0.018 Score : 0.017 DB06802, Nepafenac DB01127, Econazole DB01153, Sertaconazole DB00208, Ticlopidine Score : 0.017 Score : 0.016 Score : 0.016 Score : 0.016 DB00660, Metaxalone DB00480, Lenalidomide DB01110, Miconazole DB08811, Tofisopam Score : 0.016 Score : 0.015 Score : 0.015 Score : 0.015 DB01247, Isocarboxazid DB01039, Fenofibrate DB00236, Pipobroman DB00745, Modafinil Score : 0.015 Score : 0.015 Score : 0.015 Score : 0.014 DB06691, Mepyramine DB08824, Ioflupane I 123 DB00370, Mirtazapine DB00815, Sodium lauryl sulfate Score : 0.014 Score : 0.014 Score : 0.014 Score : 0.014 DB01351, Amobarbital DB01216, Finasteride DB08877, Ruxolitinib DB08828, Vismodegib Score : 0.014 Score : 0.013 Score : 0.013 Score : 0.013 DB01394, Colchicine DB06203, Alogliptin DB01122, Ambenonium DB00962, Zaleplon Score : 0.013 Score : 0.013 Score : 0.013 Score : 0.013 DB00418, Secobarbital DB00312, Pentobarbital DB00395, Carisoprodol DB00357, Aminoglutethimide Score : 0.013 Score : 0.013 Score : 0.013 Score : 0.013 DB06738, Ketobemidone DB08905, Formestane DB00589, Lisuride DB00758, Clopidogrel Score : 0.013 Score : 0.012 Score : 0.012 Score : 0.012 DB01010, Edrophonium DB06751, Drotaverine DB00455, Loratadine DB01628, Etoricoxib Score : 0.012 Score : 0.012 Score : 0.012 Score : 0.012 DB00791, Uracil mustard DB01113, Papaverine DB00969, Alosetron DB01353, Butethal Score : 0.011 Score : 0.011 Score : 0.011 Score : 0.011 DB00524, Metolazone DB01041, Thalidomide DB00498, Phenindione DB06201, Rufinamide Score : 0.011 Score : 0.010 Score : 0.010 Score : 0.010 DB01006, Letrozole DB08943, Isoconazole DB01007, Tioconazole DB00736, Esomeprazole Score : 0.010 Score : 0.010 Score : 0.010 Score : 0.010 DB00338, Omeprazole DB01176, Cyclizine DB06589, Pazopanib DB01085, Pilocarpine Score : 0.010 Score : 0.010 Score : 0.010 Score : 0.010 DB01205, Flumazenil DB00613, Amodiaquine DB00711, Diethylcarbamazine DB01437, Glutethimide Score : 0.010 Score : 0.010 Score : 0.010 Score : 0.010 DB00849, Methylphenobarbital DB00306, Talbutal DB00899, Remifentanil DB00474, Methohexital Score : 0.010 Score : 0.010 Score : 0.010 Score : 0.010 DB01011, Metyrapone DB08873, Boceprevir DB00700, Eplerenone DB00776, Oxcarbazepine Score : 0.010 Score : 0.009 Score : 0.009 Score : 0.009 DB04842, Fluspirilene DB00261, Anagrelide DB01355, Hexobarbital DB00721, Procaine Score : 0.009 Score : 0.009 Score : 0.009 Score : 0.009 DB01161, Chloroprocaine DB01342, Forasartan DB08992, Eperisone DB00808, Indapamide Score : 0.009 Score : 0.009 Score : 0.009 Score : 0.009 DB00241, Butalbital Score : 0.009 Swiss Institute of Bioinformatics - © 2015 Supplementary figure 5: Swiss Similarity check of FDA approved drugs (drug ID, drug name, similarity score, and molecule structure) with Guggulsterone. .
