A Review of Intent Detection, Arbitration, and Communication Dylan P. Losey Aspects of Shared Control for Department of Mechanical Engineering, Rice University, Physical Human–Robot Houston, TX 77251 e-mail:
[email protected] Interaction Craig G. McDonald Department of Mechanical Engineering, As robotic devices are applied to problems beyond traditional manufacturing and indus- Rice University, trial settings, we find that interaction between robots and humans, especially physical Houston, TX 77251 interaction, has become a fast developing field. Consider the application of robotics in e-mail:
[email protected] healthcare, where we find telerobotic devices in the operating room facilitating dexterous surgical procedures, exoskeletons in the rehabilitation domain as walking aids and Edoardo Battaglia upper-limb movement assist devices, and even robotic limbs that are physically inte- Centro di Ricerca “E. Piaggio”, grated with amputees who seek to restore their independence and mobility. In each of University of Pisa, these scenarios, the physical coupling between human and robot, often termed physical Pisa 56126, Italy human robot interaction (pHRI), facilitates new human performance capabilities and cre- e-mail:
[email protected] ates an opportunity to explore the sharing of task execution and control between humans and robots. In this review, we provide a unifying view of human and robot sharing task Marcia K. O’Malley execution in scenarios where collaboration and cooperation between the two entities are necessary, and where the physical coupling of human and robot is a vital aspect. We Professor define three key themes that emerge in these shared control scenarios, namely, intent Fellow ASME detection, arbitration, and feedback.