Recommended publications
  • The National Drugs List
    ^ ^ ^ ^ ^[ ^ The National Drugs List Of Syrian Arab Republic Sexth Edition 2006 ! " # "$ % &'() " # * +$, -. / & 0 /+12 3 4" 5 "$ . "$ 67"5,) 0 " /! !2 4? @ % 88 9 3: " # "$ ;+<=2 – G# H H2 I) – 6( – 65 : A B C "5 : , D )* . J!* HK"3 H"$ T ) 4 B K<) +$ LMA N O 3 4P<B &Q / RS ) H< C4VH /430 / 1988 V W* < C A GQ ") 4V / 1000 / C4VH /820 / 2001 V XX K<# C ,V /500 / 1992 V "!X V /946 / 2004 V Z < C V /914 / 2003 V ) < ] +$, [2 / ,) @# @ S%Q2 J"= [ &<\ @ +$ LMA 1 O \ . S X '( ^ & M_ `AB @ &' 3 4" + @ V= 4 )\ " : N " # "$ 6 ) G" 3Q + a C G /<"B d3: C K7 e , fM 4 Q b"$ " < $\ c"7: 5) G . HHH3Q J # Hg ' V"h 6< G* H5 !" # $%" & $' ,* ( )* + 2 ا اوا ادو +% 5 j 2 i1 6 B J' 6<X " 6"[ i2 "$ "< * i3 10 6 i4 11 6! ^ i5 13 6<X "!# * i6 15 7 G!, 6 - k 24"$d dl ?K V *4V h 63[46 ' i8 19 Adl 20 "( 2 i9 20 G Q) 6 i10 20 a 6 m[, 6 i11 21 ?K V $n i12 21 "% * i13 23 b+ 6 i14 23 oe C * i15 24 !, 2 6\ i16 25 C V pq * i17 26 ( S 6) 1, ++ &"r i19 3 +% 27 G 6 ""% i19 28 ^ Ks 2 i20 31 % Ks 2 i21 32 s * i22 35 " " * i23 37 "$ * i24 38 6" i25 39 V t h Gu* v!* 2 i26 39 ( 2 i27 40 B w< Ks 2 i28 40 d C &"r i29 42 "' 6 i30 42 " * i31 42 ":< * i32 5 ./ 0" -33 4 : ANAESTHETICS $ 1 2 -1 :GENERAL ANAESTHETICS AND OXYGEN 4 $1 2 2- ATRACURIUM BESYLATE DROPERIDOL ETHER FENTANYL HALOTHANE ISOFLURANE KETAMINE HCL NITROUS OXIDE OXYGEN PROPOFOL REMIFENTANIL SEVOFLURANE SUFENTANIL THIOPENTAL :LOCAL ANAESTHETICS !67$1 2 -5 AMYLEINE HCL=AMYLOCAINE ARTICAINE BENZOCAINE BUPIVACAINE CINCHOCAINE LIDOCAINE MEPIVACAINE OXETHAZAINE PRAMOXINE PRILOCAINE PREOPERATIVE MEDICATION & SEDATION FOR 9*: ;< " 2 -8 : : SHORT -TERM PROCEDURES ATROPINE DIAZEPAM INJ.
    [Show full text]
  • Specifications of Approved Drug Compound Library
    Annexure-I : Specifications of Approved drug compound library The compounds should be structurally diverse, medicinally active, and cell permeable Compounds should have rich documentation with structure, Target, Activity and IC50 should be known Compounds which are supplied should have been validated by NMR and HPLC to ensure high purity Each compound should be supplied as 10mM solution in DMSO and at least 100µl of each compound should be supplied. Compounds should be supplied in screw capped vial arranged as 96 well plate format.
    [Show full text]
  • Download PDF File
    Ginekologia Polska 2019, vol. 90, no. 9, 520–526 Copyright © 2019 Via Medica ORIGINAL PAPER / GYNECologY ISSN 0017–0011 DOI: 10.5603/GP.2019.0091 Anti-androgenic therapy in young patients and its impact on intensity of hirsutism, acne, menstrual pain intensity and sexuality — a preliminary study Anna Fuchs, Aleksandra Matonog, Paulina Sieradzka, Joanna Pilarska, Aleksandra Hauzer, Iwona Czech, Agnieszka Drosdzol-Cop Department of Pregnancy Pathology, Department of Woman’s Health, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland ABSTRACT Objectives: Using anti-androgenic contraception is one of the methods of birth control. It also has a significant, non-con- traceptive impact on women’s body. These drugs can be used in various endocrinological disorders, because of their ability to reduce the level of male hormones. The aim of our study is to establish a correlation between taking different types of anti-androgenic drugs and intensity of hirsutism, acne, menstrual pain intensity and sexuality . Material and methods: 570 women in childbearing age that had been using oral contraception for at least three months took part in our research. We examined women and asked them about quality of life, health, direct causes and effects of that treatment, intensity of acne and menstrual pain before and after. Our research group has been divided according to the type of gestagen contained in the contraceptive pill: dienogest, cyproterone, chlormadynone and drospirenone. Ad- ditionally, the control group consisted of women taking oral contraceptives without antiandrogenic component. Results: The mean age of the studied group was 23 years ± 3.23. 225 of 570 women complained of hirsutism.
    [Show full text]
  • COVID-19—The Potential Beneficial Therapeutic Effects of Spironolactone During SARS-Cov-2 Infection
    pharmaceuticals Review COVID-19—The Potential Beneficial Therapeutic Effects of Spironolactone during SARS-CoV-2 Infection Katarzyna Kotfis 1,* , Kacper Lechowicz 1 , Sylwester Drozd˙ zal˙ 2 , Paulina Nied´zwiedzka-Rystwej 3 , Tomasz K. Wojdacz 4, Ewelina Grywalska 5 , Jowita Biernawska 6, Magda Wi´sniewska 7 and Miłosz Parczewski 8 1 Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; [email protected] 2 Department of Pharmacokinetics and Monitored Therapy, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] 3 Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; [email protected] 4 Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, 71-252 Szczecin, Poland; [email protected] 5 Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] 6 Department of Anesthesiology and Intensive Therapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; [email protected] 7 Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] 8 Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland; [email protected] * Correspondence: katarzyna.kotfi[email protected]; Tel.: +48-91-466-11-44 Abstract: In March 2020, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was declared Citation: Kotfis, K.; Lechowicz, K.; a global pandemic by the World Health Organization (WHO). The clinical course of the disease is Drozd˙ zal,˙ S.; Nied´zwiedzka-Rystwej, unpredictable but may lead to severe acute respiratory infection (SARI) and pneumonia leading to P.; Wojdacz, T.K.; Grywalska, E.; acute respiratory distress syndrome (ARDS).
    [Show full text]
  • AHFS Pharmacologic-Therapeutic Classification System
    AHFS Pharmacologic-Therapeutic Classification System Abacavir 48:24 - Mucolytic Agents - 382638 8:18.08.20 - HIV Nucleoside and Nucleotide Reverse Acitretin 84:92 - Skin and Mucous Membrane Agents, Abaloparatide 68:24.08 - Parathyroid Agents - 317036 Aclidinium Abatacept 12:08.08 - Antimuscarinics/Antispasmodics - 313022 92:36 - Disease-modifying Antirheumatic Drugs - Acrivastine 92:20 - Immunomodulatory Agents - 306003 4:08 - Second Generation Antihistamines - 394040 Abciximab 48:04.08 - Second Generation Antihistamines - 394040 20:12.18 - Platelet-aggregation Inhibitors - 395014 Acyclovir Abemaciclib 8:18.32 - Nucleosides and Nucleotides - 381045 10:00 - Antineoplastic Agents - 317058 84:04.06 - Antivirals - 381036 Abiraterone Adalimumab; -adaz 10:00 - Antineoplastic Agents - 311027 92:36 - Disease-modifying Antirheumatic Drugs - AbobotulinumtoxinA 56:92 - GI Drugs, Miscellaneous - 302046 92:20 - Immunomodulatory Agents - 302046 92:92 - Other Miscellaneous Therapeutic Agents - 12:20.92 - Skeletal Muscle Relaxants, Miscellaneous - Adapalene 84:92 - Skin and Mucous Membrane Agents, Acalabrutinib 10:00 - Antineoplastic Agents - 317059 Adefovir Acamprosate 8:18.32 - Nucleosides and Nucleotides - 302036 28:92 - Central Nervous System Agents, Adenosine 24:04.04.24 - Class IV Antiarrhythmics - 304010 Acarbose Adenovirus Vaccine Live Oral 68:20.02 - alpha-Glucosidase Inhibitors - 396015 80:12 - Vaccines - 315016 Acebutolol Ado-Trastuzumab 24:24 - beta-Adrenergic Blocking Agents - 387003 10:00 - Antineoplastic Agents - 313041 12:16.08.08 - Selective
    [Show full text]
  • Comparing the Effects of Combined Oral Contraceptives Containing Progestins with Low Androgenic and Antiandrogenic Activities on the Hypothalamic-Pituitary-Gonadal Axis In
    JMIR RESEARCH PROTOCOLS Amiri et al Review Comparing the Effects of Combined Oral Contraceptives Containing Progestins With Low Androgenic and Antiandrogenic Activities on the Hypothalamic-Pituitary-Gonadal Axis in Patients With Polycystic Ovary Syndrome: Systematic Review and Meta-Analysis Mina Amiri1,2, PhD, Postdoc; Fahimeh Ramezani Tehrani2, MD; Fatemeh Nahidi3, PhD; Ali Kabir4, MD, MPH, PhD; Fereidoun Azizi5, MD 1Students Research Committee, School of Nursing and Midwifery, Department of Midwifery and Reproductive Health, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic Of Iran 2Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic Of Iran 3School of Nursing and Midwifery, Department of Midwifery and Reproductive Health, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic Of Iran 4Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic Of Iran 5Endocrine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic Of Iran Corresponding Author: Fahimeh Ramezani Tehrani, MD Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences 24 Parvaneh Yaman Street, Velenjak, PO Box 19395-4763 Tehran, 1985717413 Islamic Republic Of Iran Phone: 98 21 22432500 Email: [email protected] Abstract Background: Different products of combined oral contraceptives (COCs) can improve clinical and biochemical findings in patients with polycystic ovary syndrome (PCOS) through suppression of the hypothalamic-pituitary-gonadal (HPG) axis. Objective: This systematic review and meta-analysis aimed to compare the effects of COCs containing progestins with low androgenic and antiandrogenic activities on the HPG axis in patients with PCOS.
    [Show full text]
  • Research Publications by DISTINCTIONS Any Scientist of Pakistan in Last 10 Year and SERVICES  Secretary General, the Chemical Society of Pakistan
    CV and List of Publications PROF. DR. MUHAMMAD IQBAL CHOUDHARY (Hilal-e-Imtiaz, Sitara-e-Imtiaz, Tamgha-ei-Imtiaz) International Center for Chemical and Biological Sciences (H. E. J. Research Institute of Chemistry, Dr. Panjwani Center for Molecular Medicine and Drug Research) University of Karachi, Karachi-75270 Pakistan Tel: (92-21) 34824924, 34824925 Fax: 34819018, 34819019 E-mail: [email protected] Web Page: www.iccs.edu Biodata and List of Publications Pag No. 2 MUHAMMAD IQBAL CHOUDHARY (Hilal-e-Imtiaz, Sitara-e-Imtiaz, Tamgha-e-Imtiaz) D-131, Phase II, D. O. H. S., Malir Cant., Karachi-75270, Pakistan Ph.: 92-21-4901110 MAILING INTERNATIONAL CENTER FOR CHEMICAL AND BIOLOGICAL SCIENCES ADDRESS (H. E. J. Research Institute of Chemistry Dr. Panjwani Center for Molecular Medicine and Drug Research) University of Karachi Karachi-74270, Pakistan Tel: (92-21) 34824924-5 Fax: (92-21) 34819018-9 Email: [email protected] Web: www.iccs.edu DATE OF BIRTH September 11, 1959 (Karachi, Pakistan) EDUCATION Doctor of Science (D.Sc.) (University of Karachi ) 2005 Ph.D. (Organic Chemistry) 1987 H. E. J. Research Institute of Chemistry University of Karachi, Karachi-75270, Pakistan Thesis Title: "The Isolation and Structural Studies on Some Medicinal Plants of Pakistan, Buxus papillosa, Catharanthus roseus, and Cissampelos pareira." M.Sc. (Organic Chemistry) 1983 University of Karachi, Karachi-75270, Pakistan B.Sc. (Chemistry, Biochemistry, Botany) 1980 University of Karachi, Karachi-75270, Pakistan AWARDS & Declared as the top most scientist (Number 1) among 1,650 HONORS scientists of Pakistan in all disciplines / fields of science and technology (year 2012) by the Pakistan Council for Science and Technology (Ministry of Science and Technology), Pakistan.
    [Show full text]
  • The Inhaled Steroid Ciclesonide Blocks SARS-Cov-2 RNA Replication by Targeting Viral
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.258459; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The inhaled steroid ciclesonide blocks SARS-CoV-2 RNA replication by targeting viral 2 replication-transcription complex in culture cells 3 4 Shutoku Matsuyamaa#, Miyuki Kawasea, Naganori Naoa, Kazuya Shiratoa, Makoto Ujikeb, Wataru 5 Kamitanic, Masayuki Shimojimad, and Shuetsu Fukushid 6 7 aDepartment of Virology III, National Institute of Infectious Diseases, Tokyo, Japan 8 bFaculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan 9 cDepartment of Infectious Diseases and Host Defense, Gunma University Graduate School of 10 Medicine, Gunma, Japan 11 dDepartment of Virology I, National Institute of Infectious Diseases, Tokyo, Japan. 12 13 Running Head: Ciclesonide blocks SARS-CoV-2 replication 14 15 #Address correspondence to Shutoku Matsuyama, [email protected] 16 17 Word count: Abstract 149, Text 3,016 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.258459; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 18 Abstract 19 We screened steroid compounds to obtain a drug expected to block host inflammatory responses and 20 MERS-CoV replication. Ciclesonide, an inhaled corticosteroid, suppressed replication of MERS-CoV 21 and other coronaviruses, including SARS-CoV-2, the cause of COVID-19, in cultured cells. The 22 effective concentration (EC90) of ciclesonide for SARS-CoV-2 in differentiated human bronchial 23 tracheal epithelial cells was 0.55 μM.
    [Show full text]
  • Effective July 1, 2011
    MISSISSIPPI DIVISION OF MEDICAID PREFERRED DRUG LIST Effective July 1, 2011 BODY SYSTEM THERAPEUTIC CLASS PREFERRED AGENTS NON-PREFERRED AGENTS NOTES ANALGESICS ANALGESICS, fentanyl patches AVINZA (morphine) NARCOTIC-LONG-ACTING KADIAN (morphine) BUTRANS (buprenorphine) methadone DURAGESIC (fentanyl) morphine ER EMBEDA (morphine/naltrexone) EXALGO (hydromorphone) OPANA ER (oxymorphone) oxycodone ER OXYCONTIN (oxycodone) RYZOLT (tramadol) ULTRAM ER (tramadol) ANALGESICS, NARCOTIC- acetaminophen/codeine ABSTRAL (fentanyl) SHORT-ACTING aspirin/codeine butalbital/APAP/caffeine/codeine codeine butalbital/ASA/caffeine/codeine dihydrocodeine/ APAP/caffeine DARVON-N (propoxyphene) hydrocodone/APAP DILAUDID liquid (hydromorphone) hydrocodone/ibuprofen fentanyl hydromorphone FENTORA (fentanyl) IBUDONE (hydrocodone/ibuprofen) levorphanol meperidine NUCYNTA (tapentadol) morphine ONSOLIS (fentanyl) oxycodone OPANA (oxymorphone) oxycodone/APAP pentazocine/naloxone oxycodone/aspirin propoxyphene oxycodone/ibuprofen propoxyphene/APAP pentazocine/APAP REPREXAIN tramadol (hydrocodone/ibuprofen) tramadol/APAP RYBIX (tramadol) VIMOVO (naproxen/esomeprazole) ZAMICET (hydrocodone/APAP) ZOLVIT (hydrocodone/APAP) ANALGESICS/ANESTHETICS, FLECTOR (diclofenac epolamine) PENNSAID Solution TOPICAL LIDODERM (lidocaine) (diclofenac sodium ) VOLTAREN Gel (diclofenac sodium) ANTIHYPERURICEMICS allopurinol ULORIC (febuxostat) COLCRYS (colchicine) probenecid probenecid/colchicine ANALGESICS (continued) Unless otherwise stated, the listing of a particular brand or generic
    [Show full text]
  • Quantitative High-Throughput Profiling of Environmental Chemicals and Drugs That Modulate Farnesoid X Receptor
    OPEN Quantitative High-Throughput Profiling of SUBJECT AREAS: Environmental Chemicals and Drugs that SCREENING SMALL MOLECULES Modulate Farnesoid X Receptor Chia-Wen Hsu1, Jinghua Zhao1, Ruili Huang1, Jui-Hua Hsieh2, Jon Hamm3, Xiaoqing Chang3, Keith Houck4 Received & Menghang Xia1 27 June 2014 Accepted 1National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 2Division of the National 29 August 2014 Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 3Integrated Laboratory Systems, Inc., Morrisville, NC, 4U.S. Environmental Protection Agency, Research Triangle Park, NC. Published 26 September 2014 The farnesoid X receptor (FXR) regulates the homeostasis of bile acids, lipids, and glucose. Because endogenous chemicals bind and activate FXR, it is important to examine which xenobiotic compounds Correspondence and would disrupt normal receptor function. We used a cell-based human FXR b-lactamase (Bla) reporter gene assay to profile the Tox21 10K compound collection of environmental chemicals and drugs. requests for materials Structure-activity relationships of FXR-active compounds revealed by this screening were then compared should be addressed to against the androgen receptor, estrogen receptor a, peroxisome proliferator-activated receptors d and c, and M.X. ([email protected]. the vitamin D receptor. We identified several FXR-active structural classes including anthracyclines, gov) benzimidazoles, dihydropyridines, pyrethroids, retinoic acids, and vinca alkaloids. Microtubule inhibitors potently decreased FXR reporter gene activity. Pyrethroids specifically antagonized FXR transactivation. Anthracyclines affected reporter activity in all tested assays, suggesting non-specific activity. These results provide important information to prioritize chemicals for further investigation, and suggest possible modes of action of compounds in FXR signaling.
    [Show full text]
  • Long-Term Menopausal Treatment Using an Ultra-High Dosage of Tibolone in an Elderly Chinese Patient – Case Report
    Long-term menopausal treatment using an ultra-high dosage of tibolone in an elderly Chinese patient – Case report Lingyan Zhang 1, Xiangyan Ruan 1,2*, Muqing Gu 1, Alfred O. Mueck 1,2 1 Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China; 2 Department of Women’s Health, University Women’s Hospital and Research Centre for Women’s Health, University of Tuebingen, Tuebingen D-72076, Germany) ABSTRACT This report describes the special case of a Chinese woman with severe vasomotor symptoms (VSMs), depressed mood, low energy and genitourinary syndrome of menopause, including problems of sexual dysfunction, who was treated with tibolone. The aim of the report is to highlight the value of individualizing menopausal hormone therapy (MHT) type and dosage. Since 16 years of previous treatment with various other forms of MHT had not provided satisfactory efficacy in this patient, at the age of 71 years she was prescribed tibolone, starting at the usual lowest dosage of 1.25 mg/day. We gradually had to increase the dosage of tibolone up to 7.5 mg/day, which is three-fold the recommended maximum dosage. We added three-monthly sequential dydrogesterone to reduce the risk of breakthrough bleeding and the risk of endometrial cancer. To date, we have observed no side effects and no remarkable abnormal laboratory assessments, with the exception of increased thyroid-stimulating hormone, which we monitor six-monthly. Even though the patient has been informed about potential risks, such as increased risks of stroke, breast cancer and endometrial cancer, as described in the discussion, she has now been willing to accept this ultra-high dosage for seven years, and wishes to continue with this treatment.
    [Show full text]
  • Role of Androgens, Progestins and Tibolone in the Treatment of Menopausal Symptoms: a Review of the Clinical Evidence
    REVIEW Role of androgens, progestins and tibolone in the treatment of menopausal symptoms: a review of the clinical evidence Maria Garefalakis Abstract: Estrogen-containing hormone therapy (HT) is the most widely prescribed and well- Martha Hickey established treatment for menopausal symptoms. High quality evidence confi rms that estrogen effectively treats hot fl ushes, night sweats and vaginal dryness. Progestins are combined with School of Women’s and Infants’ Health The University of Western Australia, estrogen to prevent endometrial hyperplasia and are sometimes used alone for hot fl ushes, King Edward Memorial Hospital, but are less effective than estrogen for this purpose. Data are confl icting regarding the role of Subiaco, Western Australia, Australia androgens for improving libido and well-being. The synthetic steroid tibolone is widely used in Europe and Australasia and effectively treats hot fl ushes and vaginal dryness. Tibolone may improve libido more effectively than estrogen containing HT in some women. We summarize the data from studies addressing the effi cacy, benefi ts, and risks of androgens, progestins and tibolone in the treatment of menopausal symptoms. Keywords: androgens, testosterone, progestins, tibolone, menopause, therapeutic Introduction Therapeutic estrogens include conjugated equine estrogens, synthetically derived piperazine estrone sulphate, estriol, dienoestrol, micronized estradiol and estradiol valerate. Estradiol may also be given transdermally as a patch or gel, as a slow release percutaneous implant, and more recently as an intranasal spray. Intravaginal estrogens include topical estradiol in the form of a ring or pessary, estriol in pessary or cream form, dienoestrol and conjugated estrogens in the form of creams. In some countries there is increasing prescribing of a combination of estradiol, estrone, and estriol as buccal lozenges or ‘troches’, which are formulated by private compounding pharmacists.
    [Show full text]